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This is the fifth edition of the textbook first published in
1960 as Physics for Students of Science and Engineering by
David Halliday and Robert Resnick. For four decades this
book has provided the standard for the calculus-based intro-
ductory survey course and has been known for the clarity
and completeness of its presentation. In the present edition
we have striven to increase accessibility without sacrificing
the level or the rigor of its content. The text has been sub-
stantially rewritten to make the material flow more
smoothly and to ease the student’s entry into new subjects.
We have attempted to provide more practical examples and
to proceed from the particular to the general when new top-
ics are introduced.

This edition features significant changes in the peda-
gogy as well as in the order of the chapters. Those who are
familiar with the fourth edition of this text will find the
same topics but in a revised order. In making these revi-
sions, we have sought the advice of users of past editions
and have taken into consideration the results of physics ed-
ucation research. Among the changes we have made in this
edition are the following:

1. We have continued the effort (begun in the previous
edition) to achieve a more coherent approach to energy, es-
pecially one that bridges the gap between mechanics and
thermodynamics. The need for a new approach to energy
has been indicated from a variety of sources. Persistent stu-
dent difficulties with energy concepts have been revealed
through physics education research (for example, see the
work of Lillian McDermott and co-workers*). The need to
promote a greater understanding of Newton’s laws has led
Priscilla Laws** to propose a re-ordering of topics in intro-
ductory mechanics in which conservation of mechanical en-
ergy is introduced only after a full study of vector mechan-
ics, including systems of particles and momentum conser-

vii

vation. A survey pointing out some difficulties with the
conventional presentations of energy conservation has been
given by Arnold Arons.*** Based in part on these ideas, in
this edition we have chosen to develop the energy concept
following the presentation of vector mechanics (in both
translational and rotational forms). This approach allows
for a more unified and coherent treatment of energy and the
law of conservation of energy, and it also permits a “spiral”
approach in which we can apply energy techniques to prob-
lems already solved using laws of vector mechanics. En-
ergy concepts are introduced in this edition in Chapters 11-
13, which then provide the critical background necessary
for the extensive use of energy and its conservation in the
remainder of this volume.

2. The chapter on vectors in the fourth edition has been
eliminated. Instead, vector techniques are introduced as
needed, beginning with vector addition and components of
vectors in Chapter 2 (kinematics) and continuing with the
cross product in Chapters 8 and 9 (rotational kinematics
and dynamics) and the dot product in Chapter 11 (work and
energy). In this way students find presentations of vector
techniques as they are needed and immediately applied. In
each case we have provided end-of-chapter exercises to
help students become familiar with the concepts and tech-
niques. A new appendix gives a summary of important vec-
tor concepts and formulas.

3. Again based in part on the findings of Priscilla Laws
and other physics education researchers, we have changed
the ordering of introductory topics to: one-dimensional kine-
matics, one-dimensional dynamics, and then two-dimen-
sional kinematics and dynamics. We need not reproduce here
the many arguments that support this change, but we feel that
at minimum it helps to deal with the persistent student confu-
sion in associating acceleration with velocity rather than with

PREFACE TO VOLUME 1

*“Student Understanding of the Work-Energy and Impulse-Momentum
Theorems,” by Ronald A. Lawson and Lillian C. McDermott, American
Journal of Physics, September 1987, p. 811.
**“A New Order for Mechanics,” by Priscilla W. Laws, in Conference on
the Introductory Physics Course, John Wiley & Sons, 1997, p. 125.

***“Development of Energy Concepts in Introductory Physics Courses,”
by Arnold Arons, American Journal of Physics, December 1999, p. 1063;
see also Teaching Introductory Physics, by Arnold Arons, John Wiley &
Sons, 1997, chapter 5.



force; for example, our new ordering allows us to introduce
centripetal force upon the first presentation of uniform circu-
lar motion (rather than one or two chapters later, as in the
previous ordering), and it allows the association between
gravitational force and gravitational acceleration to be made
at an earlier stage to dispel some of the errors that students
commonly make in identifying the magnitude and direction
of the acceleration in projectile motion.

4. The chapter on oscillations, which preceded gravita-
tion and fluid mechanics in the previous edition, now fol-
lows those topics and serves as a natural introduction to
wave motion.

5. The material in the fourth edition on equilibrium
(Chapter 14) has been largely incorporated into the chapter
on rotational dynamics (Chapter 9) in the present edition.

6. Thermodynamics, which occupied five chapters in
the previous edition, has been recast into four chapters in
this edition. A new chapter (22) on the molecular properties
of gases incorporates topics from kinetic theory and statisti-
cal mechanics (Chapters 23 and 24 of the fourth edition) as
they relate to the properties of the ideal gas. Topics relating
to work and energy in the ideal gas then fall naturally into
Chapter 23 of this edition (the first law of thermodynam-
ics). Chapter 24 (entropy and the second law) differs con-
siderably from the corresponding chapter in the fourth edi-
tion in that here we give entropy its appropriate and more
prominent role as fundamental to an understanding of the
second law.

7. In the fourth edition, topics from modern physics
were “sprinkled” throughout the text, generally in sections
labeled as “optional.” In this edition we continue to use ex-
amples from modern physics where appropriate throughout
the text, but the separate sections on modern physics have
been consolidated into Chapter 20 (special relativity) in this
volume and Chapters 45-52 in volume 2 (which treat topics
from quantum physics and its applications to atoms, solids,
and nuclei). We strongly believe that relativity and quantum
physics are essential parts of an introductory survey course
at this level, but that justice to these subjects is done better
by a coherent, unified presentation rather than a collection
of isolated expositions. As was the case in the fourth edi-
tion, we continue to place the chapter on special relativity
among the classical mechanics chapters in volume 1, which
reflects our strong belief that special relativity belongs
squarely among the kinematics and mechanics chapters
dealing with classical physics. (However, instructors who
with to delay the presentation of this material can easily
postpone coverage of Chapter 20 until later in the course.)

The end-of-chapter material in this edition differs sig-
nificantly from that of the previous edition. The previous
problem sets (which were all keyed to chapter sections)
have been carefully edited and placed into two groups: ex-
ercises and problems. Exercises, which are keyed to text
sections, generally represent direct applications of the ma-

terial in the associated section. Their purpose is usually to
help students become familiar with the concepts, important
formulas, units and dimensions, and so forth. Problems,
which are not keyed to text sections, often require use of
concepts from different sections or even from previous
chapters. Some problems call for the student to estimate or
independently locate the data needed to solve the problem.
In editing and grouping the exercises and problems, we
have also eliminated some problems from the previous edi-
tion. Within the next year we shall offer a problem supple-
ment that will incorporate most of the missing problems as
well as a selection of new exercises and problems. As be-
fore, answers to odd-numbered exercises and problems are
given in the text and those to the even-numbered exercises
and problems can be found in the instructor’s manual that
accompanies the text.

Multiple-choice questions and computer problems have
also been added to the end-of-chapter material. The multi-
ple-choice questions are generally conceptual in nature and
often call for unusual insights into the material. Answers to
the multiple-choice questions can be found in the instruc-
tor’s manual. The computer problems may require familiar-
ity with spread-sheet techniques or with symbolic manipu-
lation routines such as Maple or Mathematica.

We have striven to develop a textbook that offers as com-
plete and rigorous a survey of introductory physics as is pos-
sible at this level. It is, however, important to assert that few
(if any) instructors will want to follow the entire text from
start to finish, especially in a one-year course. There are
many alternate pathways through this text. The instructor
who wishes to treat fewer topics in greater depth (often
called the “less is more” approach) will be able to select
from among these pathways. Some sections or subsections
are explicitly labeled as “optional,” indicating that they can
be skipped without loss of continuity. Depending on the
course design, other sections or even entire chapters can be
skipped or treated lightly. The Instructor’s Manual, available
as a companion volume, offers suggestions for abbreviating
the coverage. Even so, the complete presentation remains in
the text where the curious student can seek out the omitted
topics and be rewarded with a broader view of the subject.
We hope that the text can thus be regarded as a sort of “road
map” through physics; many roads, scenic or direct, can be
taken, and all roads need not be utilized on the first journey.
The eager traveler may be encouraged to return to the map
to explore areas missed on previous journeys.

The text is available in two volumes. The present vol-
ume covers kinematics, mechanics, and thermodynamics;
volume 2 covers electromagnetism, optics, and quantum
physics and its applications. Supplements available include:

Instructor’s Solutions Manual Student Solutions Manual

Instructor’s Manual Student Study Guide

Instructor’s Resource CD Physics Simulations

Test Bank eGrade Homework 
Management System
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In preparing this edition, we have benefitted from the
advice of a dedicated team of reviewers who have, individ-
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We would like to extend special appreciation to two in-
dividuals whose tireless efforts and exceptional contribu-
tions have been essential to the success of this project and
who have set high standards for the quality of the finished
product. J. Richard Christman has been a long-time contrib-
utor whose careful review of the text and contributions to
the supplements have now extended over three editions. His
insistence on careful explanations and correct pedagogy
throughout the text has in a multitude of instances kept us
on the proper track. Paul Stanley is a new addition to the
team whose primary responsibility has been the end-of-
chapter questions and problems. He has brought to the pro-
ject a wealth of creative ideas and clever insights that will
challenge students (as well as instructors) to extend their
understanding of the material. 

The staff at John Wiley & Sons has provided constant
support for this project, for which we are exceptionally
grateful. We would especially like to thank Stuart Johnson
for his management of this project and his dedication to its
completion. Essential contributions to the quality of this
text have been made by production editor Elizabeth Swain,
photo editor Hilary Newman, illustration editor Anna Mel-
horn, and designer Karin Kincheloe. Without the skill and
efforts of these individuals this project would not have been
possible.

Despite the best efforts of authors, reviewers, and edi-
tors, it is inevitable that errors may appear in the text, and
we welcome communication from users with corrections or
comments on the content or pedagogy. We read all of
these communications and respond to as many as possible,
but we regret not being able to respond to all of them. Nev-
ertheless, we encourage readers’ comments, which can be
sent to www.wiley.com/college/hrk.
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1

MEASUREMENT

Despite the mathematical beauty of some of its most

complex and abstract theories, physics is above all an experimental science. It is therefore critical that

those who make precise measurements be able to agree on standards in which to express the results of those

measurements, so that they can be communicated from one laboratory to another and verified.

In this chapter we begin our study of physics by introducing some of the basic units of physical quanti-

ties and the standards that have been accepted for their measurement. We consider the proper way to ex-

press the results of calculations and measurements, including the appropriate dimensions and number of

significant figures. We discuss and illustrate the importance of paying attention to the dimensions of the

quantities that appear in our equations. Later in the text, other basic units and many derived units are in-

troduced as they are needed.

1-1 PHYSICAL QUANTITIES,
STANDARDS, AND UNITS

The laws of physics are expressed in terms of many differ-
ent quantities: mass, length, time, force, speed, density, re-
sistance, temperature, luminous intensity, magnetic field
strength, and many more. Each of these terms has a precise
meaning, and they form part of the common language that
physicists and other scientists use to communicate with one
another—when a physicist uses a term such as “kinetic en-
ergy,” all other physicists will immediately understand what
is meant. Each of these terms also represents a quantity that
can be measured in the laboratory, and just as there must be
agreement on the meaning of these terms, there must also
be agreement about the units used to express their values.
Without such agreement, it would not be possible for scien-
tists to communicate their results to one another or to com-
pare the results of experiments from different laboratories.

Such comparisons require the development and accep-
tance of a set of standards for units of measurement. For
example, if a measurement of length is quoted as 4.3 me-

ters, it means that the measured length is 4.3 times as long
as the value accepted for a standard length defined to be
“one meter.” If two laboratories base their measurements on
the same accepted standard for the meter, then presumably
their results can be easily compared. For this to be possible,
the accepted standards must be accessible to those who
need to calibrate their secondary standards, and they must
be invariable to change with the passage of time or with
changes in their environment (temperature, humidity, etc.).

Maintaining and developing standards for measurement
is an active branch of science. In the United States, the Na-
tional Institute of Standards and Technology* (NIST) has
the primary responsibility for this development. However, it
is also necessary to have wide international agreement
about standards, which has been accomplished through a
series of international meetings of the General Conference
on Weights and Measures (known by their French acroynm

* See http://physics.nist.gov/cuu for information about NIST’s role in
maintaining standards.
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CGPM) beginning in 1889; the twenty-first meeting was
held in 1999.*

Fortunately, it is not necessary to establish a measure-
ment standard for every physical quantity—some quanti-
ties can be regarded as fundamental, and the standards for
other quantities can be derived from the fundamental ones.
For example, length and time were once regarded as funda-
mental quantities with their individual established standards
(respectively the meter and the second); the measurement
standard for speed (� length/time) could then be derived in
terms of those standards. However, in more recent years the
speed of light has been measured to a precision exceeding
that of the former standard meter; as a result, today we still
use a fundamental standard for the second, but we define
the standard for length (the meter) in terms of the speed of
light and the second (see Section 1-4). This case illustrates
how measurements of increasing precision can change the
established standards and how rapidly such standards
evolve. Since the publication of the first edition of this text-
book, the precision of the standard unit for time (the sec-
ond) has improved by more than a factor of 1000.

The basic problem therefore is to choose a system in-
volving the smallest number of physical quantities as fun-
damental and to agree on accessible and invariable stan-
dards for their measurement. In the next sections of this
chapter we discuss the internationally accepted system and
some of its fundamental quantities.

1-2 THE INTERNATIONAL
SYSTEM OF UNITS**

At its various meetings, the General Conference on Weights
and Measures selected as base units the seven quantities
displayed in Table 1-1. This is the basis of the International
System of Units, abbreviated SI from the French Le Sys-
tème International d’Unités. SI is the modern form of what
is known generally as the metric system.

Throughout the book we give many examples of SI de-
rived units, such as speed, force, and electric resistance,
that follow from Table 1-1. For example, the SI unit of
force, called the newton (abbreviation N), is defined in
terms of the SI base units as

as we shall make clear in Chapter 3.
If we express physical properties such as the output of a

power plant or the time interval between two nuclear events
in SI units, we often find very large or very small numbers.
For convenience, the General Conference on Weights and
Measures recommended the prefixes shown in Table 1-2.

1 N � 1 kg �m/s2,

Thus we can write the output of a typical electrical power
plant, 1.3 � 109 watts, as 1.3 gigawatts or 1.3 GW. Similarly,
we can write a time interval of the size often encountered in
nuclear physics, 2.35 � 10�9 seconds, as 2.35 nanoseconds
or 2.35 ns. As Table 1-1 shows, the kilogram is the only SI
base unit that already incorporates one of the prefixes dis-
played in Table 1-2. Thus 103 kg is not expressed as 1 kilo-
kilogram; instead, 103 kg � 106 g � 1 Mg (megagram).

To fortify Table 1-1 we need seven sets of operational
procedures that tell us how to produce the seven SI base
units in the laboratory. We explore those for time, length,
and mass in the next three sections.

Two other major systems of units compete with the In-
ternational System (SI). One is the Gaussian system, in
terms of which much of the literature of physics is ex-
pressed. We do not use the Gaussian system in this book.
Appendix G gives conversion factors to SI units.

The other is the British system, still in daily use in the
United States. The basic units, in mechanics, are length (the
foot), force (the pound), and time (the second). Again Ap-
pendix G gives conversion factors to SI units. We use SI
units in this book, but we sometimes give the British equiv-
alents, to help those who are unaccustomed to SI units to
acquire more familiarity with them. The United States con-
tinues to be the only developed country that, so far, has not
adopted SI as its official unit system. However, SI is stan-
dard in all U.S. government laboratories and in many indus-
tries, especially those involved in foreign trade. The loss of
the Mars Climate Orbiter spacecraft in September 1999 has
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* See http://www.bipm.fr for the recommendations of this conference.
** See “SI: The International System of Units,” by Robert A. Nelson
(American Association of Physics Teachers, 1981). The “official” U.S.
guide to the SI system can be found in Special Publication 811 of the Na-
tional Institute of Standards and Technology (1995 edition).

SI Unit

Quantity Name Symbol

Time second s
Length meter m
Mass kilogram kg
Amount of substance mole mol
Thermodynamic temperature kelvin K
Electric current ampere A
Luminous intensity candela cd

Table 1-1 SI Base Units

Factor Prefix Symbol Factor Prefix Symbol

1024 yotta- Y 10�1 deci- d
1021 zetta- Z 10�2 centi- c
1018 exa- E 10�3 milli- m
1015 peta- P 10�6 micro- �
1012 tera- T 10�9 nano- n
109 giga- G 10�12 pico- p
106 mega- M 10�15 femto- f
103 kilo- k 10�18 atto- a
102 hecto- h 10�21 zepto- z
101 deka- da 10�24 yocto- y

a In all cases, the first syllable is accented, as in na�-no-me�-ter. Prefixes
commonly used in this book are shown in boldface type.

Table 1-2 SI Prefixesa



been traced to the fact that the manufacturer reported some
of the Orbiter’s characteristics in British units, which the
NASA navigation team mistakenly took to be SI units.
Careful attention to units can be very important!

Sample Problem 1-1. Any physical quantity can be
multiplied by 1 without changing its value. For example, 1 min �
60 s, so 1 � 60 s /1 min; similarly, 1 ft � 12 in., so 1 � 1 ft /12 in.
Using appropriate conversion factors, find (a) the speed in meters
per second equivalent to 55 miles per hour, and (b) the volume in
cubic centimeters of a tank that holds 16 gallons of gasoline.

Solution (a) For our conversion factors, we need (see Appendix
G) 1 mi � 1609 m (so that 1 � 1609 m/1 mi) and 1 h � 3600 s
(so 1 � 1 h/3600 s). Thus

(b) One fluid gallon is 231 cubic inches, and 1 in. � 2.54 cm. Thus

Note in these two calculations how the unit conversion factors are
inserted so that the unwanted units appear in one numerator and
one denominator, and thus cancel.

1-3 THE STANDARD OF TIME

The measurement of time has two aspects. For civil and for
some scientific purposes we want to know the time of day
so that we can order events in sequence. In most scientific
work we want to know how long an event lasts (the time in-
terval). Thus any time standard must be able to answer the
questions “At what time does it occur?” and “How long
does it last?” Table 1-3 shows the range of time intervals
that can be measured. They vary by a factor of about 1063.

We can use any phenomenon that repeats itself as a
measure of time. The measurement consists of counting the
repetitions, including the fractions thereof. We could use an
oscillating pendulum, a mass– spring system, or a quartz
crystal, for example. Of the many repetitive phenomena in
nature the rotation of the Earth on its axis, which deter-
mines the length of the day, was used as a time standard for
centuries. One (mean solar) second was defined to be
1/86,400 of a (mean solar) day.

Quartz crystal clocks based on the electrically sustained
periodic vibrations of a quartz crystal serve well as sec-
ondary time standards. A quartz clock can be calibrated
against the rotating Earth by astronomical observations and
used to measure time in the laboratory. The best of these
have kept time with a precision of about 1 second in
200,000 years, but even this precision is not sufficient for
the demands of modern science, technology, and commerce.

In 1967, the 13th General Conference on Weights and
Measures adopted a definition of the second based on a
characteristic frequency of the radiation emitted by a ce-
sium atom. In particular, they stated that

volume � 16 gal �
231 in.3

1 gal
� � 2.54 cm

1 in. �
3

� 6.1 � 104 cm3.

speed � 55 
mi

h
�

1609 m

1 mi
�

1 h

3600 s
� 25 m/s.

The second is the duration of 9,192,631,770 vibrations
of a (specified) radiation emitted by a (specified) isotope
of the cesium atom.

Figure 1-1 shows the current national frequency standard, a
so-called cesium fountain clock developed at the National
Institute of Standards and Technology (NIST). Its precision
is about 1 second in 20 million years.
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Time Interval Seconds

Lifetime of proton �1040

Half-life of double beta decay of 82Se 3 � 1027

Age of universe 5 � 1017

Age of pyramid of Cheops 1 � 1011

Human life expectancy (U.S.) 2 � 109

Time of Earth’s orbit around the Sun (1 year) 3 � 107

Time of Earth’s rotation about its axis (1 day) 9 � 104

Period of typical low-orbit Earth satellite 5 � 103

Time between normal heartbeats 8 � 10�1

Period of concert-A tuning fork 2 � 10�3

Period of oscillation of 3-cm microwaves 1 � 10�10

Typical period of rotation of a molecule 1 � 10�12

Shortest light pulse produced (1990) 6 � 10�15

Lifetime of least stable particles 	10�23

a Approximate values.

Table 1-3 Some Measured Time Intervalsa

Figure 1-1. The National Frequency Standard NIST-F1, a so-
called cesium fountain clock, developed at the National Institute of
Standards and Technology. It is shown with its developers, Steve
Jefferts and Dawn Meekhof. In this device extremely slow-moving
cesium atoms are projected upward, covering a distance of about a
meter before falling back under gravity to their launch position in
about 1 second. Hence the label “fountain.” The small speeds of
these projected atoms make possible precise observation of the fre-
quency of the atomic radiation that they emit. For more informa-
tion, see http://www.nist.gov/public_affairs/releases/n99-22.htm.



Cesium clocks housed in satellites form the basis of the
Global Positioning System. Portable cesium clocks the size
of a suitcase are commercially available. It is also possible
to purchase desk-top clocks or wrist watches that, automati-
cally and periodically updated by radio time signals from
NIST, display “atomic time.” Figure 1-2 shows, by compar-
ison with a cesium clock, variations in the rate of rotation
of the Earth over a 4-year period. These data suggest what a
relatively poor time standard the Earth’s rotation rate pro-
vides for precise work. Figure 1-3 shows the impressive
record of improvements in time-keeping that have occurred
over the past 300 years or so, starting with the invention of
the pendulum clock by Christian Huygens in 1665.

The maintenance of timekeeping standards in the
United States is the responsibility of the U.S. Naval Obser-
vatory (USNO) in Washington, DC. The USNO Master
Clock represents the combined output of an assembly of ce-
sium clocks and hydrogen masers housed in 20 separate,
environmentally controlled vaults.*

1-4 THE STANDARD OF
LENGTH**

The first international standard of length was a bar of a plat-
inum– iridium alloy called the standard meter, which was
kept at the International Bureau of Weights and Measures
near Paris. The distance between two fine lines engraved
near the ends of the bar, when the bar was held at a tempera-
ture of 0°C and supported mechanically in a prescribed way,
was defined to be one meter. Historically, the meter was in-
tended to be one ten-millionth of the distance from the north
pole to the equator along the meridian line through Paris.
However, accurate measurements showed that the standard
meter bar differs slightly (about 0.023%) from this value.

Because the standard meter is not very accessible, accu-
rate master copies of it were made and sent to standardized
laboratories throughout the world. These secondary stan-
dards were used to calibrate other, still more accessible,
measuring rods. Thus, until recently, every measuring rod
or device derived its authority from the standard meter
through a complicated chain of comparisons using micro-
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* Information about time services provided by the USNO is available on
the Internet at http://tycho.usno.navy.mil/ and by telephone at (202) 762-
1401.
** See “The New Definition of the Meter,” by P. Giacomo, American
Journal of Physics, July 1984, p. 607.
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Figure 1-2. The variation in the length of the day over a 4-
year period. Note that the vertical scale is only 3 ms � 0.003 s.
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scopes and dividing engines. Since 1959 this statement had
also been true for the yard, whose legal definition in the
United States was adopted in that year to be

(exactly),

which is equivalent to

(exactly).

The accuracy with which the necessary intercompar-
isons of length can be made by the technique of comparing
fine scratches using a microscope is no longer satisfactory
for modern science and technology. A more precise and re-
producible standard of length was obtained when the Amer-
ican physicist Albert A. Michelson in 1893 compared the
length of the standard meter with the wavelength of the red
light emitted by atoms of cadmium. Michelson carefully
measured the length of the meter bar and found that the
standard meter was equal to 1,553,163.5 of those wave-
lengths. Identical cadmium lamps could easily be obtained
in any laboratory, and thus Michelson found a way for sci-
entists around the world to have a precise standard of
length without relying on the standard meter bar.

Despite this technological advance, the metal bar re-
mained the official standard until 1960, when the 11th Gen-
eral Conference on Weights and Measures adopted an
atomic standard for the meter. This standard was based on
the wavelength in vacuum of a certain orange-red light
emitted by atoms of the isotope of krypton with mass num-
ber 86, identified by the symbol 86Kr.* Specifically, one
meter was defined to be 1,650,763.73 wavelengths of this
light. Using this standard, it became possible to compare
lengths to a precision below 1 part in 109.

By 1983, the demands for higher precision had reached
such a point that even the 86Kr standard could not meet
them and in that year a bold step was taken. The meter was
redefined as the distance traveled by a light wave in a speci-
fied time interval. In the words of the 17th General Confer-
ence on Weights and Measures:

The meter is the length of the path traveled by light in
vacuum during a time interval of 1/299,792,458 of a
second.

This is equivalent to saying that the speed of light c is now
defined as

(exactly).

This new definition of the meter was necessary because
measurements of the speed of light had become so precise
that the reproducibility of the 86Kr meter itself became the
limiting factor. In view of this, it then made sense to adopt

c � 299,792,458 m/s

1 inch � 2.54 centimeters

1 yard � 0.9144 meter

the speed of light as a defined quantity and to use it along
with the precisely defined standard of time (the second) to
redefine the meter.

Table 1-4 shows the range of measured lengths that can
be compared with the standard.

Sample Problem 1-2. A light-year is a measure of
length (not a measure of time) equal to the distance that light trav-
els in 1 year. Compute the conversion factor between light-years
and meters, and find the distance to the star Proxima Centauri 
(4.0 � 1016 m) in light-years.

Solution The conversion factor from years to seconds is

The speed of light is, to three significant figures, 3.00 � 108 m/s.
Thus in 1 year, light travels a distance of

so that

The distance to Proxima Centauri is

Light from Proxima Centauri thus takes about 4.2 years to travel
to Earth.

1-5 THE STANDARD OF MASS

The SI standard of mass is a platinum– iridium cylinder
kept at the International Bureau of Weights and Measures
and assigned, by international agreement, a mass of 
1 kilogram. Secondary standards are sent to standardizing
laboratories in other countries and the masses of other 

(4.0 � 1016 m) �
1 light-year

9.48 � 1015 m
� 4.2 light-years.

1 light-year � 9.48 � 1015 m.

(3.00 � 108 m/s) (3.16 � 107 s) � 9.48 � 1015 m,

� 3.16 � 107 s. 

1 y � 1 y �
365.25 d

1 y
�

24 h

1 d
�

60 min

1 h
�

60 s

1 min
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* The mass number is the total number of protons plus neutrons in the nu-
cleus. Naturally occurring krypton has several different isotopes, corre-
sponding to atoms with different mass numbers. It is important to specify a
particular isotope for the standard, because the wavelength of the chosen ra-
diation will vary from one isotope to another by about 1 part in 105, which
is unacceptably large in comparison with the precision of the standard.

Length Meters

Distance to the farthest observed quasar 2 � 1026

Distance to the Andromeda galaxy 2 � 1022

Radius of our galaxy 6 � 1019

Distance to the nearest star (Proxima Centauri) 4 � 1016

Mean orbit radius for the most distant planet (Pluto) 6 � 1012

Radius of the Sun 7 � 108

Radius of the Earth 6 � 106

Height of Mt. Everest 9 � 103

Height of a typical person 2 � 100

Thickness of a page in this book 1 � 10�4

Size of a typical virus 1 � 10�6

Radius of a hydrogen atom 5 � 10�11

Effective radius of a proton 1 � 10�15

a Approximate values.

Table 1-4 Some Measured Lengthsa



bodies can be found by an equal-arm balance technique to
a precision of 1 part in 108.

The U.S. copy of the international standard of mass,
known as Prototype Kilogram No. 20, is housed in a vault
at the National Institute of Standards and Technology (see
Fig. 1-4). It is removed no more than once a year for check-
ing the values of tertiary standards. Since 1889 Prototype
No. 20 has been taken to France twice for recomparison
with the master kilogram. When it is removed from the
vault two people are always present, one to carry the kilo-
gram in a pair of forceps, the second to catch the kilogram
if the first person should fall.

Table 1-5 shows some measured masses. Note that they
vary by a factor of about 1083. Most masses have been mea-
sured in terms of the standard kilogram by indirect meth-
ods. For example, we can measure the mass of the Earth
(see Section 14-3) by measuring in the laboratory the gravi-
tational force of attraction between two lead spheres and
comparing it with the attraction of the Earth for a known
mass. The masses of the spheres must be known by direct
comparison with the standard kilogram.

On the atomic scale we have a second standard of mass,
which is not an SI unit. It is the mass of the 12C atom, which,
by international agreement, has been assigned an atomic
mass of 12 unified atomic mass units (abbreviation u), ex-
actly and by definition. We can find the masses of other
atoms to considerable accuracy by using a mass spectrometer
(see Section 32-2). Table 1-6 shows some selected atomic
masses, including the estimated uncertainties of measure-
ment. We need a second standard of mass because present
laboratory techniques permit us to compare atomic masses

with each other to greater precision than we can presently
compare them with the standard kilogram. However, develop-
ment of an atomic mass standard to replace the standard kilo-
gram is well under way. The relationship between the present
atomic standard and the primary standard is approximately

A related SI unit is the mole, which measures the quan-
tity of a substance. One mole of 12C atoms has a mass of
exactly 12 grams and contains a number of atoms numeri-
cally equal to the Avogadro constant NA :

This is an experimentally determined number, with an un-
certainty of about one part in a million. One mole of any
other substance contains the same number of elementary
entities (atoms, molecules, or whatever). Thus 1 mole of
helium gas contains NA atoms of He, 1 mole of oxygen
contains NA molecules of O2 , and 1 mole of water contains
NA molecules of H2O.

To relate an atomic unit of mass to a bulk unit, it is nec-
essary to use the Avogadro constant. Replacing the standard
kilogram with an atomic standard will require an improve-
ment of at least two orders of magnitude in the precision of
the measured value of NA to obtain masses with precisions
of 1 part in 108.

NA � 6.02214199 � 1023 per mole.

1 u � 1.661 � 10�27 kg.

6 Chapter 1 / Measurement

Figure 1-4. The National Standard Prototype Kilogram No.
20, resting in its double bell jar at the U.S. National Institute of
Standards and Technology.

Object Kilograms

Known universe (estimate) 1053

Our galaxy 2 � 1043

Sun 2 � 1030

Earth 6 � 1024

Moon 7 � 1022

Ocean liner 7 � 107

Elephant 4 � 103

Person 6 � 101

Grape 3 � 10�3

Speck of dust 7 � 10�10

Virus 1 � 10�15

Penicillin molecule 5 � 10�17

Uranium atom 4 � 10�26

Proton 2 � 10�27

Electron 9 � 10�31

a Approximate values.

Table 1-5 Some Measured Massesa

Isotope Mass (u) Uncertainty (u)

1H 1.00782503214 0.00000000035
12C 12.00000000 (exact)
64Cu 63.9297679 0.0000015
109Ag 108.9047551 0.0000032
137Cs 136.9070836 0.0000032
208Pb 207.9766358 0.0000031
238Pu 238.0495534 0.0000022

Table 1-6 Some Measured Atomic Masses



1-6 PRECISION AND SIGNIFICANT
FIGURES

As we improve the quality of our measuring instruments
and the sophistication of our techniques, we can carry out
experiments at ever increasing levels of precision; that is,
we can extend the measured results to more and more sig-
nificant figures and correspondingly reduce the experimen-
tal uncertainty of the result. Both the number of significant
figures and the uncertainty tell something about our esti-
mate of the precision of the result. That is, the result x �
3 m implies that we know less about x than the value

m. When we declare we mean that
we are reasonably certain that x lies between 2 m and 4 m,
whereas expressing x as 3.14159 m means that x probably
lies between 3.14158 m and 3.14160 m. If you express x as
3 m when in fact you really believe that x is 3.14159 m,
you are withholding information that might be important.
On the other hand, if you express when you
really have no basis for knowing anything other than

you are being somewhat dishonest by claiming to
have more information than you really do. Attention to sig-
nificant figures is important when presenting the results of
measurements and calculations, and it is equally as wrong
to include too many as too few.

There are a few simple rules to follow in deciding how
many significant figures to keep:

Rule 1. Counting from the left and ignoring leading ze-
ros, keep all digits up to the first doubtful one. That is, x �
3 m has only one significant figure, and expressing this
value as does not change the number of sig-
nificant figures. If we instead wrote (or, equiva-
lently, we would imply that we know the
value of x to two significant figures. In particular, don’t
write down all 9 or 10 digits of your calculator display if
they are not justified by the precision of the input data!
Most calculations in this text are done with two or three
significant figures.

Be careful about ambiguous notations: does
not indicate whether there are one, two, or three significant
figures; we don’t know whether the zeros are carrying in-
formation or merely serving as place holders. Instead, we
should write or or to
specify the precision more clearly.

Rule 2. When multiplying or dividing, the number of
significant figures in the product or quotient should be no
greater than the number of significant figures in the least
precise of the factors. Thus

A bit of good judgment is occasionally necessary when ap-
plying this rule:

because, even though 9.8 technically has only two signifi-
cant figures, it is very close to being a number with three

9.8 � 1.03 � 10.1

2.3 � 3.14159 � 7.2.

3.00 � 1023.0 � 102x � 3 � 102

x � 300 m

x � 0.0030 km),
x � 3.0 m

x � 0.003 km

x � 3 m,

x � 3.14159 m

x � 3 m,x � 3.14159

significant figures. The product should therefore be ex-
pressed with three significant figures.

Rule 3. In adding or subtracting, the least significant
digit of the sum or difference occupies the same relative po-
sition as the least significant digit of the quantities being
added or subtracted. In this case the number of significant
figures is not important; it is the position that matters. For
example, suppose we wish to find the total mass of three
objects as follows:

The least significant or first doubtful digit is shown in bold-
face. By rule 1, we should include only one doubtful digit;
thus the result should be expressed as 106.3 kg, for if the
“3” is doubtful, then the following “19” gives no informa-
tion and is useless.

Sample Problem 1-3. You wish to weigh your pet cat,
but all you have available is an ordinary home platform scale. It
is a digital scale, which displays your weight in a whole number
of pounds. You therefore use the following scheme: you deter-
mine your own weight to be 119 lbs, and then holding the cat you
find your combined weight to be 128 lbs. What is the fractional
or percentage uncertainty in your weight and in the weight of
your cat?

Solution The least significant digit is the units digit, and so your
weight is uncertain by about 1 pound. That is, your scale would
read 119 lb for any weight between 118.5 and 119.5 lb. The frac-
tional uncertainty is therefore

The weight of the cat is 128 lb � 119 lb � 9 lb. However, the un-
certainty in the cat’s weight is still about 1 lb, and so the fractional
uncertainty is

Although the absolute uncertainty in your weight and the cat’s
weight is the same (1 lb), the relative uncertainty in your weight is
an order of magnitude smaller than the relative uncertainty in the
cat’s weight. If you tried to weigh a 1-lb kitten by this method, the
relative uncertainty in its weight would be 100%. This illustrates a
commonly occurring danger in the subtraction of two numbers
that are nearly equal: the relative or percentage uncertainty in the
difference can be very large.

1-7 DIMENSIONAL ANALYSIS

Associated with every measured or calculated quantity is a
dimension. For example, both the absorption of sound by an
enclosure and the probability for nuclear reactions to occur
have the dimensions of an area. The units in which the

1 lb

9 lb
� 0.11 � 11%.

1 lb

119 lb
� 0.008 or 0.8%.

106.319 or 106.3 kg
0.319 kg
2.10  kg 

103.9  kg 

1-7 Dimensional Analysis 7



quantities are expressed do not affect the dimension of the
quantities: an area is still an area whether it is expressed in
m2 or ft2 or acres or sabins (sound absorption) or barns (nu-
clear reactions).

Just as we defined our measurement standards earlier in
this chapter as fundamental quantities, we can choose a set
of fundamental dimensions based on independent measure-
ment standards. For mechanical quantities, mass, length,
and time are elementary and independent, so they can serve
as fundamental dimensions. They are represented respec-
tively by M, L, and T.

Any equation must be dimensionally consistent; that
is, the dimensions on both sides must be the same. Atten-
tion to dimensions can often keep you from making errors
in writing equations. For example, the distance x covered
in a time t by an object starting from rest and moving 
subject to a constant acceleration a will be shown in 
the next chapter to be Acceleration is mea-
|sured in units such as m/s2. We use square brackets [ ] 
to denote “the dimension of,” so that or 
It follows that Keeping the units,
and therefore the dimension, of acceleration in mind, you
will therefore never be tempted to write or

The analysis of dimensions can often help in working
out equations. The following two sample problems illus-
trate this procedure.

Sample Problem 1-4. To keep an object moving in a
circle at constant speed requires a force called the “centripetal
force.” (Circular motion is discussed in Chapter 4.) Do a dimen-
sional analysis of the centripetal force.

Solution We begin by asking “On which mechanical variables
could the centripetal force F depend?” The moving object has
only three properties that are likely to be important: its mass m, its
speed v, and the radius r of its circular path. The centripetal force
F must therefore be given, apart from any dimensionless con-
stants, by an equation of the form

where the symbol 
 means “is proportional to” and where a, b,
and c are numerical exponents to be determined from analyzing
the dimensions. As we wrote in Section 1-2 (and as we shall dis-
cuss in Chapter 3), force has units of and so its dimen-
sions are We can therefore write the centripetal
force equation in terms of dimensions as

Dimensional consistency means that the fundamental dimensions
must be the same on each side. Thus, equating the exponents,

exponents of L:  b � c � 1, so c � �1.

exponents of T:  b � 2; 

exponents of M: a � 1; 

� Ma Lb�c T�b. 

MLT�2 � Ma (L/T)b Lc

 [F ] � [ma] [vb ] [rc ]

[F] � MLT�2.
kg �m/s2,

F 
 mavbrc,

x � 1
2 at 3.

x � 1
2 at

L/ T2 or LT�2.[a] �
[t] � T.[x] � L

x � 1
2 at 2.

The resulting expression is

The actual expression for centripetal force, derived from Newton’s
laws and the geometry of circular motion, is The di-
mensional analysis gives us the exact dependence on the mechani-
cal variables! This is really a happy accident, because dimensional
analysis can’t tell us anything about constants that do not have di-
mensions. In this case the constant happens to be 1.

Sample Problem 1-5. An important milestone in the
evolution of the universe just after the Big Bang is the Planck time
tP , the value of which depends on three fundamental constants: (1)
the speed of light (the fundamental constant of relativity),
3.00 � 108 m/s; (2) Newton’s gravitational constant (the funda-
mental constant of gravity), and (3)
Planck’s constant (the fundamental constant of quantum mechan-
ics), Based on a dimensional analy-
sis, find the value of the Planck time.

Solution Using the units given for the three constants, we can ob-
tain their dimensions:

Let the Planck time depend on these constants as

where i, j, and k are exponents to be determined. The dimensions
of this expression are

Equating powers on both sides gives

and solving these three equations for the three unknowns, we find

Thus

�

As commonly defined, the Planck time differs from this value by a
factor of Such dimensionless factors cannot be found by
this technique.

In similar fashion, we can determine the Planck length and the
Planck mass, which also have very fundamental interpretations
(see Exercises 32 and 33).

(2�)�1/2.

� 1.35 � 10�45 s. 

� √ (6.67 � 10�11 m3/s2 �kg)(6.63 � 10�34 kg �m2/s)

(3.00 � 108 m/s)5√ Gh

c5

tP 
 c�5/2G1/2h1/2

i � �5
2 , j � 1

2 , k � 1
2 .

exponents of M: 0 � �j � k

exponents of T:  1 � �i � 2j � k

exponents of L:  0 � i � 3j � 2k

� Li�3 j�2k T�i�2 j�k M�j�k. 

 T � (LT�1)i (L3T�2M�1) j (ML2 T�1)k

[tP] � [ci] [G j ] [hk] 

tP 
 ci G j hk,

 [h] � [kg �m2/s] � ML2 T�1

[G] � [m3/s2 �kg] � L3 T�2 M�1

 [c] � [m/s] � LT�1

h � 6.63 � 10�34 kg �m2/s.

G � 6.67 � 10�11 m3/s2 �kg;

c �

F � mv2/r.

F 

mv2

r
.
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Questions 9

MULTIPLE CHOICE

1-1 Physical Quantities, Standards, and Units

1-2 The International System of Units

1-3 The Standard of Time

1-4 The Standard of Length

1-5 The Standard of Mass

1-6 Precision and Significant Figures
1. A student is calculating the surface area of a single sheet of pa-

per. He measures the length to be he measures
the width to be The student should record the
area of the paper as

(A) 602.64 cm2. (B) 602.6 cm2.
(C) 602 cm2. (D) 603 cm2.

2. A student is calculating the thickness of a single sheet of paper.

w � 21.6 cm.
l � 27.9 cm;

She measures the thickness of a stack of 80 sheets with vernier
calipers, and finds the thickness to be To calcu-
late the thickness of a single sheet she divides. Which of the
following answers has the correct number of significant digits?

(A) 0.15875 mm. (B) 0.159 mm.
(C) 0.16 mm. (D) 0.2 mm.

1-7 Dimensional Analysis
3. The period of oscillation of a nonlinear oscillator depends on

the mass m, with dimensions of M; a restoring force constant k
with dimensions of ML�2T�2, and the amplitude A, with di-
mensions of L. Dimensional analysis shows that the period of
oscillation should be proportional to

(A) . (B) A2m/k.
(C) A�1 . (D) A2k3/m.√m/k

A√m/k

l � 1.27 cm.

QUESTIONS

1. How would you criticize this statement: “Once you have picked
a standard, by the very meaning of ‘standard’ it is invariable”?

2. List characteristics other than accessibility and invariability
that you would consider desirable for a physical standard.

3. Can you imagine a system of base units (Table 1-1) in which
time was not included?

4. Of the seven base units listed in Table 1-1, only one— the
kilogram—has a prefix (see Table 1-2). Would it be wise to
redefine the mass of that platinum– iridium cylinder at the In-
ternational Bureau of Weights and Measures as 1 g rather
than 1 kg?

5. What does the prefix “micro-” signify in the words “mi-
crowave oven”? It has been proposed that food that has been
irradiated by gamma rays to lengthen its shelf life be marked
“picowaved.” What do you suppose that means?

6. Many capable investigators, on the evidence, believe in the re-
ality of extrasensory perception. Assuming that ESP is indeed a
fact of nature, what physical quantity or quantities would you
seek to define to describe this phenomenon quantitatively?

7. Name several repetitive phenomena occurring in nature that
could serve as reasonable time standards.

8. You could define “1 second” to be one pulse beat of the cur-
rent president of the American Association of Physics Teach-
ers. Galileo used his pulse as a timing device in some of his
work. Why is a definition based on the atomic clock better?

9. What criteria should be satisfied by a good clock?

10. Five clocks are being tested in a laboratory. Exactly at noon,
as determined by the WWV time signal, on the successive
days of a week the clocks read as follows:

Clock Sun. Mon. Tues. Wed.

A 12:36:40 12:36:56 12:37:12 12:37:27
B 11:59:59 12:00:02 11:59:57 12:00:07
C 15:50:45 15:51:43 15:52:41 15:53:39
D 12:03:59 12:02:52 12:01:45 12:00:38
E 12:03:59 12:02:49 12:01:54 12:01:52

Clock Thurs. Fri. Sat.

A 12:37:44 12:37:59 12:38:14
B 12:00:02 11:59:56 12:00:03
C 15:54:37 15:55:35 15:56:33
D 11:59:31 11:58:24 11:57:17
E 12:01:32 12:01:22 12:01:12

How would you arrange these five clocks in the order of their
relative value as good timekeepers? Justify your choice.

11. From what you know about pendulums, cite the drawbacks to
using the period of a pendulum as a time standard.

12. How did Galileo know that the pendulum swings at the same
frequency regardless of the amplitude? Note: since pendu-
lums were crucial to the building of the first clocks, Galileo
couldn’t have used a clock to find the answer!

13. What is the uncertainty in a good sand-based egg timer? What
about an hourglass? What about the candles used for marking
time at night?

14. On June 30, 1981, the minute extending from 10:59 to 11:00
A.M. was arbitrarily lengthened to contain 61 s. The last day
of 1989 also was lengthened by 1 s. Such a leap second is oc-
casionally introduced to compensate for the fact that, as mea-
sured by our atomic time standard, Earth’s rotation rate is
slowly decreasing. Why is it desirable to readjust our clocks
in this way?

15. A radio station advertises that it is “at 89.5 on your FM dial.”
What does this number mean?

16. Why are there no SI base units for area or volume?
17. The meter was originally intended to be one ten-millionth of

the meridian line from the north pole to the equator that passes
through Paris. This definition disagrees with the meter bar
(adopted at that early date as a standard) by 0.023%. Does this
mean that the standard meter bar is inaccurate to this extent?

18. The original meter’s definition did not involve directly mea-
suring the entire distance from the north pole to the equator.
How was it done? Discuss any experimental uncertainty.

19. Can length be measured along a curved line? If so, how?



20. When the meter bar was taken to be the standard of length, its
temperature was specified. Can length be called a fundamen-
tal property if another physical quantity, such as temperature,
must be specified in choosing a standard?

21. In redefining the meter in terms of the speed of light, why did
the delegates to the 1983 General Conference on Weights and
Measures not simplify matters by defining the speed of light
to be 3 � 108 m/s exactly? For that matter, why did they not
define it to be 1 m/s exactly? Were both of these possibilities
open to them? If so, why did they reject them?

22. The kilogram was originally defined so that the density of wa-
ter was 1000 in metric units. Can a “metric” version of

be redefined so that it is exactly
equal to 22/7? What about saving considerable computation
trouble and defining it as 

23. Suggest a way to measure (a) the radius of the Earth, (b) the
distance between the Sun and the Earth, and (c) the radius of
the Sun.

24. Suggest a way to measure (a) the thickness of a sheet of pa-
per, (b) the thickness of a soap bubble film, and (c) the diame-
ter of an atom.

� � 3?

� � 3.1415926535 . . .

25. If someone told you that every dimension of every object had
shrunk to half its former value overnight, how could you re-
fute this statement?

26. Is the current standard kilogram of mass accessible, invari-
able, reproducible, and indestructible? Does it have simplicity
for comparison purposes? Would an atomic standard be better
in any respect? Why don’t we adopt an atomic standard, as
we do for length and time?

27. Why do we find it useful to have two standards of mass, the
kilogram and the 12C atom?

28. How does one obtain the relation between the mass of the
standard kilogram and the mass of the 12C atom?

29. Suggest practical ways by which one could determine the
masses of the various objects listed in Table 1-5.

30. Suggest objects whose masses would fall in the wide range in
Table 1-5 between that of an ocean liner and the Moon, and
estimate their masses.

31. Critics of the metric system often cloud the issue by saying
things such as: “Instead of buying 1 lb of butter you will have
to ask for 0.454 kg of butter.” The implication is that life
would be more complicated. How might you refute this?
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EXERCISES

1-1 Physical Quantities, Standards, and Units

1-2 The International System of Units
1. Use the prefixes in Table 1-2 to express (a) 106 phones, (b)

10�6 phones, (c) 101 cards, (d) 109 lows, (e) 1012 bulls, ( f )
10�1 mates, (g) 10�2 pedes, (h) 10�9 Nannettes, (i) 10�12 boos,
( j) 10�18 boys, (k) 2 � 102 withits, (l) 2 � 103 mockingbirds.
Now that you have the idea, invent a few more similar expres-
sions. (See p. 61 of A Random Walk in Science, compiled by
R. L. Weber; Crane, Russak & Co., New York, 1974.)

2. Some of the prefixes of the SI units have crept into everyday
language. (a) What is the weekly equivalent of an annual
salary of 36K (b) A lottery awards 10 megabucks
as the top prize, payable over 20 years. How much is received
in each monthly check? (c) The hard disk of a computer has a
capacity of 30 GB gigabytes). At 8 bytes/word, how
many words can it store?

1-3 The Standard of Time
3. Enrico Fermi once pointed out that a standard lecture period

(50 min) is close to 1 microcentury. How long is a microcen-
tury in minutes, and what is the percentage difference from
Fermi’s approximation?

4. New York and Los Angeles are about 3000 mi apart; the time
difference between these two cities is 3 h. Calculate the cir-
cumference of the Earth.

5. A convenient substitution for the number of seconds in a year
is � times 107. To within what percentage error is this correct?

6. (a) A unit of time sometimes used in microscopic physics is
the shake. One shake equals 10�8 s. Are there more shakes in
a second than there are seconds in a year? (b) Humans have
existed for about 106 years, whereas the universe is about 1010

years old. If the age of the universe is taken to be 1 day, for
how many seconds have humans existed?

(� 30

(� 36 k$)?

7. In two different track meets, the winners of the mile race ran
their races in 3 min 58.05 s and 3 min 58.20 s. In order to
conclude that the runner with the shorter time was indeed
faster, what is the maximum tolerable error, in feet, in laying
out the distances?

8. A certain pendulum clock (with a 12-h dial) happens to gain 1
min/day. After setting the clock to the correct time, how long
must one wait until it again indicates the correct time?

9. The age of the universe is about 5 � 1017 s; the shortest light
pulse produced in a laboratory (1990) lasted for only 6 �
10�15 s (see Table 1-3). Identify a physically meaningful time
interval approximately halfway between these two on a loga-
rithmic scale.

10. Assuming that the length of the day uniformly increases by
0.001 s in a century, calculate the cumulative effect on the
measure of time over 20 centuries. Such a slowing down of
the Earth’s rotation is indicated by observations of the occur-
rences of solar eclipses during this period.

11. The time it takes the Moon to return to a given position as
seen against the background of fixed stars, 27.3 days, is
called a sidereal month. The time interval between identical
phases of the Moon is called a lunar month. The lunar
month is longer than a sidereal month. Why and by how
much?

1-4 The Standard of Length
12. Your French pen pal Pierre writes to say that he is 1.9 m tall.

What is his height in British units?

13. (a) In track meets both 100 yards and 100 meters are used as
distances for dashes. Which is longer? By how many meters
is it longer? By how many feet? (b) Track and field records
are kept for the mile and the so-called metric mile (1500 me-
ters). Compare these distances.



14. The stability of the cesium clock used as an atomic time stan-
dard is such that two cesium clocks would gain or lose 1 s
with respect to each other in about 300,000 y. If this same
precision were applied to the distance between New York and
San Francisco (2572 mi), by how much would successive
measurements of this distance tend to differ?

15. Antarctica is roughly semicircular in shape with a radius of
2000 km. The average thickness of the ice cover is 3000 m.
How many cubic centimeters of ice does Antarctica contain?
(Ignore the curvature of the Earth.)

16. A unit of area, often used in expressing areas of land, is the
hectare, defined as 104 m2. An open-pit coal mine consumes
77 hectares of land, down to a depth of 26 m, each year.
What volume of earth, in cubic kilometers, is removed in this
time?

17. Earth is approximately a sphere of radius 6.37 � 106 m. (a)
What is its circumference in kilometers? (b) What is its sur-
face area in square kilometers? (c) What is its volume in cu-
bic kilometers?

18. The approximate maximum speeds of various animals follow,
but in different units of speed. Convert these data to m/s, and
thereby arrange the animals in order of increasing maximum
speed: squirrel, 19 km/h; rabbit, 30 knots; snail, 0.030 mi/h;
spider, 1.8 ft /s; cheetah, 1.9 km/min; human, 1000 cm/s; fox,
1100 m/min; lion, 1900 km/day.

19. A certain spaceship has a speed of 19,200 mi/h. What is its
speed in light-years per century?

20. A new car is equipped with a “real-time” dashboard display
of fuel consumption. A switch permits the driver to toggle
back and forth between British units and SI units. How-
ever, the British display shows mi/gal while the SI version is
the inverse, L/km. What SI reading corresponds to 30.0
mi/gal?

21. Astronomical distances are so large compared to terrestrial
ones that much larger units of length are used for easy com-
prehension of the relative distances of astronomical objects.
An astronomical unit (AU) is equal to the average distance
from Earth to the Sun, 1.50 � 108 km. A parsec (pc) is the
distance at which 1 AU would subtend an angle of 1 second
of arc. A light-year (ly) is the distance that light, traveling
through a vacuum with a speed of 3.00 � 105 km/s, would
cover in 1 year. (a) Express the distance from Earth to the Sun
in parsecs and in light-years. (b) Express a light-year and 
a parsec in kilometers. Although the light-year is much used
in popular writing, the parsec is the unit preferred by 
astronomers.

22. The effective radius of a proton is about 1 � 10�15 m; the ra-
dius of the observable universe (given by the distance to the
farthest observable quasar) is 2 � 1026 m (see Table 1-4).
Identify a physically meaningful distance that is approxi-
mately halfway between these two extremes on a logarithmic
scale.

1-5 The Standard of Mass
23. Using conversions and data in the chapter, determine the

number of hydrogen atoms required to obtain 1.00 kg of hy-
drogen.

24. One molecule of water (H2O) contains two atoms of hydro-
gen and one atom of oxygen. A hydrogen atom has a mass of
1.0 u and an atom of oxygen has a mass of 16 u. (a) What is

the mass in kilograms of one molecule of water? (b) How
many molecules of water are in the oceans of the world? The
oceans have a total mass of 1.4 � 1021 kg.

25. In continental Europe, one “pound” is half a kilogram. Which
is the better buy: one Paris pound of coffee for $9.00 or one
New York pound of coffee for $7.20?

26. A room has dimensions of 21 ft � 13 ft � 12 ft. What is the
mass of the air it contains? The density of air at room temper-
ature and normal atmospheric pressure is 1.21 kg/m3.

27. A typical sugar cube has an edge length of 1 cm. If you had a
cubical box that contained 1 mole of sugar cubes, what would
its edge length be?

28. A person on a diet loses 0.23 kg (corresponding to about 
0.5 lb) per week. Express the mass loss rate in milligrams per
second.

1-6 Precision and Significant Figures
29. For the period 1960–1983, the meter was defined to be

1,650,763.73 wavelengths of a certain orange-red light emit-
ted by krypton atoms. Compute the distance in nanometers
corresponding to one wavelength. Express your result using
the proper number of significant figures.

30. (a) Evaluate 37.76 � 0.132 to the correct number of signifi-
cant figures. (b) Evaluate 16.264 � 16.26325 to the correct
number of significant figures.

1-7 Dimensional Analysis
31. Porous rock through which groundwater can move is called

an aquifer. The volume V of water that, in time t, moves
through a cross section of area A of the aquifer is given by

where H is the vertical drop of the aquifer over the horizontal
distance L; see Fig. 1-5. This relation is called Darcy’s law.
The quantity K is the hydraulic conductivity of the aquifer.
What are the SI units of K?

V/t � KAH/L,
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Figure 1-5. Exercise 31.

Aquifer

Water 
table

H

L

32. In Sample Problem 1-5, the constants h, G, and c were com-
bined to obtain a quantity with the dimensions of time. Re-
peat the derivation to obtain a quantity with the dimensions of
length, and evaluate the result numerically. Ignore any dimen-
sionless constants. This is the Planck length, the size of the
observable universe at the Planck time.

33. Repeat the procedure of Exercise 32 to obtain a quantity with
the dimensions of mass. This gives the Planck mass, the mass
of the observable universe at the Planck time.



PROBLEMS

1. Shortly after the French Revolution, as part of their introduc-
tion of the metric system, the revolutionary National Conven-
tion made an attempt to introduce decimal time. In this plan,
which was not successful, the day— starting at midnight—
was divided into 10 decimal hours consisting of 100 decimal
minutes each. The hands of a surviving decimal pocket watch
are stopped at 8 decimal hours, 22.8 decimal minutes. What
time is it? See Fig. 1-6.

miles after sailing from England to the West Indies and back
again. (a) What daily accuracy for such a clock would be re-
quired? (b) What daily accuracy in a clock is required to fix
position to within 0.5 miles after 1 year at sea? (See Longi-
tude by Dava Sobel, Penguin, Baltimore, 1995.)

5. During the night each breath in contains about 0.3 L of oxy-
gen (O2 , 1.43 g/L at room temperature and pressure). Each
breath out contains 0.3 L of carbon dioxide (CO2 , 1.96 g/L at
room temperature and pressure). In the course of an 8-hour
sleep how much weight in pounds is lost from breathing?

6. Suppose that it takes 12 h to drain a container of 5700 m3 of
water. What is the mass flow rate (in kg/s) of water from the
container? The density of water is 1000 kg/m3.

7. The grains of fine California beach sand have an average ra-
dius of 50 �m. What mass of sand grains would have a total
surface area equal to the surface area of a cube exactly 1 m on
an edge? Sand is made of silicon dioxide, 1 m3 of which has a
mass of 2600 kg.

8. The standard kilogram (see Fig. 1-4) is in the shape of a cir-
cular cylinder with its height equal to its diameter. Show that,
for a circular cylinder of fixed volume, this equality gives the
smallest surface area, thus minimizing the effects of surface
contamination and wear.

9. The distance between neighboring atoms, or molecules, in a
solid substance can be estimated by calculating twice the ra-
dius of a sphere with volume equal to the volume per atom of
the material. Calculate the distance between neighboring
atoms in (a) iron and (b) sodium. The densities of iron and
sodium are 7870 kg/m3 and 1013 kg/m3, respectively; the
mass of an iron atom is 9.27 � 10�26 kg, and the mass of a
sodium atom is 3.82 � 10�26 kg.

10. (a) A rectangular metal plate has a length of 8.43 cm and a
width of 5.12 cm. Calculate the area of the plate to the correct
number of significant figures. (b) A circular metal plate has a
radius of 3.7 cm. Calculate the area of the plate to the correct
number of significant figures.
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Figure 1-7. Problem 2.

Figure 1-6. Problem 1.

Figure 1-8. Problem 3.

Earth

(Diagram not to scale)

Moon Sun

0.52°

North
pole

South 
pole

Circle 
of

latitude

NAVSTAR
satellite

Meridian 
of 

longitude

Equator

2. The average distance of the Sun from the Earth is 390 times
the average distance of the Moon from the Earth. Now con-
sider a total eclipse of the Sun (Moon between Earth and Sun;
see Fig. 1-7) and calculate (a) the ratio of the Sun’s diameter
to the Moon’s diameter, and (b) the ratio of the Sun’s volume
to the Moon’s volume. (c) The angle intercepted at the eye by
the Moon is 0.52° and the distance between the Earth and the
Moon is 3.82 � 105 km. Calculate the diameter of the Moon.

3. The navigator of an oil tanker uses the satellites of the Global
Positioning System (GPS/NAVSTAR) to find latitude and lon-
gitude; see Fig. 1-8. These are 43°36�25.3 N and 77°31�48.2
W. If the accuracy of these determinations is , what is
the uncertainty in the tanker’s position measured along (a) a
north-south line (meridian of longitude) and (b) an east-west
line (parallel of latitude)? (c) Where is the tanker?

4. In October, 1707 four British warships ran aground because
of error in position, sparking the effort to produce a marine
clock that would be accurate to locate a position within 30

�0.5
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MOTION IN ONE
DIMENSION

Mechanics, the oldest of the physical sciences, is

the study of the motion of objects. The calculation of the path of a baseball or of a space probe sent to Mars

is among its problems, as is the analysis of the tracks of elementary particles formed following collisions in

our largest accelerators. When we describe motion, we are dealing with the part of mechanics called kine-

matics (from the Greek word for motion, as also in cinema). When we analyze the causes of motion we are

dealing with dynamics (from the Greek word for force, as in dynamite). In this chapter, we deal mostly with

kinematics in one dimension. Chapter 3 introduces one-dimensional dynamics, and Chapter 4 extends these

concepts to two and three dimensions.

2-1 KINEMATICS WITH VECTORS

A scouting party has become trapped in a forest away from
their field camp (Fig. 2-1). Based on their explorations, the
scouts know that they are 2.0 km from the field camp in a
direction 30° west of north. They also know that the field
camp is located 3.0 km from the base camp in a direction
45° north of east. They wish to radio their position to the
base camp so that food and supplies can be dropped by air
as close to their position as possible. How can they pinpoint
their location relative to the base camp?

Although there are several ways to solve this problem,
the most compact way is in terms of vectors. Vectors are
quantities that have both magnitude and direction and that
follow a certain set of mathematical rules for processes
such as addition and multiplication. In Fig. 2-1, the position
vector (of length 3.0 km in a direction 45° N of E) lo-
cates the field camp relative to the base camp. The position
vector (of length 2.0 km in a direction 30° W of N) lo-
cates the scouting party relative to the field camp.

We wish to find the vector that locates the scouting
party relative to the base camp. Mathematically, we write
this relationship as but the � sign in this
equation means something different from its meaning in or-
dinary arithmetic or algebra. Clearly it does not mean we
should add 3.0 km � 2.0 km to find the distance from the

rB � rB1 � rB2 ,

rB

rB2

rB1

base camp to the scouting party; moreover, this equation
must also convey some directional information to help lo-
cate the scouting party. Note that the equation

does not tell us that the distance from the
base camp to the scouting party along is the same as the
sum of the distances along and Instead, it tells usrB2 .rB1

rB
rB � rB1 � rB2

Figure 2-1. The relative locations of the base camp, field
camp, and scouting party can be specified using vectors.
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that we can reach our goal of traveling from the base camp
to the scouting party along two equivalent paths, where
“equivalent” means that we end up in the same final loca-
tion.

Position is only one of many quantities in physics that
can be represented by vectors. Others include velocity, ac-
celeration, force, momentum, and electromagnetic fields. In
contrast to vectors, quantities that can be completely de-
scribed by specifying only a number (and its units) are
called scalars. Examples of scalars are mass, time, temper-
ature, and energy.

Kinematics
In this chapter we begin our study of the motion of ob-
jects by introducing the terms that are used to describe
the motion and showing how they are related to one an-
other. This branch of physics is called kinematics. By
specifying the position, velocity, and acceleration of an
object, we can describe how the object moves, including
the direction of its motion, how that direction changes
with time, whether the object speeds up or slows down,
and so forth.

For simplicity we will in this chapter consider only the
motion of particles. By “particle” we often mean a single
mass point, such as an electron, but we also can use “par-
ticle” to describe an object whose parts all move in ex-
actly the same way. Even a complex object can be treated
as a particle if there are no internal motions such as rota-
tions or vibrations of its parts. For example, a rolling
wheel cannot be treated as a particle, because a point on
its rim moves differently from a point on its axle. (How-
ever, a sliding wheel can be treated as a particle.) Thus an
object may be considered a particle for some calculations
but not for others. For now we will neglect all internal
motions and consider an electron and a freight train on
the same basis — as examples of particle motion. Within
this approximation, particles can execute a variety of mo-
tions: speed up, slow down, even stop and reverse direc-
tion or move in curved paths such as circles or parabolas.
As long as we can regard these objects as particles, we
can use the same set of kinematic equations to describe
them.

Many of the laws of physics can be expressed most
compactly as relations between quantities expressed as
vectors. When a law is written in vector form, it is often
easier to understand and to manipulate. Position, velocity,
and acceleration, which are the quantities of kinematics,
are all vector quantities, and the rules that define them and
relate them to one another are vector laws. In this chapter
we develop these laws and apply them to motion in a
straight line. A more complete demonstration of the use-
fulness of these vector laws will come in Chapter 4, when
we consider two- and three-dimensional motion in curved
paths.

In the next section we summarize some of the basic
properties of vectors that we will need in kinematics. Fur-
ther details about the properties of vectors may be found in
Appendix H.

2-2 PROPERTIES OF VECTORS

To represent a vector on a diagram we draw an arrow. The
length of the arrow is drawn to be proportional to the mag-
nitude of the vector using any convenient scale. Other vec-
tors that are part of the same problem are drawn using the
same scale, so that the relative sizes of the arrows are the
same as the relative magnitudes of the vectors. (For exam-
ple, the vector in Fig. 2-1, which represents 3.0 km, is
drawn to be 1.5 times as long as the vector which rep-
resents 2.0 km.) The direction of the arrow corresponds to
the direction of the vector, with the arrowhead giving the
sense of the direction. Vectors are represented in this book
using boldface type with an arrow, such as or In your
handwritten work, you can write vectors by placing an ar-
row above the symbol, such as or 

The magnitude or length of a vector is indicated by 
which gives us no directional information at all about the
vector We will usually write the magnitude of a vector
by a single italic symbol such as a, which has the same
meaning as 

Components of Vectors
We can specify a vector by giving its length and direction,
as for example the position vectors of Fig. 2-1. It is often
more useful, however, to describe a vector in terms of its
components. Figure 2-2a shows the vector Its magnitude
or length is a and its direction is specified by the angle �,
which is measured with respect to the positive x axis. The x
and y components of are defined by

(2-1)

Although the magnitude a is always positive, the compo-
nents ax and ay may be positive or negative, depending on

ax � a cos � and ay � a sin �.

aB

aB.

� aB �.

aB.

� aB �,
b
B

.aB

b
B

.aB

rB2 ,
rB1
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Figure 2-2. (a) The vector has component ax in the x direc-
tion and component ay in the y direction. (b) The vector has a
negative x component.
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the angle �. For example, as shown in Fig. 2-2b, the vector
is located by an angle � that is greater than 90° but less

than 180° (� always being measured from the positive x
axis). For this case, bx is negative and by is positive.

If we know a and �, we can find the components ac-
cording to Eqs. 2-1. We can also reverse this process—
given ax and ay , we can find the magnitude of the vector
and the angle � by

and tan (2-2)

The quadrant in which is located, and thus the value of
�, can be determined from the signs of ax and ay . For ex-
ample, both �45° (or 315°) and 135° have tangents equal
to �1, and thus for both. For � � �45°, ax is
positive and ay is negative, whereas for � � 135°, ax is neg-
ative and ay is positive. Knowing the signs of ax and ay

would allow us to distinguish between these two possibili-
ties. (See Sample Problem 2-3 for another discussion of this
problem.)

A more formal way to write a vector in terms of its
components is based on a set of unit vectors. Unit vectors
are vectors of length 1 in the direction of each of the coor-
dinate axes. In the Cartesian coordinate system, the x and y
unit vectors are indicated by and as shown in Fig. 2-3a.
Using the unit vectors, we can write the vector as

(2-3)

Unit vectors are dimensionless; the dimensions of in Eq.
2-3 are carried by the components ax and ay .

The vector relation of Eq. 2-3 is exactly equivalent to
the two scalar relations of Eq. 2-1. Sometimes we refer to
ax and ay as the vector components of Figure 2-3b
shows the vector and its vector components. Because the
physical effect of a vector is identical to the combined
physical effects of its vector components, we may occa-
sionally want to analyze problems by replacing a vector by
its vector components. Usually when we speak of compo-
nents, however, we will mean the scalar components of 
Eq. 2-1.

aB
aB.ĵî

aB
aB � axî � ay ĵ.

aB
ĵ,î

ay /ax � �1

aB
� � ay /ax .a � √ax

2 � ay
2

b
B

When we write an equation involving vectors, such as
we mean that the two vectors are precisely the

same: they have the same magnitude and direction. This
can occur only if and That is,

Two vectors are equal to each other only if their corre-
sponding components are equal.

Adding Vectors
As in the case of Fig. 2-1, we often want to add two or
more vectors to find their sum. Consider the two vectors 
and in Fig. 2-4a. We wish to find the vector such that

Figure 2-4b shows a graphical construction that allows
us to find We first draw the vector Instead of
drawing with its tail at the origin, as in Fig. 2-4a, we
move until its tail coincides with the head of As long
as we don’t change its magnitude or direction, we can move
a vector in this way. The vector representing the sum

is now drawn from the tail of to the head of If
we are adding more than two vectors, we can continue plac-
ing them tail to head in this way, and the sum vector is
drawn from the tail of the first to the head of the last. Often
we can use geometric or trigonometric relationships to find
the magnitude and direction of the sum vector.

Another way to add vectors is to add their components.
That is, means

Setting the x components on the left side of this equation
equal to those on the right, and doing the same for the y
components, we obtain

(2-4)

To add vectors in this way, we resolve each vector into its
components and then add the components (taking into ac-
count their algebraic signs) to find the components of the
sum vector. Figure 2-5 illustrates this addition. Once we

sx � ax � bx and sy � ay � by .

� (ax � bx)î � (ay � by)ĵ. 

sxî � sy ĵ � (axî � ay ĵ) � (bxî � by ĵ)

sB � aB � b
B

b
B

.aBaB � b
B

,
sB,

aB.b
B

b
B

aB.aB � b
B

.

sB � aB � b
B

.
sBb

B
aB

ay � by .ax � bx

aB � b
B

,
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Figure 2-3. (a) The unit vectors and . (b) The vector com-
ponents of When we want to replace by its vector compo-
nents, it is helpful to draw a double line through the original vec-
tor, as shown; this helps to remind us not to consider the original
vector any more.

aBaB.
ĵî

Figure 2-4. (a) Vectors and (b) To find the sum of
vectors and , we slide without changing its magnitude or
direction until its tail is on the head of Then the vector 

is drawn from the tail of to the head of b
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know the components of the sum vector, we can easily find
its magnitude and direction using Eq. 2-2.

Multiplying a Vector by a Scalar
The product of a scalar c and a vector written c is de-
fined to be a new vector whose magnitude is the magnitude
of c times the magnitude of Equivalently, the compo-
nents of this new vector are cax and cay . The scalar may be
a pure number, or it may be a physical quantity with dimen-
sions and units, so that the new vector represents a
physical quantity that is different from To divide a vec-
tor by a scalar, as in we simply multiply the vector 
by 1/c.

Multiplication by a scalar does not change the direction
of a vector, except that it may reverse the direction if the
scalar is negative. Figure 2-6 shows the effect of multiply-
ing a vector by a positive scalar and a negative scalar.

If we multiply a vector by the scalar �1, we obtain
the vector which is a vector with the same magni-
tude as but the opposite direction. The components of

are �bx and �by . We can use this property to find 
the difference between two vectors, by first
writing and in effect adding the vectors 

and Figure 2-7 illustrates the graphical method �b
B

.aB
d
B

� aB � (�b
B

)
d
B

� aB � b
B

,
�b

B
b
B

�b
B

,
b
B

aB

aBaB/c,
aB.

caB

aB.

aB,aB,

for adding and to find In analogy with
Eq. 2-4, the components of are and

Sample Problem 2-1. An airplane travels 209 km on a
straight course making an angle of 22.5° east of due north. How
far north and how far east does the plane travel from its starting
point?

Solution We choose the positive x direction to be east and the
positive y direction to be north. Next, we draw a displacement
vector (Fig. 2-8) from the origin (starting point), making an angle
of 22.5° with the y axis (north) inclined along the positive x direc-
tion (east). The length of the vector represents a magnitude of 
209 km. If we call this vector then dx gives the distance trav-
eled east of the starting point and dy gives the distance traveled
north of the starting point. We have

so that (see Eqs. 2-1)

and

In solving this problem, we have assumed that the surface of
the Earth can be represented as the xy plane. We know, however,

dy � d sin � � (209 km) (sin 67.5�) � 193 km.

dx � d cos � � (209 km) (cos 67.5�) � 80.0 km,

� � 90.0� � 22.5� � 67.5�,

d
B

,

dy � ay � by .
dx � ax � bxd

B
d
B

� aB � b
B

.�b
B

aB
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Figure 2-5. (a) The components of the vectors and (b)
The sum vector can be found by adding the compo-
nents of to the components of Note that bx is negative, so
that involves a subtraction.sx � ax � bx
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Figure 2-6. Multiplication of a vector by a scalar c gives a
vector c whose magnitude is c times the magnitude of The
vector c has the same direction as if c is positive and the op-
posite direction if c is negative. Examples are illustrated for

and c � �0.5.c � �1.4
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that the surface of the Earth is not flat but curved, with a radius of
about 6400 km. Over small distances, the Earth’s surface is ap-
proximately flat and we can safely use the xy coordinates. Can you
estimate the distance d that the airplane must fly before the use of
flat Cartesian coordinates causes a 5% error in the calculated dis-
tance that the airplane travels north and east of its starting point?

Sample Problem 2-2. An automobile travels due east
on a level road for 32 km. It then turns due north at an intersection
and travels 47 km before stopping. Find the vector that indicates
the resulting location of the car.

Solution We choose a coordinate system fixed with respect to the
Earth, with the positive x direction pointing east and the positive y
direction pointing north. The two successive journeys, represented
by vectors and are then drawn as shown in Fig. 2-9. The re-
sultant is obtained from Since has no x compo-
nent and has no y component, using Eq. 2-4 we obtain

The magnitude and direction of are then (see Eqs. 2-2)

The resultant vector has a magnitude of 57 km and makes an
angle of 56° north of east.

Sample Problem 2-3. Three vectors in the xy plane are
expressed with respect to the coordinate system as

and

in which the components are given in arbitrary units. Find the vec-
tor which is the sum of these vectors.sB,

cB � �3.6ĵ,

b
B

� �2.9î � 2.2ĵ,

aB � 4.3î � 1.7ĵ, 

sB

tan � �
sy

sx

�
47 km

32 km
� 1.47, � � tan�1(1.47) � 56�.

s � √sx
2 � sy

2 � √(32 km)2 � (47 km)2 � 57 km, 

sB
sy � ay � by � 0 � 47 km � 47 km.

sx � ax � bx � 32 km � 0 � 32 km,

aB
b
B

sB � aB � b
B

.sB
b
B

,aB Solution Generalizing Eqs. 2-4 to the case of three vectors, we
have

and

Thus

Figure 2-10 shows the four vectors. From Eqs. 2-2 we can calcu-
late that the magnitude of is 3.4 and that the angle � that 
makes with the positive x axis, measured counterclockwise from
that axis, is

Most pocket calculators return angles between �90° and �90° for
the arctan. In this case, �66° (which our calculator gives) is
equivalent to 294°. However, we would obtain the same angle if
we asked for tan�1(3.1/�1.4), which should give an angle in the
second (upper left) quadrant. In applying Eq. 2-2 to find �, the in-
dividual signs of the components must be considered— it is not
sufficient to deal only with the sign of their ratio. Drawing a
sketch similar to Fig. 2-10 will keep you from going too far
wrong, and if necessary you can convert your calculator’s 
value into a result in the correct quadrant by using the identity
tan(��) � tan(180° � �).

2-3 POSITION, VELOCITY, AND
ACCELERATION VECTORS

In kinematics, we describe the motion of a particle using
vectors to specify its position, velocity, and acceleration. So
far all of our examples have been in two dimensions (the xy
plane). Now we consider motion in three dimensions (using
an xyz coordinate system).

Figure 2-11 shows a particle moving along an arbitrary
path in three dimensions. At any particular time t, the parti-
cle can be located by its x, y, and z coordinates, which are
the three components of the position vector

(2-5)

where and are the Cartesian unit vectors, as shown in
Fig. 2-11.

k̂î, ĵ,

rB � x î � y ĵ � z k̂,

rB:

� � tan�1(�3.1/1.4) � 294�.

sBsB

sB � sxî � sy ĵ � 1.4î � 3.1 ĵ.

sy � ay � by � cy � �1.7 � 2.2 � 3.6 � �3.1.

sx � ax � bx � cx � 4.3 � 2.9 � 0 � 1.4,
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Figure 2-9. Sample Problem 2-2.
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Suppose the particle is located at position at time t1 ,
and it moves along its path to position at time t2 , as
shown in Fig. 2-12a. We define the displacement vector �
as the change in position that occurs in this interval:

(2-6)

The three vectors and have the same relation-
ship as the vectors and in Fig. 2-4b. That is, using
the graphical head-to-tail addition method, added to 
gives the sum Thus which gives Eq. 
2-6.

Note from Fig. 2-12a that the displacement is not the
same as the distance traveled by the particle. The displace-
ment is determined only by the starting and ending points
of the interval and not by the path traveled between them.

Velocity
The average velocity in any interval is defined to be the dis-
placement (change in position) divided by the time interval
during which the displacement occurs, or

(2-7)

where In this equation, the vector is mul-
tiplied by the positive scalar 1/�t, so the vector points
in the same direction as

Like the displacement, the average velocity in any inter-
val depends only on the locations of the particle at the be-
ginning and end of the interval; it does not depend on
whether it speeds up or slows down or even reverses direc-
tion in that interval. Note especially that if a particle returns
to its starting point, then according to the definition of Eq.
2-7 the average velocity is zero. According to this defini-
tion, the average velocity of a race car in the Indianapolis
500 is zero!

Average velocity may be helpful in considering the
overall behavior of a particle during some interval, but in

�rB.
vBav

�rB�t � t2 � t1 .

vBav �
�rB

�t
,

rB2 � rB1 � �rB,rB2 .
rB1�rB

sBaB, b
B

,
rB2rB1 , �rB,

�rB � rB2 � rB1 .

rB
rB2

rB1

describing the details of its motion it would be more useful
to have a mathematical function that gives the velocity at
every point in the motion. This is the instantaneous velocity

When we use the term “velocity,” we mean the instanta-
neous velocity.

To find the instantaneous velocity, we reduce the size of
the interval �t; as we do so, the vector approaches the
actual path (as in Fig. 2-12b), and it becomes tangent to the
path in the limit In this case, the average velocity
approaches the instantaneous velocity 

(2-8)

The direction of is tangent to the path of the particle, in-
dicating the direction in which the particle is moving at that
instant of time.

Equation 2-8 resembles the definition of a derivative,
and we can write it as

(2-9)vB �
d rB

dt
.

vB

vB � lim
�t:0

�rB

�t
.

vB:
�t : 0.

�rB

vB.
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Figure 2-11. The position of a particle moving on its path is
located by the position vector which has components x, y, and
z. Also shown are the three Cartesian unit vectors î, ĵ, k̂.
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Figure 2-12. (a) In the interval �t from t1 to t2 , the particle
moves from position to position Its displacement in that
interval is (b) As the interval grows smaller, the
displacement vector approaches the actual path of the particle.
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The derivative of a vector is found by taking the derivative
of each of its components:

(2-10)

The unit vectors are constant in both magnitude and
direction, and so they can be treated as constants in taking
the derivative; in other coordinate systems (such as cylin-
drical or spherical polar systems) the unit vectors may
change direction with time and so those vectors do not pass
unchanged through the derivative.

The vector can also be written in terms of its compo-
nents as

(2-11)

Since two vectors can be equal only if their corresponding
components are equal, equating Eqs. 2-10 and 2-11 gives
three equations:

(2-12)

The three-dimensional vector relation of Eq. 2-9 is equiva-
lent to the three one-dimensional relations of Eq. 2-12.

The term speed (taken to mean instantaneous speed)
usually refers to the magnitude of the instantaneous veloc-
ity, with no indication of direction; that is, the speed v is

The speedometer of a car indicates its speed, not its
velocity, because it does not specify a direction. Speed is a
scalar, since it lacks directional information. We can also
define the average speed:

(2-13)

It is important to note that the average speed is generally
not related to the magnitude of the average velocity. For ex-
ample, the Indianapolis 500 race car with an average veloc-
ity of zero (because it starts and ends the race at the same
location) certainly does not have an average speed of zero!
Equation 2-13 is a scalar equation— the total distance trav-
eled does not provide any information about the direction
of the journey.

Both velocity and speed have dimensions of length di-
vided by time, so their SI unit is meters per second (m/s).
Other convenient units include miles per hour (mi/h or
mph), kilometers per hour (km/h), and so forth.

Acceleration
The velocity of a particle may change in magnitude or di-
rection as it moves. The change in velocity with time is
called acceleration. In analogy with Eq. 2-7, we can define
the average acceleration in this interval as the change in
velocity per unit time, or

(2-14)aB av �
�vB

�t
.

average speed �
total distance traveled

elapsed time
.

� vB �.

vx �
dx

dt
, vy �

dy

dt
, vz �

dz

dt
.

vB � vxî � vy ĵ � vzk̂.

vB

î, ĵ, k̂

d rB

dt
�

d

dt
 (xî � yĵ � zk̂) �

dx

dt
î �

dy

dt
ĵ �

dz

dt
k̂.

The change in velocity means As in the
case of average velocity, the average acceleration tells us
nothing about the variation of during the interval The
direction of is the same as the direction of 

The instantaneous acceleration is obtained from the
limit of Eq. 2-14 for vanishingly small time intervals:

(2-15)

Once again this can be expressed as a derivative:

(2-16)

and by analogy with Eqs. 2-10 and 2-11 we can write the
components of the instantaneous acceleration vector as

(2-17)

Note that vector equations such as Eq. 2-16 can simplify
notation, and they also remind us how to separate the com-
ponents (for example, ax has no effect on vy or vz).

In general the direction of the acceleration has no rela-
tion to the direction of It is possible for and to be
parallel, antiparallel, or perpendicular to each other, or at
any other relative angle.

Because is a vector quantity, a change in its direction
gives an acceleration, even if its magnitude is unchanged.
Thus motion at constant speed can be accelerated motion.
For example, the components of can change in such a
way that the magnitude of remains
constant. This situation is found most commonly in uni-
form circular motion, which we discuss in Section 4-5.

Because acceleration is defined as velocity divided by
time, its dimensions are length/time2. In the SI system, the
units of acceleration are m/s2. Sometimes you may see this
written as m/s/s, which is read as “meters per second per
second.” This emphasizes that acceleration is change in ve-
locity per unit time.

Sample Problem 2-4. A particle moves in the xy plane
so that its x and y coordinates vary with time according to

and where 
and Find the posi-

tion, velocity, and acceleration of the particle when 

Solution The position is given by Eq. 2-5, with the expressions
given for x(t) and y(t):

Evaluating this expression at s, we obtain

The velocity components are found from Eq. 2-12:

vy �
dy

dt
�

d

dt
 (Ct 2 � D) � 2Ct. 

vx �
dx

dt
�

d

dt
 (At 3 � Bt) � 3At 2 � B

rB � (�69 m)î � (57 m)ĵ.

t � 3

rB � xî � yĵ � (At 3 � Bt)î � (Ct 2 � D)ĵ.

t � 3 s.
D � 12.0 m.C � 5.0 m/s2,B � �32.0 m/s,

A � 1.00 m/s3,y(t) � Ct 2 � D,x(t) � At 3 � Bt

vB (� √vx
2 � vy

2 � vz
2)

vB

vB

aBvBvB.

ax �
dvx

dt
, ay �

dvy

dt
, az �

dvz

dt
.

aB �
d vB

dt

aB � lim
�t:0

�vB

�t
.

aB
�vB.aB av

�t.vB

vBfinal � vBinitial .�vB
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Evaluating the components at s and using Eq. 2-11, we 
obtain

The components of the acceleration are

At s, the acceleration is

Figure 2-13 shows the path of the particle from to 
The position, velocity, and acceleration vectors at are
drawn. (Because and are expressed in different units, the
lengths of the arrows drawn in Fig. 2-13 have no relationship to
one another.) The vector locates the particle relative to the ori-
gin. The vector is tangent to the path of the particle, as shown at

The acceleration represents the change in velocity, and
the direction of at s is reasonable based on how the direc-
tion of changes in the interval around s.

2-4 ONE-DIMENSIONAL
KINEMATICS

Now that we have established the definitions of the impor-
tant quantities for describing motion, let’s look at some ex-
amples of how they can be applied. For simplicity, we con-
sider motion only in one dimension, so we will use only
one component of Eqs. 2-5, 2-12, and 2-17.

t � 3vB
t � 3aB

aBt � 3 s.
vB

rB

aBrB, vB,
t � 3 s

t � 4 s.t � 0

aB � ax î � ay ĵ � (18 m/s2)î � (10 m/s2)ĵ.

t � 3

ay �
dvy

dt
�

d

dt
 (2Ct) � 2C. 

ax �
dvx

dt
�

d

dt
 (3At 2 � B) � 6At

vB � vx î � vy ĵ � (�5 m/s)î � (30 m/s)ĵ.

t � 3

In one-dimensional kinematics, a particle can move
only along a straight line. It may change its speed or even
reverse direction, but its motion is always along the line.
Within this limitation, we can consider many different
physical situations, such as a falling stone, an accelerating
train, a braking car, a sliding hockey puck, a crate being
pulled up a ramp, or a fast-moving electron in an x-ray
tube.

We can describe the motion of a particle in two ways:
with mathematical equations and with graphs. Either way
gives information about the problem, and often we will
want to use both methods. The mathematical approach is
usually better for solving problems, because it permits
greater precision than the graphical method. On the other
hand, the graphical method often provides more physical
insight than a set of equations.

Here are some possible kinds of motion with the equa-
tions or graphs that describe them.

1. No motion at all. Here the particle occupies the same
position at all times. Suppose the particle is on the x axis at
the coordinate A, so that (at all times)

(2-18)

A graph of this “motion” is shown in Fig. 2-14a. The veloc-
ity, which remains constant at zero, is shown in Fig. 2-14b.
The physical situation represented here might be, for exam-
ple, a bead that can slide freely along a straight wire. In this
case the bead is at rest at 

Often in problems in kinematics we want to know how
the position and velocity depend on the time as a particle
moves. For this reason we write the position coordinate
here as a function of the time as x(t). For the same reason
we plot the graph in Fig. 2-14 with x as the dependent vari-
able (on the vertical axis) and t as the independent variable
(on the horizontal axis). Placing x on the vertical axis does
not mean that the particle moves vertically; in this situation,
the wire on which the bead slides can have any direction.

2. Motion at constant velocity. For motion in one di-
mension (which we choose to be the x direction), the veloc-

x � A.

x(t) � A.
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Figure 2-13. Sample Problem 2-4. The path of the moving
particle is shown, and its positions at 1, 2, 3, and 4 s are in-
dicated. At s, the vectors representing its position, velocity,
and acceleration are shown. Note that there is no particular rela-
tionship between the directions of or the lengths of
the vectors representing them.
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Figure 2-14. (a) The position and (b) the velocity of a bead
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ity vx can be positive, if the particle is moving in the direc-
tion of increasing x, or negative, if it is moving in the oppo-
site direction. When the velocity is constant, the graph of
position against time is a straight line. As Eq. 2-12

shows, the rate of change of the position is the
velocity. In the graph of x against t, the rate of change is the
slope of the graph; the greater the velocity, the greater the
slope. Figure 2-15a shows this graph, whose mathematical
form can be expressed as

(2-19)

which is in the customary form as the equation of a straight
line (more commonly expressed as with slope
B. Note that Fig. 2-15b shows the constant
velocity.

As shown by Fig. 2-15 and also by Eq. 2-19, the particle
is at the position when It is moving in the di-
rection of increasing x, so the slope B (and correspondingly
the velocity vx) is positive.

3. Accelerated motion. With acceleration defined as the
rate of change of the velocity, accelerated motion then cor-
responds to motion in which the velocity changes. Since the
velocity is the slope of the graph of x(t), the slope must
change in accelerated motion. These graphs are therefore
curves rather than straight lines. Two examples of acceler-
ated motion are:

(2-20)

(2-21)

In the first case (Fig. 2-16a), assuming C is positive, the
slope is increasing as the particle moves, corresponding to
an increase in the positive velocity of the particle. Accord-
ing to Eqs. 2-12 and 2-17, For Eq.
2-20, so the acceleration is constant. In the
second case (Fig. 2-16b), the particle oscillates between

and its velocity changes from positive to
negative as the derivative of Eq. 2-21 changes sign.

x � �D;x � �D

d2x /dt 2 � 2C,
ax � dvx /dt � d 2x/dt 2.

x(t) � D cos �t. 

x(t) � A � Bt � Ct 2,

t � 0.x � A

vx � dx /dt � B;
mx � b)y �

x(t) � A � Bt,

(vx � dx /dt)

Often the complete descriptions of motion are more
complicated than these simple examples. Here are some ad-
ditional cases to consider:

4. Accelerating and braking car. A car is at rest for a
time and then begins accelerating until it reaches a certain
velocity. It then moves for a time at that velocity, after
which the brakes are applied to bring the car to rest again.
Figure 2-17a shows the acceleration in the various time in-
tervals; for simplicity we assume the acceleration is con-
stant during the intervals when the car is speeding up and
slowing down. The acceleration is zero when the car is at
rest or when it is moving with constant velocity (as sug-
gested by Eq. 2-17, when vx is a constant then

Figure 2-17b shows the velocity in each interval. Where
vx is constant. Where ax is a positive or negative

constant, vx is represented by a straight line with a cor-
responding positive or negative slope. At any point,
the value of ax can be found from the slope of the graph of
vx against t.

In a similar way we can obtain the position versus time
graph x(t), which is shown in Fig. 2-17c. Note that the
slope of x(t) gives vx(t), as required by Eq. 2-12

For example, in the interval when the car is
speeding up, the slope of x(t) is gradually increasing, corre-
sponding exactly to the increase in velocity. In the interval
when the car is moving at constant velocity, x(t) is repre-
sented by a straight line with a constant slope.

These graphs are somewhat idealized; a real car cannot
go instantly from a state of rest to a state of constant accel-
eration. In practice, the sudden jumps in ax(t) would instead
be connected by a continuous curve, and the sharp bends in
the graph of vx(t) would become rounded.

(vx � dx/dt).

ax � 0,

ax � dvx /dt � 0).
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Figure 2-15. (a) The position and (b) the velocity of a bead
sliding in one dimension along a wire with constant velocity. The
velocity is equal to the slope B of the graph of x(t). The graph of
vx(t) is the horizontal line vx � B.
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Figure 2-16. (a) A bead sliding along a wire in one dimen-
sion moves in the positive x direction with ever increasing veloc-
ity. The velocity is equal to the slope of the curve describing the
particle’s motion; you can see how the slope of the curve continu-
ally increases. (b) A bead sliding along a wire in one dimension
oscillates between and x � �D.x � �D
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5. A falling object. As we will discuss later in this chap-
ter, when an object falls near the Earth’s surface, it experi-
ences a constant downward acceleration due to gravity. In
this problem we take the y axis to be vertical and choose
the upward direction as positive, so that the acceleration has
a negative y component ay . Figure 2-18a shows the acceler-
ation ay(t) equal to a constant negative value.

If an object is released from rest, its downward (nega-
tive) velocity increases in magnitude due to this accelera-
tion. Since ay is a constant, vy(t) must be a straight line
whose (negative) slope is equal to ay , as shown in Fig. 2-
18b. The vertical coordinate y begins at some positive value
corresponding to the height H at which the object was orig-
inally released, and y(t) decreases gradually to zero as the
object falls to the ground, as shown in Fig. 2-18c. Initially
the slope of y(t) is zero, because vy(t) is initially zero. As vy

becomes more negative, the corresponding slope of y(t) be-
comes more negative, as you can see by drawing lines tan-
gent to y(t) at various locations.

6. A rebounding ball bearing. Consider now a small
steel ball bearing dropped from rest onto a hard surface
from which it rebounds. We again choose the vertical direc-
tion as the y axis for this problem, and we take the upward
direction to be positive.

After the ball bearing strikes the surface, it rebounds up-
ward. We assume that the velocity simply changes direction
upon contact with the surface— its magnitude remains un-
changed. (In reality, there is a small loss of speed because
the ball bearing and the surface are not perfectly elastic.)
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Figure 2-17. (a) The acceleration, (b) the velocity, and (c)
the position of a car that starts at rest, accelerates for an interval,
then moves with constant velocity, and then brakes with negative
acceleration to rest again. In reality, we cannot instantly change
the acceleration of a car from one value to another; both ax(t) and
vx(t) for a real car would be smooth and continuous. Smooth
curves would connect the flat ax(t) segments, and the sharp bends
in vx(t) would become rounded.
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Figure 2-18. (a) The acceleration, (b) velocity, and (c) posi-
tion of an object dropped from rest and accelerated downward by
the Earth’s gravity. The acceleration is a negative constant, which
is equal to the slope of vy(t).
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During the very short interval of time that the ball bearing
is in contact with the surface, a large upward (positive) ac-
celeration must act to reverse the direction of its velocity.
Note that an acceleration is present even though the magni-
tude of the velocity is unchanged; an acceleration must oc-
cur whenever the magnitude or the direction of a velocity is
changed.

As the ball bearing rises after the bounce, there is again
a (constant) downward acceleration due to gravity, which
eventually brings the ball bearing to rest for an instant, after
which it begins falling toward the surface again.

Figure 2-19 shows the acceleration, velocity, and posi-
tion for the ball bearing. Once, again ay(t) corresponds to
the slope of vy(t), and vy(t) corresponds to the slope of y(t).

This is also a somewhat idealized representation of this
motion. The exact behavior during the instant of collision
may be very complicated and will certainly not be charac-
terized by a constant acceleration, as we have assumed
here. Nevertheless, the overall behavior should look very
similar to Fig. 2-19.

Equations of One-Dimensional Kinematics
We can directly apply the vector equations of Section 2-3 to
motion in one dimension, which we take to be the x direc-
tion. Let the particle start at location x1 at time t1 and move

to location x2 at time t2 . In the time interval 
the displacement of the particle is Accord-
ing to Eq. 2-7, its average velocity is

(2-22)

The average velocity tells us about the average behavior
during the time interval �t. It depends only on the initial
and final locations of the particle and not on the path of the
particle between x1 and x2 . If we assume that �t is positive
(that is, our clocks are running forward), then according to
Eq. 2-22 and the rule for multiplying a vector by a scalar,
the sign of vav,x is determined by the sign of �x. If

then on the average the particle moves from a
smaller x coordinate to a larger x coordinate (that is, it
moves in the positive x direction). For example, the particle
might move from m to m, or from

m to m, or from m to
m. In each case, m, and so If
the particle on the average moves in the negative

x direction, for example from m to m or
from m to m (both of which have

The instantaneous velocity follows from Eq. 2-12:

(2-23)

Equation 2-23 allows us to analyze the examples of one-
dimensional motion discussed previously in this section.
For example, for the motion at constant velocity shown in
Fig. 2-15a, taking gives as
shown in Fig. 2-15b.

In the case of accelerated motion in which the particle is
moving with velocity v1x at time t1 and accelerates to veloc-
ity v2x at time t2 , Eq. 2-14 gives

(2-24)

The sign of the average acceleration is determined by the
sign of �vx ; for example, a change in velocity from

m/s to m/s or from m/s to
m/s both correspond to m/s and to

positive whereas a change from m/s to
m/s or from m/s to m/s both

give m/s and negative aav,x .
As in the case of average velocity, the average accelera-

tion depends only on the difference between the starting
and ending velocities in the interval and not on the detailed
motion during the interval. All motions that result in the
same �vx in the interval �t will give the same average ac-
celeration.

The instantaneous acceleration is found in Eq. 2-17:

(2-25)ax �
dvx

dt
.

�vx � �5
v2x � �9v1x � �4v2x � �4

v1x � �9aav, x ,
�vx � �5v2x � �9

v1x � �4v2x � �4v1x � �9

aav, x �
�vx

�t
�

v2x � v1x

t2 � t1
.

vx � dx /dt � B,x(t) � A � Bt

vx �
dx

dt
.

�x � �3 m).
x 2 � �6x 1 � �3

x 2 � �2x 1 � �5
vav, x 	 0,

vav, x 
 0.�x � �4x 2 � �6
x 1 � �2x 2 � �1x 1 � �3

x 2 � �4x 1 � �8

vav, x 
 0,

vav, x �
�x

�t
�

x 2 � x 1

t2 � t1
.

�x � x 2 � x 1 .
�t � t2 � t1 ,
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Figure 2-19. (a) The acceleration, (b) velocity, and (c) posi-
tion of a ball bearing that falls and rebounds from a hard surface.
The sudden jumps in vy(t), corresponding to the short intervals
when the ball bearing is in contact with the surface, have been
drawn as if the acceleration is equal to a large positive constant in
those intervals. Note that y(t) reaches its maximum value and that
the tangent to y(t) is horizontal when vy(t) goes through zero.
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For example, in the case shown in Fig. 2-16a with
Eq. 2-23 gives and

Eq. 2-25 gives 
Using Eqs. 2-23 and 2-25, you should review the mo-

tions graphed in Figs. 2-17, 2-18, and 2-19 to be sure you
understand how position, velocity, and acceleration are re-
lated. Note especially that the acceleration is the slope of
the graph of v(t). Compare Figs. 2-17a and b to see that
where the slope of vx(t) is zero (the horizontal line seg-
ments) then where vx(t) is increasing (line segment
with positive slope), ax is a positive constant.

The acceleration may be positive or negative indepen-
dent of whether the velocity is positive or negative. For ex-
ample, let’s consider an elevator moving vertically; we’ll
call that the y direction and take up as positive. If the eleva-
tor is moving upward but slowing down, vy is positive but ay

is negative; in this case the velocity vector points in the �y
direction and the acceleration vector in the �y direction. If
the elevator is moving downward and braking, then vy is
negative but ay is positive. These two cases, in which the
velocity and acceleration vectors have opposite directions
so that the speed (the magnitude of the velocity) is decreas-
ing, are often referred to as deceleration.

The Limiting Process
It is interesting to observe how the average velocity ap-
proaches the instantaneous velocity as �t approaches zero.
As an example, we consider the case 

where x is in meters and t is in seconds. We arbitrar-
ily select the point m, s and calculate the
value of vav,x using Eq. 2-22 by choosing a series of points
x2 , t2 that approach closer and closer to x1 , t1 to simulate
the limiting process. The calculated values are listed in
Table 2-1. Note that they seem to be approaching the value

m/s. To compare this limiting value of vav,x with
the instantaneous value, we use Eq. 2-23 to find

which does indeed evaluate to 
m/s when s.

Figure 2-20 gives a graphical illustration of this limiting
process. As point 2 moves closer to point 1, the line con-
necting the two points, whose slope represents the average

t � 1.0
vx � 13vx(t) � 1.0 � 12.0t,

vav,x � 13

t1 � 1.0x 1 � 12
6.0t 2,

x(t) � 5.0 � 1.0t �

ax � 0;

ax � 2C.
vx � B � 2Ctx(t) � A � Bt � Ct2,

velocity in that interval, approaches the tangent at point 1.
This indicates that the average velocity approaches the in-
stantaneous velocity in this limit, as our mathematical cal-
culation showed.

Sample Problem 2-5. You drive your BMW down a
straight road for 5.2 mi at 43 mi/h, at which point you run out of
gas. You walk 1.2 mi farther, to the nearest gas station, in 27 min.
What is your average velocity from the time that you start your car
to the time that you arrive at the gas station?
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Initial Point Final Point Average Velocity
x1 (m) t1 (s) x2 (m) t2 (s) �x/�t (m/s)

12 1.0 62 3.0 25
12 1.0 45 2.5 22
12 1.0 31 2.0 19
12 1.0 20 1.5 16
12 1.0 13.4 1.1 13.6
12 1.0 12.7 1.05 13.3
12 1.0 12.1 1.01 13.06

Table 2-1 The Limiting Process

Slope at t = 1.0 s

t1

x1

∆t

∆t

∆t

a

b

c

3.00 1.0

20

40

60

2.0
t (s)

x (m)

Figure 2-20. The interval �t grows smaller, in this case as
we keep t1 fixed and move the other endpoint t2 closer to t1 . In the
limit, the interval goes to zero and the chord becomes a tangent.
The three values of x2 and t2 shown here, labeled a, b, and c, cor-
respond to the first three lines of Table 2-1.
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Figure 2-21. Sample Problem 2-5. The lines marked “Dri-
ving” and “Walking” show motions at different constant velocities
for the two portions of the trip. The average velocity is the slope
of the line OP.



Solution You can find your average velocity from Eq. 2-22 if you
know both �x, the net displacement, and �t, the corresponding
elapsed time. These quantities are

and

From Eq. 2-22 we then have

The x(t) plot of Fig. 2-21 helps us to visualize the problem. Points
O and P define the interval for which we want to find the average
velocity, this quantity being the slope of the straight line connect-
ing these points.

Sample Problem 2-6. Figure 2-22a shows six successive
“snapshots” of a particle moving along the x axis. At it is at po-
sition m to the right of the origin; at s it has come
to rest at m; at s it has returned to m.
Figure 2-22b is a plot of position x versus time t for this motion, and
Figs. 2-22c and 2-22d show the corresponding velocity and accelera-
tion of the particle. (a) Find the average velocity for the intervals AD
and DF. (b) Estimate the slope of x(t) at points B and F and compare
with the corresponding points on the vx(t) curve. (c) Find the average
acceleration in the intervals AD and AF. (d) Estimate the slope of
vx(t) at point D and compare with the corresponding value of ax(t).

Solution (a) From Eq. 2-22,

AD:

DF:

In the interval AD, the positive sign for vav,x tells us that, on the av-
erage, the particle moves in the direction of increasing x (that is,
to the right in Fig. 2-22a) during that interval. The negative sign
for vav,x in the interval DF tells us that the particle is, on the aver-
age, moving in the direction of decreasing x (to the left in Fig. 2-
22a) during that interval.
(b) From the tangents to x(t) drawn at points B and F in Fig. 2-22b
we estimate the following:

From vx(t) in Fig. 2-22c we estimate m/s at point B
and vx � �6.2 m/s at part F, in agreement with the slopes of x(t).
As expected, vx(t) � dx/dt.

vx � �1.7

point F:  slope �
1.4 m � 4.5 m

4.0 s � 3.5 s
� �6.2 m/s

point B: slope �
4.5 m � 2.8 m

1.5 s � 0.5 s
� �1.7 m/s

�
1.4 m � 5.0 m

4.0 s � 2.5 s
� �2.4 m/s

vav, x �
�xDF

�tDF

�
xF � xD

tF � tD

�
5.0 m � 1.0 m

2.5 s � 0.0 s
� �1.6 m/s

vav, x �
�xAD

�tAD

�
xD � xA

tD � tA

x � 1.4t � 4.0x � �5.00
t � 2.5x � �1.00

t � 0

vav,x �
�x

�t
�

6.4 mi

0.57 h
� 11.2 mi/h.

� 7.3 min � 27 min � 34 min � 0.57 h.

�t �
5.2 mi

43 mi/h
� 27 min 

�x � 5.2 mi � 1.2 mi � 6.4 mi
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Figure 2-22. Sample Problem 2-6. (a) Six consecutive
“snapshots” of a particle moving along the x axis. The arrow
through the particle shows its instantaneous velocity, and the 
arrow below the particle shows its instantaneous acceleration. 
(b) A plot of x(t) for the motion of the particle. The six points
A–F correspond to the six snapshots. (c) A plot of vx(t). (d) A
plot of ax(t).
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(c) From Eq. 2-24,

(d ) From the line drawn tangent to vx(t) at D, we estimate the fol-
lowing:

At point D on the ax(t) graph we see Thus 
dvx /dt. Examining the vx(t) graph of Fig. 2-22c, we see that its
slope is negative at all times covered by the graph, and thus ax(t)
should be negative. Figure 2-22d bears this out.

2-5 MOTION WITH CONSTANT
ACCELERATION

It is fairly common to encounter motion with constant (or
nearly constant) acceleration: the examples already cited
of objects falling near the Earth’s surface or braking cars
are typical. In this section we derive a set of equations for
analyzing this special case of one-dimensional kinematics
with constant acceleration. Keep in mind, however, that
these results can be applied only when the acceleration is
constant and therefore do not apply to such situations as a
swinging pendulum bob, a rocket blasting off toward Earth
orbit, or a raindrop falling against air resistance. (Later 
in this book we will discuss methods for analyzing these
situations.)

Let’s assume our motion is along the x direction. We let
ax represent the x component of the acceleration vector; that
is, ax can be positive or negative. The particle’s initial

velocity is v0x and its initial position is x0 , both of
which are also the x components of vectors and can be in-
dependently positive or negative. At a later time t, the parti-
cle has velocity vx and is located at position x. Our goal is
to find the position and velocity at time t.

For constant acceleration, the instantaneous and average
accelerations are everywhere equal, and so we can use Eq.
2-14 to write

or, solving for vx ,

(2-26)vx � v0x � axt.

ax � aav, x �
�vx

�t
�

vx � v0x

t � 0

(t � 0)

ax �ax � �1.8 m/s2.

slope �
�0.9 m/s � 0.9 m/s

3.0 s � 2.0 s
� �1.8 m/s2.

�
�6.2 m/s � 4.0 m/s

4.0 s � 0.0 s
� �2.6 m/s2

AF: aav, x �
�vAF

�tAF

�
vF � vA

tF � tA

�
0.0 m/s � 4.0 m/s

2.5 s � 0.0 s
� �1.6 m/s2

AD: aav, x �
�vAD

�tAD

�
vD � vA

tD � tA

This important result allows us to find the velocity at all
times, but only for constant acceleration. Equation 2-26
gives the velocity as a function of the time, which we could
write as vx(t) but which we usually write simply as vx . Note
that Eq. 2-26 is in the form of which de-
scribes the graph of a straight line. Thus the plot of vx

against t gives a straight line of slope ax and intercept v0x

(the value of vx at This line is plotted in Fig. 2-23b.
It is apparent that Eq. 2-26 satisfies Eq. 2-25 

Let us now find how the position varies with time. In
this special case in which vx(t) is a straight line, the average
velocity in any interval (as we have defined it in Eq. 2-22)
is also equal to the average of the initial and final velocities
in that interval. For the time interval from 0 to t,

(2-27)

You can see that this must be true from the straight-line
graph in Fig. 2-23b. Combining Eqs. 2-22, 2-26, and 2-27,
we can eliminate vx and solve for x to obtain

(2-28)

which gives us the position x at all times. We can also write
Eq. 2-28 to find the displacement x0 (the net change in
position in the interval). Figure 2-23c shows a graph of x
against t, which has the form of a parabola. Equations 2-27
and 2-28 are valid only for constant acceleration.

x �

x � x 0 � v0xt � 1
2 axt 2,

vav, x � 1
2 (vx � v0x).

(ax � dvx /dt).
t � 0).

y � mx � b,
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Figure 2-23. (a) The constant acceleration of a particle,
equal to the (constant) slope of vx(t). (b) Its velocity vx(t), given at
each point by the slope of the x(t) curve. The average velocity
vav,x , which in the case of constant acceleration is equal to the av-
erage of vx and v0x, is indicated. (c) The position x(t) of a particle
moving with constant acceleration. The curve is drawn for initial
position x 0 � 0.
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The instantaneous velocity and position should be re-
lated by Equation 2-28 satisfies that relation-
ship, as we can show:

Students who are already familiar with integral calculus
will recognize that, just as Eq. 2-26 can be obtained from
Eq. 2-28 by differentiating, Eq. 2-28 can be obtained from
Eq. 2-26 by integrating. We will demonstrate this process at
the end of this section.

Equations 2-26 and 2-28 will serve as our basic equa-
tions for analyzing motion with constant acceleration. If we
specify the initial conditions (the initial values of the posi-
tion x0 and the velocity v0) and the acceleration (which later
we will learn comes from the interaction of the particle
with its environment), we can find the position and velocity
for all values of the time t.

Keep in mind that in these equations vx and x represent
the x components of the velocity and position vectors. As is
always the case in problems involving vectors, we can lo-
cate our coordinate axes anywhere we like and in any orien-
tation. In these problems we must select the origin of the
coordinate system (often chosen so that which sim-
plifies the problem) and the direction of the positive x axis,
so that all displacements, velocities, and accelerations in
that direction are positive and those in the opposite direc-
tion are negative. Once you have chosen the origin and di-
rection of your coordinate system, they must remain in ef-
fect throughout the solution of that problem.

Integrating the Equations of 
Motion (Optional)*
Equations 2-26 and 2-28, our basic expressions for kine-
matics with constant acceleration, can also be obtained us-
ing the methods of integral calculus. We start with the defi-
nition of acceleration, ax � dvx/dt, which we can write as

We take the integral of both sides of this equation:

where the last step, taking the acceleration out of the inte-
gral, can be made because the acceleration is constant. Car-
rying out the integrals, we obtain

where C is a constant of integration. We can determine the
constant C from one of the initial conditions: at the
velocity is v0x . Substituting these values into the above

t � 0,

vx � axt � C,

�dvx � �axdt � ax�dt,

dvx � axdt.

x 0 � 0,

dx

dt
�

d

dt
 (x 0 � v0xt � 1

2 axt 2) � v0x � axt � vx .

vx � dx /dt.
equation, we find v0x , and so we obtain 

in agreement with Eq. 2-26.
To find x(t) by integration, we begin with the definition

of velocity, which we write as

We now substitute Eq. 2-26 for vx and integrate on both
sides:

Carrying out the integrals, we obtain

where C� is another constant of integration. To find this
constant, we use the second initial condition: at 

Substituting these values, we find which
gives x(t) in agreement with Eq. 2-28. �

Sample Problem 2-7. An alpha particle (the nucleus of
a helium atom) travels along the inside of an evacuated straight
tube 2.0 m long that forms part of a particle accelerator. The alpha
particle enters the tube (at ) moving at a velocity 9.5 �
105 m/s and emerges from the other end at time s.
(a) If the particle’s acceleration is constant, what is the accelera-
tion? (b) What is its velocity when it leaves the tube?

Solution (a) We choose the x axis to be along the tube with its
positive direction to be that of the motion of the particle, and we
take the origin to be at the entrance of the tube so that We
can find the acceleration by solving Eq. 2-28 for ax :

The positive sign tells us that the particle is speeding up as it
passes through the tube.
(b) To find the velocity as the particle leaves the tube, we use Eq.
2-26:

Consistent with the positive acceleration, the particle’s velocity
does increase.

Sample Problem 2-8. You brake your Porsche with
constant acceleration from a velocity of 23.6 m/s (about 53 mph,
well below the speed limit, of course) to 12.5 m/s over a distance
of 105 m. (a) How much time elapses during this interval? (b)
What is the acceleration? (c) If you were to continue braking with
the same constant acceleration, how much longer would it take for
you to stop and how much additional distance would you cover?

� �4.1 � 106 m/s. 

� (9.5 � 105 m/s) � (3.9 � 1012 m/s2)(8.0 � 10�7 s)

vx � v0x � axt

� �3.9 � 1012 m/s2.

�
2.0 m � (9.5 � 105 m/s)(8.0 � 10�7 s )

0.5(8.0 � 10�7 s)2

ax �
x � v0x t

1
2 t

2

x 0 � 0.

t � 8.0 � 10�7
t � 0

C� � x 0x � x 0 .
t � 0,

x � v0xt � 1
2 axt 2 � C�,

� dx � � (v0x � axt) dt � v0x �dt � ax � t dt.

dx � vxdt.

vx � dx/dt,

axt,
vx � v0x �C �
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Solution (a) We select the positive direction for our coordinate
system to be the direction of the velocity and choose the origin so
that when you begin braking. Then the initial velocity is
v0x � �23.6 m/s at and the final velocity and position are

m/s and m at time t. Because the accelera-
tion is constant, the average velocity in the interval can be found
from the average of the initial and final velocities according to Eq.
2-27:

The average velocity can also be expressed as With
and we can solve for t:

(b) We can now find the acceleration from Eq. 2-26:

The acceleration is negative, which means that, as expected, the
positive velocity is growing smaller as you brake.
(c) Now with a known acceleration, we can find the total time for
the car to go from velocity 23.6 m/s to Solving Eq.
2-26 for t, we find

The total distance covered is found from Eq. 2-28 for this interval
of time with 

From the time you originally began braking to the time your car
came to rest, you covered a total distance of 146 m in a total time
of 12.4 s. The change from 23.6 m/s to 12.5 m/s covered a dis-
tance of 105 m in 5.8 s, so the change from 12.5 m/s to 0 covered
a distance of 146 m � 105 m � 41 m and lasted for a time of
12.4 s � 5.8 s � 6.6 s.

2-6 FREELY FALLING BODIES

The most common example of motion with (nearly) con-
stant acceleration is that of a falling body near the Earth’s
surface. If we neglect air resistance, we find a remarkable
fact: at any given point near the Earth’s surface, all bodies,
regardless of their size, shape, or composition, fall with the
same acceleration. This acceleration, denoted by the sym-
bol g, is called the free-fall acceleration (or sometimes the
acceleration due to gravity). Although the acceleration de-
pends on the distance from the center of the Earth (as we
shall show in Chapter 14), if the distance of fall is small
compared with the Earth’s radius (6400 km) we can regard
the acceleration as constant throughout the fall.

Near the Earth’s surface the magnitude of g is approxi-
mately 9.8 m/s2, a value that we use throughout the text un-
less we specify otherwise. The direction of the free-fall ac-
celeration at any point establishes what we mean by the
word “down” at that point.

� (23.6 m/s)(12.4 s) � 1
2(�1.91 m/s2)(12.4 s)2 � 146 m.

x � v0xt � 1
2 axt 2

x 0 � 0:

t �
vx � v0x

ax

�
0 � 23.6 m/s

�1.91 m/s2 � 12.4 s.

vx � 0.v0x �

ax �
vx � v0x

t
�

12.5 m/s � 23.6 m/s

5.81 s
� �1.91 m/s2.

t �
�x

vav, x

�
105 m

18.05 m/s
� 5.81 s.

�t � t � 0,�x � 105
vav, x � �x /�t.

vav, x � 1
2 (vx � v0x) � 1

2(12.5 m/s � 23.6 m/s) � 18.05 m/s.

x � 105vx � �12.5
t � 0,

x 0 � 0

Although we speak of falling bodies, bodies in upward
motion experience the same free-fall acceleration (magni-
tude and direction). That is, no matter whether a particle is
moving up or down, the direction of its acceleration under
the influence of the Earth’s gravity is always down.

The exact value of the free-fall acceleration varies with
latitude and with altitude. There are also significant varia-
tions caused by differences in the local density of the
Earth’s crust. We discuss these variations in Chapter 14.

The equations of constant acceleration (Eqs. 2-26 and 2-
28) can be applied to free fall. For this purpose, we first
make two small changes: (1) We label the direction of free
fall as the y axis and take its positive direction to be upward.
Later, in Chapter 4, we shall consider motion in two dimen-
sions, and we shall want to use the x label for horizontal mo-
tion. (2) We replace the constant acceleration a with �g,
since our choice of the positive y direction to be upward
means that the downward acceleration is negative. By choos-
ing ay � �g, we will always have g as a positive number.

With these small changes, the equations describing
freely falling bodies are

(2-29)

(2-30)

Just as we used Eqs. 2-26 and 2-28 to solve problems involv-
ing constant acceleration, we can use Eqs. 2-29 and 2-30 as
the basic formulas for solving problems involving free fall.

Sample Problem 2-9. A body is dropped from rest and
falls freely. Determine the position and velocity of the body after
1.0, 2.0, 3.0, and 4.0 s have elapsed.

Solution We choose the starting point as the origin so that
We know the initial speed (zero) and the acceleration, and

we are given the time. To find the position, we use Eq. 2-30 with
y0 � 0 and 0y � 0:

Putting we obtain

To find the velocity, we use Eq. 2-29, again with 

After falling for 1.0 s, the body is 4.9 m below (y is negative) its
starting point and is moving downward (vy is negative) with a
speed of 9.8 m/s. Continuing in this way, we can find the positions
and velocities at 3.0, and 4.0 s, which are shown in Fig.
2-24.

Note that the change in velocity in each second is �9.8 m/s,
and that the average velocity during each one-second interval
(equal to the displacement in that interval divided by the time in-
terval) is equal to half the sum of the initial and final velocities in
the interval, as required by Eq. 2-27.

Sample Problem 2-10. A ball is thrown vertically up-
ward from the ground with a speed of 25.2 m/s. (a) How long
does it take to reach its highest point? (b) How high does it rise?
(c) At what times will it be 27.0 m above the ground?

t � 2.0,

vy � �gt � �(9.8 m/s2)(1.0 s) � �9.8 m/s.

v0y � 0:

y � �1
2(9.8 m/s2)(1.0 s)2 � �4.9 m.

t � 1.0 s,

y � �1
2gt 2.

y0 � 0.

y � y0 � v0yt � 1
2 gt 2.

vy � v0y � gt, 
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Solution (a) At its highest point its velocity passes through the
value zero. Given we wish to find t and we there-
fore choose Eq. 2-29, which we solve for t:

(b) Now that we have found the time for the ball to reach its maxi-
mum height, Eq. 2-30, with y0 assigned as 0, allows us to solve for
y when we know the other quantities:

(c) Equation 2-30 is useful for this case, because t is the only un-
known. Since we wish to solve for t, let us rewrite Eq. 2-30, with

in the usual form of a quadratic equation:

or, inserting the numerical values,

Solving this quadratic equation, we find s and t �

3.62 s. At s, the velocity of the ball is

At the velocity is

The two velocities have identical magnitudes but opposite direc-
tions. You should be able to convince yourself that, in the absence
of air resistance, the ball will take as long to rise to its maximum

vy � v0y � gt � 25.2 m/s � (9.8 m/s2)(3.62 s) � �10.3 m/s.

t � 3.62 s,

vy � v0y � gt � 25.2 m/s � (9.8 m/s2)(1.52 s) � 10.3 m/s.

t � 1.52
t � 1.52

(4.9 m/s2)t 2 � (25.2 m/s)t � 27.0 m � 0.

1
2gt 2 � v0yt � y � 0,

y0 � 0,

� (25.2 m/s)(2.57 s) � 1
2(9.8 m/s2)(2.57 s)2 � 32.4 m.

y � v0yt � 1
2gt 2

t �
v0y � vy

g
�

25.2 m/s � 0

9.8 m/s2 � 2.57 s.

v0y and vy (� 0),

height as to fall the same distance, and that at each point it will
have the same speed going up that it has coming down. Note that
the answer to part (a) for the time to reach the highest point,
2.57 s, is exactly midway between the two times found in part (c).
Can you explain this? Can you predict qualitatively the effect of
air resistance on the times of rise and fall?

Figure 2-25 illustrates the motion of the ball. Note especially
the symmetry of the upward and downward motions.

Sample Problem 2-11. A rocket is launched from rest
from an underwater base a distance of 125 m below the surface of
a body of water. It moves vertically upward with an unknown but
assumed constant acceleration (the combined effect of its engines,
Earth’s gravity, and the buoyancy and drag of the water), and it
reaches the surface in a time of 2.15 s. When it breaks the surface
its engines automatically shut off (to make it more difficult to de-
tect) and it continues to rise. What maximum height does it reach?
(Ignore any effects at the surface.)

Solution As with any projectile in free fall, we could analyze the
motion of the rocket during the portion of its motion in the air if
we knew the initial velocity of that part of the motion. The plan of
attack in this problem is therefore to analyze the underwater por-
tion of the motion to find the velocity when the rocket reaches the
surface, and then to treat that velocity as the initial velocity of the
free-fall portion. These parts must be done separately, because 
the acceleration changes at the surface of the water.

For the underwater motion, which is accelerated but not free
fall, we can find the acceleration from Eq. 2-28 (replacing x by y)
with m and 

Now Eq. 2-26 (again with x replaced by y) gives the final velocity
for this portion of the motion:

vy � v0y � ayt � 0 � (54.1 m/s2)(2.15 s) � 116 m/s.

ay �
2(y � y0)

t 2 �
2(125 m)

(2.15 s)2 � 54.1 m/s2.

v0y � 0:y � y0 � 125
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Figure 2-24. Sample Problem 2-9. The height, velocity, and
acceleration of a body in free fall are shown.

Figure 2-25. Sample Problem 2-10. The height, velocity, and
acceleration at various points are shown.

t y vy ay

s 

0 0 0 – 9.8

– 9.8

– 9.8

– 9.8

4.0 – 78.4 – 39.2 

3.0 – 44.1 – 29.4 

2.0 – 19.6 – 19.6 

1.0 – 4.9 – 9.8 

– 9.8

m m/s m/s2

t    = 1.52 s
y   = +27.0 m
vy = +10.3 m/s
ay = –9.8 m/s2

t    = 0
y   = 0
vy = +25.2 m/s
ay = –9.8 m/s2

t    = 5.04 s
y   = 0
vy = –25.2 m/s
ay = –9.8 m/s2

t    = 3.62 s
y   = +27.0 m
vy = –10.3 m/s
ay = –9.8 m/s2

t    = 2.57 s
y   = +32.4 m
vy = 0
ay = –9.8 m/s2



The velocity at the surface is 116 m/s upward. We now analyze
the free-fall portion of the motion, taking this velocity to be the
initial velocity v0y . At the highest point, the rocket comes instanta-
neously to rest ; we use Eq. 2-29 to find the time at which
this occurs:

The height at this time is, from Eq. 2-30 with 

To test your understanding of this problem, you should draw
graphs of and in a fashion similar to Fig. 2-17. Be
sure to keep in mind which variables change continuously and
smoothly and which do not in this idealized problem. How would
the motion of a real rocket vary from this picture?

Measuring the Free-Fall 
Acceleration (Optional)
The nature of the motion of a falling object has long been
of interest to scientists and philosophers. Aristotle
(384–322 B.C.) thought that heavier objects would fall
more rapidly because of their weight. That was the prevail-
ing view for two millennia, until Galileo Galilei
(1564–1642) made the correct assertion, that in the ab-
sence of air resistance all objects fall with the same speed.
We can test this assertion by dropping a feather and a ball
of lead in a vacuum, and we find that they do indeed fall at
the same rate. In 1971, astronaut David Scott dropped a
feather and a hammer on the (airless) Moon, and he ob-
served that they reached the surface at about the same time.

In Galileo’s time, there was no way to achieve a vacuum,
and he lacked the equipment to make precise measurements
of time intervals. (The famous story about Galileo dropping
different objects from the Tower of Pisa and observing them
to reach the ground at the same time is probably only legend.
For a tower of that height, air resistance would have a con-
siderable effect on objects unless they had exactly the same
size and shape.) Galileo reduced the acceleration (making it
easier to measure time intervals and also reducing the effect
of air resistance) by rolling a ball down an incline instead of
dropping it. He showed that in equal time intervals the ball
covered distances that were proportional to the odd integers
1,3,5,7, . . . . The total distances covered for consecutive
intervals were thus proportional to 1, 1 � 3 1 � 3 �
5 1 � 3 � 5 � 7 and so on. He thus con-
cluded that the distances increased as the square of the time,
which we now know holds only in the case of constant accel-
eration. He also found that the same results were obtained re-
gardless of the mass of the ball, and thus (in present-day ter-
minology) he deduced that the free-fall acceleration is
independent of the mass of the object.

Today the measurement of g is a standard exercise in the
introductory laboratory. By timing the fall of an object over
a distance of a meter or two (which takes about 0.5 s), it is

(� 16),(� 9),
(� 4),

ay(t)y(t), vy(t),

� 687 m. 

y � v0yt � 1
2gt 2 � (116 m/s)(11.8 s) � 1

2(9.8 m/s2)(11.8 s)2

y0 � 0:

t � �
vy � v0y

g
� �

(0 � 116 m/s)

9.8 m/s2 � 11.8 s.

(vy � 0)

possible to determine g to a precision of a few percent. Us-
ing even a crude pendulum (which “slows down” the motion
in analogy with Galileo’s incline) and measuring the time
for one complete back-and-forth swing, you can (as we dis-
cuss in Chapter 17) determine g to a precision of about
0.1%. This level of precision is sufficient to observe the vari-
ation in g between sea level and a high mountain (3 km or
10,000 ft), or between the equator and the poles of the Earth.

With carefully designed apparatus, the pendulum
method can be extended to a precision of 1 part in 106, suf-
ficient to detect variations in g from one floor of a building
to the next. To achieve even greater precision, investigators
have refined the free-fall method. By dropping an object in
vacuum and reflecting a laser beam from it as it falls, very
precise determinations of the distance of fall can be made.
Coupled with atomic clocks to measure the time of fall, the
value of g can be determined to a precision of about 1 part
in 109, which enables the variation in g over a vertical dis-
tance of 1 cm to be observed. Equivalently, such a gravity
meter can detect the gravitational effect of the measuring
scientist standing 1 m from the apparatus!

Falling-body gravimeters for making these precise mea-
surements are now commercially available. In the latest
model, the falling object is placed in an evacuated box and
the object is projected upward, so that measurements can be
taken as the object rises and as it falls, as suggested in
Problem 33. Figure 2-26 shows a portable version of this
type of apparatus.
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Figure 2-26. A portable rise-and-fall gravimeter. Its uses include
geophysical research, oil and mineral exploration, and inertial navigation.
Photo provided courtesy of Dr. T.M. Niebauer, Micro-g Solutions. (See
http://www.microgsolutions.com.)



Such accurate measurements of the free-fall accelera-
tion permit detailed studies of the Earth’s gravity, which
has important practical consequences. Variations in g from
place to place can reveal the presence of oil or minerals un-
der the Earth’s surface, and variations in g with time can re-
veal movement of the Earth’s plates or seismic activity.

Knowledge of the small variations in g due to irregularities
in the Earth’s gravity enables accurate calculations of the
paths of ballistic missiles or Earth satellites. In addition to
these practical applications, precise measurements of g can
provide detailed tests of our understanding of the theory of
gravitation, one of the basic forces of the universe. �
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MULTIPLE CHOICE

2-1 Kinematics with Vectors

2-2 Properties of Vectors

2-3 Position, Velocity, and Acceleration Vectors
1. An object is moving with velocity given by

where From this,
one can conclude 

(a) that the acceleration 

(A) will have no components that are identically zero.
(B) may have some components that are identically zero.
(C) will have only a z component that is identically zero.
(D) will have an identically zero z component, and maybe

an identically zero component in the x or y direction.

(b) and that the position 

(A) will have no components that are identically zero.
(B) may have some components that are identically zero.
(C) will have only a z component that is identically zero.
(D) will have an identically zero z component, and maybe

an identically zero component in the x or y direction.

2. An object is moving in the xy plane with the position as a
function of time given by Point O is at

The object is definitely moving toward O when
(A) (B)
(C) (D)

2-4 One-Dimensional Kinematics
3. An object is launched straight up into the air from the ground

with an initial vertical velocity of 30 m/s. The object rises to a
highest point approximately 45 m above the ground in 3 sec-
onds; it then falls back to the ground in 3 more seconds, im-
pacting with a speed of 30 m/s.

(a) The average speed of the object during the 6-second in-
terval is closest to

(A) 0 m/s. (B) 5 m/s. (C) 15 m/s. (D) 30 m/s.

(b) The magnitude of the average velocity during the 6-sec-
ond interval is closest to

(A) 0 m/s. (B) 5 m/s. (C) 15 m/s. (D) 30 m/s.

4. A car travels 15 miles east at a constant speed of 20 mi/h, then
continues east for 20 miles at a constant 30 mi/h. What can be
concluded about the magnitude of the average velocity?

(A) (B)
(C)
(D) More information is needed to answer the question.

5. An object is moving along the x axis with position as a func-
tion of time given by Point O is at The object
is definitely moving toward O when

(A) (B)
(C) (D) d(x2)/dt 
 0.d(x2)/dt 	 0.

dx/dt 
 0.dx/dt 	 0.

x � 0.x � x(t).

vav 
 25 mi/h.
vav � 25 mi/h.vav 	 25 mi/h.

xvx � yvy 
 0.xvx � yvy 	 0.
vx 	 0, vy 	 0.vx 
 0, vy 
 0.

rB � 0.
rB � x(t)î � y(t)ĵ.

rB(t)

aB(t)

vz(t) � 0.vB(t) � vx(t)î � vy(t)ĵ � vz(t)k̂

6. An object starts from rest at when The object
moves in the x direction with positive velocity after 
The instantaneous velocity and average velocity are related by

(A) (B) (C)
(D) can be larger than, smaller than, or equal to x/t.

7. Figure 2-27 shows several graphs with unlabeled axes. 
(a) Which graph would best represent velocity as a function
of time for an object moving with constant speed? (b) Which
graph best represents velocity as a function of time for accel-
eration given by (c) Which graph best represents
distance as a function of time for a constant negative accelera-
tion? (d ) Which graph best represents velocity as a function
of time if graph E shows distance as a function of time?

a � �3t?

dx/dt
dx/dt 
 x/t.dx/dt � x/t.dx/dt 	 x/t.

t � 0.
t � 0.x � 0

Figure 2-27. Multiple-choice question 7.

2-5 Motion with Constant Acceleration
8. An object is moving in the x direction with velocity vx(t), and

dvx /dt is a nonzero constant. With vx � 0 when t � 0, then
for t 
 0 the quantity vx dvx /dt is

(A) negative. (B) zero. (C) positive.
(D) not determined from the information given.

2-6 Freely Falling Bodies
9. A fellow student makes the following comment during a

study session: “A freely falling object falls a greater distance
during each second than the total distance fallen in all the pre-
vious seconds.” This statement

(A) is always true.
(B) is true only for sufficiently short times.
(C) is true for sufficiently long times.
(D) is never true.

10. An object is tossed vertically into the air with an initial veloc-
ity of 8 m/s. Using the sign convention up is positive, how
does the vertical component of the acceleration ay of the object
(after leaving the hand) vary during the flight of the object?

B

F

CE

A

D



(A) On the way up on the way down 
(B) On the way up on the way down 
(C) On the way up on the way down 
(D) On the way up on the way down 

11. A boy jumps off a high diving board above a swimming pool.
Halfway between the board and the water he tosses a ball up-
ward. Ignoring air friction, the instant after the ball leaves his
hands the vertical component of the acceleration of the ball

(A) is positive, but then decreases through zero to �9.8 m/s2.
(B) is zero, but then decreases to �9.8 m/s2.
(C) is between zero and �9.8 m/s2, but then decreases to

�9.8 m/s2.

ay 	 0.ay 	 0,
ay 	 0.ay 
 0,
ay 
 0.ay 	 0,
ay 
 0.ay 
 0, (D) is �9.8 m/s2.

12. A small toy looks like a pipe and shoots a marble out each
end. The toy is dropped out of a tree and fires halfway to the
ground. One marble shoots directly up, the other directly
down. Consider the vertical component of the acceleration ay

of the marbles immediately after the marbles leave the toy, ig-
noring any air friction.

(A) The upward-moving marble has 
(B) The upward-moving marble has 
(C) The upward-moving marble has 
(D) The downward-moving marble has ay 
 �9.8 m/s2.

ay 
 �9.8 m/s2.
ay � �9.8 m/s2.
ay 	 �9.8 m/s2.
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QUESTIONS

1. Can two vectors having different magnitudes be combined to
give a zero resultant? Can three vectors?

2. Can a vector have zero magnitude if one of its components is
not zero?

3. Can the sum of the magnitudes of two vectors ever be equal
to the magnitude of the sum of these two vectors?

4. Can the magnitude of the difference between two vectors ever
be greater than the magnitude of either vector? Can it be
greater than the magnitude of their sum? Give examples.

5. Suppose that Does this mean that we must
have either or If not, explain why.

6. Can the speed of a particle ever be negative? If so, give an ex-
ample; if not, explain why.

7. Does average velocity have a direction associated with it?

8. Each second a rabbit moves one-half the remaining distance
from its nose to a head of lettuce. Does the rabbit ever get to
the lettuce? What is the limiting value of the rabbit’s average
velocity? Draw graphs showing the rabbit’s velocity and posi-
tion as time increases.

9. Instead of the definition given in Eq. 2-13, we might have de-
fined average speed as the magnitude of the average velocity.
Are the definitions different? Give examples to support your
answer.

10. A racing car, in a qualifying two-lap heat, covers the first lap
with an average speed of 90 mi/h. The driver wants to speed
up during the second lap so that the average speed of the two
laps together will be 180 mi/h. Show that it cannot be done.

11. Bob beats Judy by 10 m in a 100-m dash. Bob, claiming to
give Judy an equal chance, agrees to race her again but to
start from 10 m behind the starting line. Does this really give
Judy an equal chance?

12. When the velocity is constant, can the average velocity over
any time interval differ from the instantaneous velocity at any
instant? If so, give an example; if not, explain why.

13. Can the average velocity of a particle moving along the x axis
ever be if the acceleration is not constant? Prove
your answer with the use of graphs.

14. (a) Can an object have zero velocity and still be accelerating?
(b) Can an object have a constant velocity and still have a
varying speed? In each case, give an example if your answer
is yes; explain why if your answer is no.

1
2(v0x � vx)

d � d2 ?d � d1

d
B

� d
B

1 � d
B

2 .

15. Can the velocity of an object reverse direction when its acceler-
ation is constant? If so, give an example; if not, explain why.

16. Figure 2-28 shows Colonel John P. Stapp in his braking
rocket sled; see Exercise 45. (a) His body is an accelerometer,
not a speedometer. Explain. (b) Can you tell the direction of
the acceleration from the figure?

Figure 2-28. Question 16 and Exercise 45.

17. Can an object be increasing in speed as the magnitude of its
acceleration decreases? If so, give an example; if not, explain
why.

18. Of the following situations, which one is impossible? (a) A
body having velocity east and acceleration east; (b) a body
having velocity east and acceleration west; (c) a body having
zero velocity but acceleration not zero; (d) a body having
constant acceleration and variable velocity; (e) a body having
constant velocity and variable acceleration.

19. If a particle is released from rest at at the
time Eq. 2-28 for constant acceleration says that it is at
position x at two different times—namely, and

What is the meaning of the negative root of this
quadratic equation?

20. What happens to our kinematic equations (Eq. 2-26 or 2-28)
under the operation of time reversal— that is, replacing t by
�t? Explain.

21. We expect a truly general relation, such as Eqs. 2-26 and 2-28,
to be valid regardless of the choice of coordinate system. By

�√2x/ax .
�√2x/ax

t � 0,
x 0 � 0(v0x � 0)



24. A person standing on the edge of a cliff at some height above
the ground throws one ball straight up with initial speed v0

and then throws another ball straight down with the same ini-
tial speed. Which ball, if either, has the larger speed when it
hits the ground? Neglect air resistance.

25. What is the downward acceleration of a projectile that is re-
leased from a missile accelerating upward at 9.8 m/s2?

26. On another planet, the value of g is one-half the value on
Earth. How is the time needed for an object to fall to the
ground from rest on that planet related to the time required to
fall the same distance on Earth?

27. (a) A stone is thrown upward with a certain speed on a planet
where the free-fall acceleration is double that on Earth. How
high does it rise compared to the height it rises on Earth? (b) If
the initial speed were doubled, what change would that make?

28. Consider a ball thrown vertically up. Taking air resistance
into account, would you expect the time during which the ball
rises to be longer or shorter than the time during which it
falls? Why?

29. Make a qualitative graph of speed v versus time t for a falling
object (a) for which air resistance can be ignored and (b) for
which air resistance cannot be ignored.

30. A second ball is dropped down an elevator shaft 1 s after the
first ball is dropped. (a) What happens to the distance be-
tween the balls as time goes on? (b) How does the ratio v1/v2

of the speed of the first ball to the speed of the second ball
change as time goes on? Neglect air resistance, and give qual-
itative answers.

31. Repeat Question 30 taking air resistance into account. Again,
give qualitative answers.

32. If m is a light stone and M is a heavy one, according to Aristo-
tle M should fall faster than m. Galileo attempted to show that
Aristotle’s belief was logically inconsistent by the following
argument. Tie m and M together to form a double stone. Then,
in falling, m should retard M, because it tends to fall more
slowly, and the combination would fall faster than m but more
slowly than M; but according to Aristotle the double body

is heavier than M and, hence, should fall faster than
M. If you accept Galileo’s reasoning as correct, can you con-
clude that M and m must fall at the same rate? What need is
there for experiment in that case? If you believe Galileo’s rea-
soning is incorrect, explain why.

(M � m)
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Figure 2-29. Question 23.

EXERCISES

2-1 Kinematics with Vectors

2-2 Properties of Vectors

1. Consider two displacements, one of magnitude 3 m and an-
other of magnitude 4 m. Show how the displacement vectors
may be combined to get a resultant displacement of magni-
tude (a) 7 m, (b) 1 m, and (c) 5 m.

2. A person walks in the following pattern: 3.1 km north, then
2.4 km west, and finally 5.2 km south. (a) Construct the vec-
tor diagram that represents this motion. (b) How far and in
what direction would a bird fly in a straight line to arrive at
the same final point?

3. Vector has a magnitude of 5.2 units and is directed east.
Vector has a magnitude of 4.3 units and is directed 35°
west of north. By constructing vector diagrams, find the mag-
nitudes and directions of (a) and (b) 

4. (a) What are the components of a vector in the xy plane if
its direction is 252° counterclockwise from the positive x axis
and its magnitude is 7.34 units? (b) The x component of a cer-
tain vector is �25 units and the y component is �43 units.
What are the magnitude of the vector and the angle between
its direction and the positive x axis?

5. A person desires to reach a point that is 3.42 km from her 
present location and in a direction that is 35.0° north of east.

aB
aB � b

B
.aB � b

B
,

b
B
aB

demanding that general equations be dimensionally consistent
we ensure that the equations are valid regardless of the choice
of units. Is there any need then for units or coordinate systems?

22. What are some examples of falling objects for which it would
be unreasonable to neglect air resistance?

23. Figure 2-29 shows a shot tower in Baltimore, Maryland. It
was built in 1829 and used to manufacture lead shot pellets by
pouring molten lead through a sieve at the top of the tower.
The lead pellets solidify as they fall into a tank of water at the
bottom of the tower, 230 ft below. What are the advantages of
manufacturing shot in this way?



However, she must travel along streets that go either north-
south or east-west. What is the minimum distance she could
travel to reach her destination?

6. A ship sets out to sail to a point 124 km due north. An unex-
pected storm blows the ship to a point 72.6 km to the north and
31.4 km to the east of its starting point. How far, and in what
direction, must it now sail to reach its original destination?

7. (a) What is the sum in unit-vector notation of the two vectors
and (b) What are the magni-

tude and the direction of 

8. Two vectors are given by and
Find (a) (b) and (c) a

vector such that 

9. Given two vectors, and 
find the magnitudes and directions (with the �x axis) of (a)

(b) (c) (d) and (e) 

10. Two vectors and have equal magnitudes of 12.7 units.
They are oriented as shown in Fig. 2-30 and their vector sum
is Find (a) the x and y components of (b) the magnitude
of and (c) the angle makes with the �x axis.rBrB,

rB,rB.

b
B

aB
aB � b

B
.b

B
� aB,aB � b

B
,b

B
,aB,

b
B

� 6.0î � 8.0ĵ,aB � 4.0î � 3.0ĵ

aB � b
B

� cB � 0.cB
aB � b

B
,aB � b

B
,b

B
� �î � ĵ � 4k̂.

aB � 4î � 3ĵ � k̂

aB � b
B

?
b
B

� �3î � 2ĵ?aB � 5î � 3ĵ What are the magnitude and direction of the displacement
vector that represents the total trip? What are (b) the average
velocity vector and (c) the average speed for the trip?

17. The position of a particle moving in an xy plane is given by
Cal-

culate (a) (b) and (c) when 

18. In 3 h 24 min, a balloon drifts 8.7 km north, 9.7 km east, and
2.9 km in elevation from its release point on the ground. Find
(a) the magnitude of its average velocity and (b) the angle its
average velocity makes with the horizontal.

19. The velocity of a particle moving in the xy plane is given 
by Assume

(a) What is the acceleration when s? (b) When
(if ever) is the acceleration zero? (c) When (if ever) is the ve-
locity zero? (d) When (if ever) does the speed equal 10 m/s?

20. A particle is moving in the xy plane with velocity (t) �
vx(t) � vy(t) and acceleration (t) � ax(t) � ay(t) . By
taking the appropriate derivative, show that the magnitude of

can be constant only if axvx � ayvy � 0.

2-4 One-Dimensional Kinematics
21. A plane flies round-trip between Los Angeles and Namulevu,

Vanuavinaka. The plane takes off at 12:50 P.M. Los Angeles
time and lands at 6:50 P.M. Namulevu time. On the return trip
it takes off at 1:50 A.M. Namulevu time and lands at 6:50 P.M.
Los Angeles time. Assume that the flight time is the same in
both directions and that the plane flies in a straight line at an
average speed of 520 mi/hr. (a) What length of time is the
flight (one way, as measured by the passengers)? (b) What is
the time difference between Namulevu and Los Angeles? (c)
Approximately where on the globe is Namulevu located?

22. On April 15 an airplane takes off at 4:40 P.M. from Belém,
Brazil bound for Villamil, Ecuador (in the Galapagos). The
plane lands at 8:40 P.M. Villamil local time. The sun sets at
6:15 P.M. in Belém (local time), and 7:06 P.M. in Villamil 
(local time). At what time during the flight do the airplane
passengers see the sun set?

23. How far does your car, moving at 70 mi/h 
travel forward during the 1 s of time that you take to look at
an accident on the side of the road?

24. New York Yankees pitcher Roger Clemens threw a fastball at
a horizontal speed of 160 km/h, as verified by a radar gun.
How long did it take for the ball to reach home plate, which is
18.4 m away?

25. Figure 2-32 shows the relation between the age of the oldest
sediment, in millions of years, and the distance, in kilometers,
at which the sediment was found from a particular ocean ridge.
Seafloor material is extruded from this ridge and moves away
from it at approximately uniform speed. Find the speed, in cen-
timeters per year, at which this material recedes from the ridge.

26. Maurice Greene once ran the 100-m dash in 9.81 s (the wind
was at his back), and Khalid Khannouchi ran the marathon
(26 mi, 385 yd) in 2:05:42. (a) What are their average speeds?

(� 112 km/h)

vB

ĵîaBĵî
vB

t � 3t 
 0.
vB � [(6.0 m/s2)t � (4.0 m/s3)t 2]î � (8.0 m/s)ĵ.

t � 2 s.aBvB,rB,
rB � [(2 m/s3)t 3 � (5 m/s)t]î � [(6 m) � (7 m/s4)t 4] ĵ.
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Figure 2-30. Exercise 10.

Figure 2-31. Exercise 15.
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2-3 Position, Velocity, and Acceleration Vectors
11. A woman walks 250 m in the direction 35° east of north, then

170 m directly east. (a) Using graphical methods, find her fi-
nal displacement from the starting point. (b) Compare the
magnitude of her displacement with the distance she walked.

12. A car is driven east for a distance of 54 km, then north for 
32 km, and then in a direction 28° east of north for 27 km.
Draw the vector diagram and determine the total displace-
ment of the car from its starting point.

13. The minute hand of a wall clock measures 11.3 cm from axis
to tip. What is the displacement vector of its tip (a) from a
quarter after the hour to half past, (b) in the next half hour,
and (c) in the next hour?

14. A particle undergoes three successive displacements in a
plane, as follows: 4.13 m southwest, 5.26 m east, and 5.94 m
in a direction 64.0° north of east. Choose the x axis pointing
east and the y axis pointing north and find (a) the components
of each displacement, (b) the components of the resultant dis-
placement, (c) the magnitude and direction of the resultant
displacement, and (d) the displacement that would be re-
quired to bring the particle back to the starting point.

15. A radar station detects a missile approaching from the east. At
first contact, the range to the missile is 12,000 ft at 40.0°
above the horizon. The missile is tracked for another 123° in
the east-west plane, the range at final contact being 25,800 ft;
see Fig. 2-31. Find the displacement of the missile during the
period of radar contact.

16. A plane flies 410 mi east from city A to city B in 45 min and
then 820 mi south from city B to city C in 1 h 30 min. (a)



(b) If Maurice Greene could maintain his sprint speed during
a marathon, how long would it take him to finish?

27. The legal speed limit on a highway is changed from 55 mi/h
km/h) to 65 mi/h km/h). How much time is

thereby saved on a trip from the Buffalo entrance to the New
York City exit of the New York State Thruway for someone
traveling at the higher speed over this 435-mi 
stretch of highway?

28. A high-performance jet plane, practicing radar avoidance ma-
neuvers, is in horizontal flight 35 m above the level ground.
Suddenly, the plane encounters terrain that slopes gently up-
ward at 4.3°, an amount difficult to detect; see Fig. 2-33. How
much time does the pilot have to make a correction if the plane
is to avoid flying into the ground? The airspeed is 1300 km/h.

(� 700-km)

(� 104.6(� 88.5

33. A particle had a velocity of 18 m/s in the �x direction and 
2.4 s later its velocity was 30 m/s in the opposite direction.
What was the average acceleration of the particle during this
2.4-s interval?

34. An object moves in a straight line as described by the veloc-
ity-time graph in Fig. 2-35. Sketch a graph that represents the
acceleration of the object as a function of time.
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Figure 2-32. Exercise 25.

Figure 2-33. Exercise 28.

Figure 2-34. Exercises 31 and 32.
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Figure 2-35. Exercise 34.

51 432

Time (s)

5

V
el

oc
ity

 (
m

/s
)

0

10

15

Figure 2-36. (a) Exercise 35 and (b) Exercise 36.
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29. A car travels up a hill at the constant speed of 40 km/h and
returns down the hill at the speed of 60 km/h. Calculate the
average speed for the round trip.

30. Compute your average speed in the following two cases. (a)
You walk 240 ft at a speed of 4.0 ft/s and then run 240 ft at a
speed of 10 ft/s along a straight track. (b) You walk for 1.0
min at a speed of 4.0 ft/s and then run for 1.0 min at 10 ft/s
along a straight track.

31. How far does the runner whose velocity-time graph is shown
in Fig. 2-34 travel in 16 s?

35. The graph of x versus t in Fig. 2-36a is for a particle in straight
line motion. (a) State for each interval whether the velocity vx

is �, �, or 0, and whether the acceleration ax is �, �, or 0.
The intervals are OA, AB, BC, and CD. (b) From the curve, is
there any interval over which the acceleration is obviously not
constant? (Ignore the behavior at the endpoints of the intervals.)

36. Answer the previous questions for the motion described by
the graph of Fig. 2-36b.

37. A particle moves along the x axis with a displacement versus
time as shown in Fig. 2-37. Roughly sketch curves of velocity
versus time and acceleration versus time for this motion.

Figure 2-37. Exercise 37.
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32. What is the acceleration of the runner in Exercise 31 at
s?t � 11



38. A particle moving along the positive x axis has the following
positions at various times:

x(m) 0.080 0.050 0.040 0.050 0.080 0.13 0.20
t(s) 0 1 2 3 4 5 6

(a) Plot displacement (not position) versus time. (b) Find the
average velocity of the particle in the intervals 0 to 1 s, 0 to 2
s, 0 to 3 s, 0 to 4 s. (c) Find the slope of the curve drawn in
part (a) at the points 1, 2, 3, 4, and 5 s. (d) Plot the
slope (units?) versus time. (e) From the curve of part (d) deter-
mine the acceleration of the particle at times 3, and 4 s.

39. The position of a particle along the x axis depends on the time
according to the equation where x is in meters
and t is in seconds. (a) What SI units must A and B have? For the
following, let their numerical values in SI units be 3.0 and 1.0,
respectively. (b) At what time does the particle reach its maxi-
mum positive x position? (c) What total path-length does the
particle cover in the first 4 seconds? (d) What is its displacement
during the first 4 seconds? (e) What is the particle’s velocity at
the end of each of the first 4 seconds? ( f ) What is the particle’s
acceleration at the end of each of the first 4 seconds? (g) What is
the average velocity for the time interval to s?

2-5 Motion with Constant Acceleration
40. A jumbo jet needs to reach a speed of 360 km/h mi/h)

on the runway for takeoff. Assuming a constant acceleration
and a runway 1.8 km mi) long, what minimum accel-
eration from rest is required?

41. A rocket ship in free space moves with constant acceleration
equal to 9.8 m/s2. (a) If it starts from rest, how long will it take
to acquire a speed one-tenth that of light? (b) How far will it
travel in so doing? (The speed of light is 3.0 � 108 m/s.)

42. The head of a rattlesnake can accelerate 50 m/s2 in striking a
victim. If a car could do as well, how long would it take for it
to reach a speed of 100 km/h from rest?

43. A muon (an elementary particle) is shot with initial speed
5.20 � 106 m/s into a region where an electric field produces
an acceleration of 1.30 � 1014 m/s2 directed opposite to the
initial velocity. How far does the muon travel before coming
to rest?

44. An electron with initial velocity m/s enters a
region 1.2 cm long where it is electrically accelerated (see
Fig. 2-38). It emerges with a velocity m/s.v � 5.8 � 106

v0 � 1.5 � 105

(� 1.1

(� 224

t � 4t � 2

x � At 2 � Bt 3,

t � 2,

t � 0,

What was its acceleration, assumed constant? (Such a process
occurs in the electron gun in a cathode-ray tube, used in tele-
vision receivers and computer monitors.)

45. A world’s land speed record was set by Colonel John P. Stapp
when, on March 19, 1954, he rode a rocket-propelled sled
that moved down a track at 1020 km/h. He and the sled were
brought to a stop in 1.4 s; see Fig. 2-28. What acceleration did
he experience? Express your answer in terms of 
m/s2), the acceleration due to gravity. (Note that his body acts
as an accelerometer, not a speedometer.)

46. The brakes on your automobile are capable of creating a de-
celeration of 17 ft /s2. If you are going 85 mi/h and suddenly
see a state trooper, what is the minimum time in which you
can get your car under the 55 mi/h speed limit?

47. On a dry road a car with good tires may be able to brake with
a deceleration of 11.0 mi/h/s m/s2). (a) How long
does it take such a car, initially traveling at 55 mi/h 
m/s), to come to rest? (b) How far does it travel in this time?

48. An arrow is shot straight up into the air and on its return
strikes the ground at 260 ft/s, imbedding itself 9.0 in. into the
ground. Find (a) the acceleration (assumed constant) required
to stop the arrow, and (b) the time required for the ground to
bring it to rest.

49. An elevator cab in the New York Marriott Marquis (see Fig. 2-
39) has a total run of 624 ft. Its maximum speed is 1000 ft/min
and its (constant) acceleration is 4.00 ft/s2. (a) How far does it
move while accelerating to full speed from rest? (b) How long
does it take to make the run, starting and ending at rest?

(� 24.6
(� 4.92

g (� 9.8

36 Chapter 2 / Motion in One Dimension

Figure 2-39. Exercise 49.

Figure 2-38. Exercise 44.
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50. An automobile traveling 35 mi/h km/h) is 110 ft 

m) from a barrier when the driver slams on the brakes. Four
seconds later the car hits the barrier. (a) What was the auto-
mobile’s constant deceleration before impact? (b) How fast
was the car traveling at impact?

2-6 Freely Falling Bodies
51. Raindrops fall to the ground from a cloud 1700 m above

Earth’s surface. If they were not slowed by air resistance, how

(� 34(� 56



fast would the drops be moving when they struck the ground?
Would it be safe to walk outside during a rainstorm?

52. The single cable supporting an unoccupied construction ele-
vator breaks when the elevator is at rest at the top of a 120-m-
high building. (a) With what speed does the elevator strike the
ground? (b) For how long was it falling? (c) What was its
speed when it passed the halfway point on the way down? (d)
For how long was it falling when it passed the halfway point?

53. At a construction site a pipe wrench strikes the ground with a
speed of 24.0 m/s. (a) From what height was it inadvertently
dropped? (b) For how long was it falling?

54. (a) With what speed must a ball be thrown vertically up in or-
der to rise to a maximum height of 53.7 m? (b) For how long
will it be in the air?

55. A rock is dropped from a 100-m-high cliff. How long does it
take to fall (a) the first 50.0 m and (b) the second 50.0 m?

56. Space explorers land on a planet in our solar system. They
note that a small rock tossed at 14.6 m/s vertically upward
takes 7.72 s to return to the ground. On which planet have
they landed? (Hint: See Appendix C.)

57. A ball thrown straight up takes 2.25 s to reach a height of
36.8 m. (a) What was its initial speed? (b) What is its speed at
this height? (c) How much higher will the ball go?

58. A ball is dropped from a height of 2.2 m and rebounds to a
height of 1.9 m above the floor. Assume the ball was in con-
tact with the floor for 96 ms and determine the average accel-
eration (magnitude and direction) of the ball during contact
with the floor.

59. Two objects begin a free fall from rest from the same height
1.00 s apart. How long after the first object begins to fall will
the two objects be 10.0 m apart?

60. A balloon is ascending at 12.4 m/s at a height of 81.3 m
above the ground when a package is dropped. (a) With what
speed does the package hit the ground? (b) How long did it
take to reach the ground?

61. A dog sees a flowerpot sail up and then back down past a
window 1.1 m high. If the total time the pot is in sight is 
0.54 s, find the height above the top of the window to which
the pot rises.
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PROBLEMS

1. Rock faults are ruptures along which opposite faces of rock
have moved past each other, parallel to the fracture surface.
Earthquakes often accompany this movement. In Fig. 2-40,
points A and B coincided before faulting. The component of
the net displacement AB parallel to the horizontal surface
fault line is called the strike-slip (AC). The component of the
net displacement along the steepest line of the fault plane is
the dip-slip (AD). (a) What is the net shift if the strike-slip is
22 m and the dip-slip is 17 m? (b) If the fault plane is inclined
52° to the horizontal, what is the net vertical displacement of
B as a result of the faulting in (a)?

the rim of the wheel. At time t1 , P is at the point of contact
between the wheel and the floor. At a later time t2 , the wheel
has rolled through one-half of a revolution. What is the dis-
placement of P during this interval?

3. A room has the dimensions 10 ft � 12 ft � 14 ft. A fly start-
ing at one corner ends up at a diametrically opposite corner.
(a) Find the displacement vector in a frame with coordinate
axes parallel to the edges of the room. (b) What is the magni-
tude of the displacement? (c) Could the length of the path
traveled by the fly be less than this distance? Greater than
this distance? Equal to this distance? (d) If the fly walks
rather than flies, what is the length of the shortest path it can
take?

4. Two vectors of magnitudes a and b make an angle � with each
other when placed tail to tail. Prove, by taking components
along two perpendicular axes, that the magnitude of their sum
is

5. You drive on Interstate 10 from San Antonio to Houston, one-
half the time at 35.0 mi/h km/h) and the other half at
55.0 mi/h km/h). On the way back you travel one-half
the distance at 35.0 mi/h and the other half at 55.0 mi/h. What
is your average speed (a) from San Antonio to Houston, (b)
from Houston back to San Antonio, and (c) for the entire trip?

6. The position of an object moving in a straight line is given by
where m/s, m/s2,

and m/s3. (a) What is the position of the object at
1, 2, 3, and 4 s? (b) What is the object’s displacement

between and s? Between and s? (c)
What is the average velocity for the time interval from 
to s? From to s?

7. Two trains, each having a speed of 34 km/h, are headed toward
each other on the same straight track. A bird that can fly 58

t � 3t � 0t � 4
t � 2

t � 4t � 0t � 2t � 0
t � 0,

C � 1.0
B � �4.0A � 3.0x � At � Bt2 � Ct 3,

(� 88.5
(� 56.3

r � √a2 � b2 � 2ab cos �.

Figure 2-40. Problem 1.
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Figure 2-41. Problem 2.
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2. A wheel with a radius of 45 cm rolls without slipping along a
horizontal floor, as shown in Fig. 2-41. P is a dot painted on



km/h flies off the front of one train when they are 102 km apart
and heads directly for the other train. On reaching the other
train it flies directly back to the first train, and so forth. (a) How
many trips can the bird make from one train to the other before
the trains crash? (b) What is the total distance the bird travels?

8. An object, constrained to move along the x axis, travels a dis-
tance d1 with constant velocity v1 for a time t1 . It then instan-
taneously changes its velocity to a constant v2 for a time t2 ,
traveling a distance d2 . (a) Show that

(b) Under what conditions is this an equality?

9. The position of a particle moving along the x axis is given by
where cm and cm/s3. Con-

sider the time interval to s and calculate (a) the
average velocity; (b) the instantaneous velocity at s; (c)
the instantaneous velocity at s; (d) the instantaneous ve-
locity at s; and (e) the instantaneous velocity when the
particle is midway between its positions at and s.

10. For each of the following situations, sketch a graph that is a
possible description of position as a function of time for a
particle that moves along the x axis. At s, the particle
has (a) zero velocity and positive acceleration; (b) zero veloc-
ity and negative acceleration; (c) negative velocity and posi-
tive acceleration; (d) negative velocity and negative accelera-
tion. (e) For which of these situations is the speed of the
particle increasing at s?

11. If the position of an object is given by m/s3)t3, find
(a) the average velocity and the average acceleration between

and s and (b) the instantaneous velocities and the
instantaneous accelerations at and s. (c) Compare
the average and instantaneous quantities and in each case ex-
plain why the larger one is larger.

12. An electron, starting from rest, has an acceleration that in-
creases linearly with time; that is, in which k �

1.50 m/s3. (a) Plot a versus t during the first 10-s interval. (b)
From the curve of part (a) plot the corresponding v versus t
curve and estimate the electron’s velocity 5 s after the motion
starts. (c) From the v versus t curve of part (b) plot the corre-
sponding x versus t curve and estimate how far the electron
moves during the first 5 s of its motion.

13. Suppose that you were called upon to give some advice to a
lawyer concerning the physics involved in one of her cases.
The question is whether a driver was exceeding a 30-mi/h
speed limit before he made an emergency stop, brakes locked
and wheels sliding. The length of skid marks on the road was
19.2 ft. The police officer made the assumption that the maxi-
mum deceleration of the car would not exceed the accelera-
tion of a freely falling body ft/s2) and did not give the
driver a ticket. Was the driver speeding? Explain.

14. A train started from rest and moved with constant accelera-
tion. At one time it was traveling at 33.0 m/s, and 160 m far-
ther on it was traveling at 54.0 m/s. Calculate (a) the acceler-
ation, (b) the time required to travel the 160 m, (c) the time
required to attain the speed of 33.0 m/s, and (d) the distance
moved from rest to the time the train had a speed of 33.0 m/s.

15. When a driver brings a car to a stop by braking as hard as
possible, the stopping distance can be regarded as the sum of
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a � kt,

t � 2t � 1
t � 2t � 1

x � (2.0

t � 1

t � 1

t � 3t � 2
t � 2.5

t � 3
t � 2

t � 3t � 2
B � 1.50A � 9.75x � A � Bt3,

v1d1 � v2d2

d1 � d2
�

v1t1 � v2t2

t1 � t2
.

a “reaction distance,” which is initial speed times reaction
time, and “braking distance,” which is the distance covered
during braking. The following table gives typical values:

Initial Reaction Braking Stopping
Speed Distance Distance Distance
(m/s) (m) (m) (m)

10 7.5 5.0 12.5
20 15 20 35
30 22.5 45 67.5

(a) What reaction time is the driver assumed to have? (b)
What is the car’s stopping distance if the initial speed is 
25 m/s?

16. At the instant the traffic light turns green, an automobile starts
with a constant acceleration of 2.2 m/s2. At the same instant a
truck, traveling with a constant speed of 9.5 m/s, overtakes
and passes the automobile. (a) How far beyond the starting
point will the automobile overtake the truck? (b) How fast
will the car be traveling at that instant? (It is instructive to
plot a qualitative graph of x versus t for each vehicle.)

17. A sprinter, in the 100-m dash, accelerates from rest to a top
speed with a (constant) acceleration of 2.80 m/s2 and main-
tains the top speed to the end of the dash. (a) What time
elapsed and (b) what distance did the sprinter cover during
the acceleration phase if the total time taken in the dash was
12.2 s?

18. A ball is tossed vertically into the air with an initial speed
somewhere between (25 � �) m/s and (25 � �) m/s, where �
is a small number compared to 25. The total time of flight for
the ball to return to the ground will be somewhere between

and Find t and �.

19. Figure 2-42 shows a simple device for measuring your reac-
tion time. It consists of a strip of cardboard marked with a
scale and two large dots. A friend holds the strip vertically
with his thumb and forefinger at the upper dot and you posi-
tion your thumb and forefinger at the lower dot, being careful
not to touch the strip. Your friend releases the strip, and you
try to pinch it as soon as possible after you see it begin to fall.
The mark at the place where you pinch the strip gives your re-
action time. How far from the lower dot should you place the
50-, 100-, 150-, 200-, and 250-ms marks?

t � �.t � �
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Figure 2-42. Problem 19.
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20. While thinking of Isaac Newton, a person standing on a
bridge overlooking a highway inadvertently drops an apple
over the railing just as the front end of a truck passes directly
below the railing. If the vehicle is moving at 55 km/h 
mi/h) and is 12 m ft) long, how far above the truck
must the railing be if the apple just misses hitting the rear end
of the truck?

21. A rocket is fired vertically and ascends with a constant verti-
cal acceleration of 20 m/s2 for 1.0 min. Its fuel is then all used

(� 39
(� 34



and it continues as a free-fall particle. (a) What is the maxi-
mum altitude reached? (b) What is the total time elapsed from
takeoff until the rocket strikes the Earth? (Ignore the variation
of g with altitude).

22. A basketball player, about to “dunk” the ball, jumps 76 cm
vertically. How much time does the player spend (a) in the
top 15 cm of this jump and (b) in the bottom 15 cm? Does
this help explain why such players seem to hang in the air at
the tops of their jumps? See Fig. 2-43.

Assume that Jim is 170 cm tall and that the jumping-off level
is at the top of the figure. Make scale measurements directly
on the figure.

Problems 39

Figure 2-43. Problem 22.

Figure 2-44. Problem 27.

23. A stone is thrown vertically upward. On its way up it passes
point A with speed v, and point B, 3.00 m higher than A, with
speed v/2. Calculate (a) the speed v and (b) the maximum
height reached by the stone above point B.

24. The Zero Gravity Research Facility at the NASA Lewis Re-
search Center includes a 145-m drop tower. This is an evacu-
ated vertical tower through which, among other possibilities,
a 1-m-diameter sphere containing an experimental package
can be dropped. (a) For how long is the experimental package
in free fall? (b) What is its speed at the bottom of the tower?
(c) At the bottom of the tower, the sphere experiences an aver-
age acceleration of 25g as its speed is reduced to zero.
Through what distance does it travel in coming to rest?

25. A woman fell 144 ft from the top of a building, landing on the
top of a metal ventilator box, which she crushed to a depth of
18 in. She survived without serious injury. What acceleration
(assumed uniform) did she experience during the collision?
Express your answer in terms of g.

26. A certain computer hard disk drive is rated to withstand an
acceleration of 100g without damage. Assuming the drive de-
celerates through a distance of 2 mm when it hits the ground,
from how high can you drop the drive without ruining it?

27. As Fig. 2-44 shows, Clara jumps from a bridge, followed
closely by Jim. How long did Jim wait after Clara jumped?

28. A parachutist after bailing out falls 52.0 m without friction.
When the parachute opens, she decelerates at 2.10 m/s2 and
reaches the ground with a speed of 2.90 m/s. (a) How long is
the parachutist in the air? (b) At what height did the fall 
begin?

29. A steel ball bearing is dropped from the roof of a building
(the initial velocity of the ball is zero). An observer standing
in front of a window 120 cm high notes that the ball takes
0.125 s to fall from the top to the bottom of the window. The
ball bearing continues to fall, makes a completely elastic col-
lision with a horizontal sidewalk, and reappears at the bottom
of the window 2.0 s after passing it on the way down. How
tall is the building? (The ball will have the same speed at a
point going up as it had going down after a completely elastic
collision.)

30. A juggler juggles 5 balls with two hands. Each ball rises 2
meters above her hands. Approximately how many times per
minute does each hand toss a ball?

31. What is a reasonable estimate for the maximum number of
objects a juggler can juggle with two hands if the height to
which the objects are tossed above the hands is h?

32. Assume that Galileo had attempted to drop two objects off of
the Tower of Pisa. (a) If he had released the objects from his
hands, but dropped one slightly sooner than the second with a
time difference of s, then what would be the vertical
separation of the two objects just before hitting the ground?
(b) What release accuracy �t would he need so that the two

�t � 0.1



first time when vx equals zero after the start and find the dis-
tance traveled from the origin. (b) Find the final position of
the object as t : �.

objects would have a vertical separation of less than 1 cm just
prior to hitting the ground? (Ignore any effects of air friction.)

33. At the National Physical Laboratory in England (the British
equivalent of our National Institute of Standards and Technol-
ogy), a measurement of the acceleration g was made by
throwing a glass ball straight up in an evacuated tube and let-
ting it return, as in Fig. 2-45. Let �tL be the time interval be-
tween the two passages across the lower level, �tU the time
interval between the two passages across the upper level, and
H the distance between the two levels. Show that

g �
8H

(�tL)2 � (�tU)2 .
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Figure 2-45. Problem 33.
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COMPUTER PROBLEM

1. The velocity of an object is given by

Both vx and x are zero when (a) Numerically find thet � 0.

vx(t) � e�t2/100 (t � 10 sin �t).
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FORCE AND
NEWTON’S LAWS

In Chapter 2 we studied the motion of a particle. We

did not ask what “caused” the motion; we simply described it in terms of the particle’s position, velocity,

and acceleration. In this chapter, we discuss the causes of motion, a field of study called dynamics.

The approach to dynamics we consider, which is generally known as classical mechanics, was developed

and successfully tested in the 17th and 18th centuries. More recent theories (special and general relativity

and quantum mechanics) have indicated certain realms far from our ordinary experiences where classical

mechanics fails to give predictions that agree with experiment, but these new theories reduce to classical

mechanics in the limits of ordinary objects.

Without reference to special or general relativity or to quantum mechanics, we can build great skyscrap-

ers and study the properties of their construction materials; build airplanes that can carry hundreds of peo-

ple and fly halfway around the world; and send space probes on complex missions to the comets, the plan-

ets, and beyond. This is the stuff of classical mechanics.

3-1 CLASSICAL MECHANICS

Ancient philosophers were perplexed by the motion of ob-
jects. They wrestled with questions such as: Do all motions
require a cause? If so, what is the nature of this cause?
Confusion about these issues persisted until the 17th cen-
tury, when Galileo (1564–1642) and Isaac Newton
(1642–1727) developed the approach to understanding
these motions that we call “classical mechanics.” Newton
presented his three laws of motion in 1687 in his
Philosophiae Naturalis Principia Mathematica, usually
called the Principia. Until the 20th-century discoveries of
quantum physics (which governs the behavior of micro-
scopic particles such as electrons and atoms) and special
relativity (which governs the behavior of objects moving at
high speed) revealed their limitations, Newton’s laws of
classical mechanics formed the basis of our understanding
of motion and its causes.

In classicial mechanics, we focus our attention on the
motion of a particular object, which interacts with the sur-

rounding objects (its environment ) so that its velocity
changes—an acceleration is produced. Table 3-1 shows
some common accelerated motions and the object in the en-
vironment that is mostly responsible for the acceleration.
The central problem of classical mechanics is: (1) An ob-
ject with known physical properties (mass, volume, electric
charge, etc.) is placed at a known initial location moving
with known initial velocity. (2) We know (or can measure)
all of the interactions of this object with its environment.
(3) Can we predict the subsequent motion of the object?
That is, can we find its position and velocity at all future
times?

For this analysis we will begin by treating physical ob-
jects as particles, by which we mean bodies whose internal
structures or motions can be ignored and whose parts all
move in exactly the same way. Often we must analyze the
motion of extended objects whose different parts may have
different interactions with the environment. For example, a
worker might be pushing on one side of a heavy crate while
the bottom experiences friction as it slides along the floor. If
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all parts of the crate move in the same way, we can treat the
crate as a particle. As a result, it doesn’t matter where the
environment acts on the object; our main concern is with
the net effect of all of the interactions with the environment.
(Later in the text we will encounter situations in which it
does matter where we apply the forces to an extended ob-
ject, but for now we’ll treat all objects as particles.)

We describe the interaction of a body with its environ-
ment in terms of a force A force is a push or a pull in a
particular direction. Forces are described using vectors—
for every force we must specify the direction in which it
acts, and forces must be combined using the rules for vec-
tor addition. In this chapter we consider mostly situations
involving one-dimensional motion, in which case we must
specify the force component (positive or negative) relative
to that one direction.

Each force that is exerted on an object is caused by a
particular body in its environment. As you begin your study
of classical mechanics, you may find it useful whenever
you are analyzing the forces in a problem to describe each
force by the body on which it acts and the body in the envi-
ronment that is responsible for the force. For example,
“pushing force on crate by worker” or “frictional force on
crate by floor” or “gravitational force on crate by Earth.”
You will find this technique especially helpful when we dis-
cuss Newton’s third law later in this chapter.

To carry out our scheme for classical mechanics, we be-
gin by defining the magnitude of a force in terms of the ac-
celeration of a particular standard body upon which that

F
B

.

force acts. We then assign a mass m to a body by compar-
ing the acceleration of that body with the acceleration of
the standard body when the same force is applied to both.
Finally, we develop force laws based on the properties of
the body and its environment. Force thus appears in both
the laws of motion (which tell us what acceleration an ob-
ject will experience under the action of a given force) and
in the force laws (which tell us how to calculate the force
on a body in a certain environment). The laws of motion
and the force laws together make up the laws of classical
mechanics, as Fig. 3-1 suggests.

This program of mechanics cannot be tested piecemeal.
We must view it as a whole and judge its success based on
the answers to two questions: (1) Does the program yield
results that agree with experiment? (2) Are the force laws
simple and reasonable in form? It is the crowning glory of
classical mechanics that we can answer an enthusiastic
“yes” to both of these questions.

3-2 NEWTON’S FIRST LAW

Before Galileo’s time most philosophers thought that some
influence or “force” was needed to keep a body moving.
They thought that a body was in its “natural state” when it
was at rest. For a body to move in a straight line at constant
speed, for example, they believed that some external agent
had to continually propel it; otherwise it would “naturally”
stop moving.

If we wanted to test these ideas experimentally, we
would first have to find a way to free a body from all influ-
ences of its environment or from all forces. This is hard to
do, but in certain cases we can make the forces very small.
If we study the motion as we make the forces smaller and
smaller, we can get an idea of what the motion would be
like if the external forces were truly zero.

Let us place our test body—say, a block—on a rigid
horizontal plane. If we let the block slide along this plane,
we note that it gradually slows down and stops. This obser-
vation was used, in fact, to support the idea that motion
stopped when the external force, in this case the hand ini-
tially pushing the block, was removed. We can argue against
this idea, however, by reasoning as follows. Let us repeat our
experiment, now using a smoother block and a smoother
plane and providing a lubricant. We note that the velocity de-
creases more slowly than before. Let us use still smoother
blocks and surfaces and better lubricants. We find that the
block decreases in velocity at a slower and slower rate and
travels farther each time before coming to rest. You may
have experimented with an air track, on which objects can be
made to float on a film of air; such a device comes close to
the limit of no friction, as even a slight tap on one of the
gliders can send it moving along the track at a slow and al-
most constant speed. We can now extrapolate and say that if
all friction could be eliminated, the body would continue in-
definitely in a straight line with constant speed. An external
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Change in Object in
Object Motion Environment Type of Force

Apple Falls from tree Earth Gravitational
Car Comes to a stop Road Frictional
Compass Rotates toward Earth Magnetic

needle north
Beam of ink Deflects Capacitor Electric

drops in
printer

Helium Rises from land Air Buoyant
balloon

Some Accelerated Motions and
Their Major Causes

Table 3-1

The force laws

Environment Force Body Acceleration

The laws of motion

Figure 3-1. Our program for mechanics. The three boxes on
the left suggest that force is an interaction between a body and its
environment. The three boxes on the right suggest that a force act-
ing on a body will accelerate it.



3-2 Newton’s First Law 43

force is needed to set the body in motion, but no external
force is needed to keep a body moving with constant velocity.

It is difficult to find a situation in which no external
force acts on a body. The force of gravity acts on an object
on or near the Earth, and resistive forces such as friction or
air resistance oppose motion on the ground or in the air.
Fortunately, we need not go to the vacuum of distant space
to study motion free of external force, because, as far as the
overall translational motion of a body is concerned, there is
no distinction between a body on which no external force
acts and a body on which the sum or resultant of all the ex-
ternal forces is zero. We usually refer to the resultant of all
the forces acting on a body as the “net” force. For example,
the push of our hand on the sliding block can exert a force
that counteracts the force of friction on the block, and an
upward force of the horizontal plane counteracts the force
of gravity. The net force on the block can then be zero, and
the block can move with constant velocity.

Note that, even though four forces act on the block, the
net force can still be zero. The net force is determined by
the vector sum of all the forces that act on the object.
Forces of equal magnitude and opposite direction have a
vector sum of zero. Thus we can achieve a condition of no
net force on an object by arranging to apply forces that
counteract other forces that act on the body, such as a push
by a hand or an engine to overcome friction.

This principle was adopted by Newton as the first of his
three laws of motion:

Consider a body on which no net force acts. If the body
is at rest, it will remain at rest. If the body is moving
with constant velocity, it will continue to do so.

The First Law and Reference Frames
Suppose you are a passenger riding in a car and you are
tightly held in your seat by the seat belt. When the brakes
are applied, a book that was on the seat next to you begins
to slide forward. There is no apparent force on the book
that is pushing it forward, but relative to you it appears to
start moving, in violation of Newton’s first law. Your friend
Bill, who is standing along the side of the road, sees you,
the car, and the book all moving together, say at 22 m/s
(about 50 mi/h). If you and the car suddenly slow to 20 m/s
(about 45 mi/h), in the absence of friction with the seat the
book continues to move at 22 mph according to Bill. Bill
notices nothing unusual and detects no violation of New-
ton’s first law.

For another example, you are tightly held by your seat
belt in an airplane that encounters turbulence and suddenly
drops in altitude by one meter. The glass on your tray table
appears to you to leap one meter into the air, with no appar-
ent force causing its motion. From your perspective, it ap-
pears that Newton’s first law has been violated. Your friend
Sally is flying at constant velocity in a plane just next to
yours; her plane is not affected by the turbulence. Sally sees

your glass moving in a straight line, while you and the
plane suddenly drop by one meter. Sally detects no viola-
tion of Newton’s first law in the motion of your glass.

Each observer— such as you in the car or airplane, Bill
standing on the ground, and Sally in her airplane—defines
a reference frame. A reference frame requires a coordinate
system and a set of clocks, which enable an observer to
measure positions, velocities, and accelerations in his or her
particular reference frame. Observers in different reference
frames may measure different velocities or accelerations.

Newton’s first law, which may seem like an obvious re-
sult, is very important because it helps us to identify a set
of special reference frames in which we can apply the laws
of classical mechanics. In the example involving the car,
you and Bill will reach different conclusions about the ac-
celeration of the book—you conclude that it accelerates
forward, while Bill concludes that its acceleration is zero.
In general, the acceleration of a body depends on the refer-
ence frame relative to which it is measured. However, the
laws of classical mechanics are valid only in a certain set of
reference frames—namely, those in which all observers
would measure the same acceleration for a moving body.
Newton’s first law allows us to choose this special family of
reference frames if we express it as follows:

If the net force acting on a body is zero, then it is possi-
ble to find a set of reference frames in which that body
has no acceleration.

The tendency of a body to remain at rest or in uniform
linear motion is called inertia, and Newton’s first law is of-
ten called the law of inertia. The reference frames to which
it applies are called inertial frames.

To test whether a particular frame of reference is an in-
ertial frame, we place a test body at rest in the frame and
ascertain that no net force acts on it. If the body does not
remain at rest, the frame is not an inertial frame. Similarly,
we can put the body (again subject to no net force) in mo-
tion at constant velocity; if its velocity changes, either in
magnitude or direction, the frame is not an inertial frame. A
frame in which these tests are everywhere passed is an iner-
tial frame.

As a passenger in the decelerating car, your frame of
reference is not an inertial frame, and you cannot directly
apply the laws of mechanics as we formulate them. If Bill’s
frame of reference passes the tests as an inertial frame, he
can successfully apply the laws of mechanics in his frame.
He can measure the change in velocity of the car and thus
deduce its acceleration (due to the force of friction with the
road), but he concludes that the net force on the book is
zero and thus that it should move with constant velocity.
Similarly, if Sally’s frame of reference passes the tests, she
can successfully apply the laws of mechanics by associat-
ing your plane’s sudden change in vertical velocity with 
a net vertical force (in this case, the difference between 
gravity and the upward “lift” force), and she can account
for the motion of the glass by applying those same laws.



Inertial Reference Frames 
and Relative Motion
Suppose you are in a car moving down the road at 22 m/s
(about 50 mi/h). Your friends in the same car are also mov-
ing at 22 m/s. You could toss a ball sideways into your
friend’s lap, and the toss is unaffected by the velocity of the
car. As long as the car continues to move at constant veloc-
ity, the ball lands in your friend’s lap.

If you are passed by your friend Sally who is in another
car moving with a velocity of 27 m/s (about 60 mi/h), you
observe the distance between your car and Sally’s to in-
crease at the rate of 27 m/s � 22 m/s � 5 m/s. That is, rel-
ative to your car, Sally’s car is moving at 5 m/s. Take away
the external clues— the scenery speeding by, the still air
rushing past the moving car, the bumpiness of the road, and
the noise of the engine—and consider only the two cars.
You would have no way to decide which car was “really”
moving. For example, Sally’s car could be at rest and your
car could be moving backward at 5 m/s; the observed result
would be the same. One minute after she passes you, you
observe the distance between you and Sally to be the rela-
tive velocity times the time interval: 5 m/s � 60 s � 300 m.

Now consider how this looks to your friend Bill by the
side of the road (Fig. 3-2). Suppose Sally passes you just as
you both pass Bill’s position. According to Bill, 1 minute
later your car has moved a distance of 22 m/s � 60 s �
1320 m, while Sally’s car has moved a distance of 27 m/s
� 60 s � 1620 m. Bill concludes that the distance between
the cars is 1620 m � 1320 m � 300 m. Thus you and Bill
agree on your conclusions about the distance between the
cars.

Soon after passing you, Sally sees a police car and ap-
plies her brakes. Bill observes her to slow from 27 m/s to
20 m/s in a time of 3.5 s. According to Bill, her accelera-
tion is (taking the direction of her motion to be the positive
x direction and solving Eq. 2-26, vx � v0x � axt, for ax)

According to your frame of reference, Sally’s velocity is
now 20 m/s � 22 m/s � � 2 m/s; that is, you are now
moving faster than Sally by 2 m/s. According to you, her

ax �
vx � v0x

t
�

(20 m/s) � (27 m/s)

3.5 s
� �2.0 m/s2.

velocity changes from � 5 m/s to � 2 m/s and thus her ac-
celeration is

You and Bill agree on the acceleration!
You and Bill are both inertial observers. You agree on

the acceleration of Sally’s car, and you will therefore agree
on the force that was necessary to cause the acceleration. In
fact, all inertial observers agree on measurements of accel-
eration (although they will not in general agree on mea-
surements of position or velocity).

Consider the contrary case in which you also brake
slightly when passing the police car, reducing your speed
from 22 m/s to 21 m/s in the same 3.5-s interval. At the be-
ginning of the interval, you determine Sally’s velocity to 
be � 5 m/s, as before. At the end of the braking interval,
you would determine her velocity to be 20 m/s � 21 m/s �
� 1 m/s (in the backward direction). You would then con-
clude Sally’s acceleration to be

which differs from Bill’s result of � 2.0 m/s2. You are no
longer an inertial observer (because during the 3.5-s inter-
val in which you were braking you could no longer pass the
test of Newton’s first law).

In this book we almost always apply the laws of classical
mechanics from the point of view of an observer in an inertial
frame. Occasionally, we discuss problems involving ob-
servers in noninertial reference frames, such as an accelerat-
ing car, a rotating merry-go-round, or an orbiting satellite.
Even though the Earth is rotating, a reference frame attached
to the Earth can be considered to be approximately an inertial
reference frame for most practical purposes. For large-scale
applications, such as analyzing the flight of ballistic missiles
or studying wind and ocean currents, the noninertial character
of the rotating Earth becomes important. (See Section 5-6.)

Note that there is no distinction in the first law between a
body at rest and one moving with a constant velocity. Both
motions are “natural” if the net force acting on the body is
zero. This becomes clear when a body at rest in one inertial
frame is viewed from a second inertial frame— that is, a frame
moving with constant velocity with respect to the first. An ob-
server in the first frame finds the body to be at rest; an observer
in the second frame finds the same body to be moving with
constant velocity. Both observers find the body to have no ac-
celeration— that is, no change in velocity—and both may
conclude from the first law that no net force acts on the body.

3-3 FORCE

According to Newtons’ first law, the absence of force leads
to the absence of acceleration. What about the presence of
force? Based on common experience, it is reasonable to as-

ax �
vx � v0x

t
�

(�1 m/s) � (5 m/s)

3.5 s
� �1.7 m/s2,

ax �
vx � v0x

t
�

(�2 m/s) � (5 m/s)

3.5 s
� �2.0 m/s2.
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Figure 3-2. You and Bill agree that Sally’s car is 300 m
ahead of yours after 60 s.
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sume that a body will accelerate when a force is applied to
it. We now develop our concept of force by defining it oper-
ationally in terms of the acceleration it produces when ap-
plied to a chosen standard body. Any object can serve as
our “standard body,” as long as it is clearly identifiable and
reproducible. For example, we might choose a block of
copper or glass of any specified dimensions.

Before we proceed with this measurement, we must first
invoke Newton’s first law to check that we are working in
an inertial reference frame. If the body is at rest, does it re-
main at rest? If we start it moving with a constant velocity,
does it remain in that state of motion? In attempting to an-
swer the second question, we probably will discover that
the body, once in motion, gradually slows down due to fric-
tion. By careful design of our apparatus, we create as nearly
a friction-free environment as we can, perhaps by floating
the body on a film of air or lubricating the surface on which
it moves. We intend to apply a force to the body and mea-
sure its acceleration, and we want to be sure that any other
forces caused by the environment have a negligible effect
on the motion of the body.

As the agent that supplies the force, we choose a light
spring. We observe that springs come in different stiff-
nesses, requiring different efforts to stretch them. We also
observe that the effort needed to stretch a given spring in-
creases as we stretch it through larger distances.

We place the standard body on a frictionless horizontal
surface and attach the spring to it (Fig. 3-3a). By trial and

error we stretch our spring until it gives an acceleration of
exactly 1 m/s2 to our standard body (Fig. 3-3b). We define
this as one unit of force, and for future reference we record
the amount of stretch �L in the spring that corresponds to
this force. Now we repeat the experiment, stretching the
spring by a greater amount until the standard body experi-
ences an acceleration of 2 m/s2. We define this as two units
of force, and we again record the amount of stretch �L for
the spring that gives this force. Continuing, we find the
amount of stretch that gives an acceleration of 3 m/s2, cor-
responding to three units of force. Eventually we have a
complete calibration of our spring, giving the amount of
stretch that gives our standard body any desired accelera-
tion. Other springs of different stiffnesses could be cali-
brated in a similar way using the same standard body.

Based entirely on the acceleration given to the standard
body, we now have a calibrated set of springs. Using these
measuring devices, we can now proceed to measure un-
known forces. For example, let us suspend an object verti-
cally from a spring, as in Fig. 3-4a. Since the body is at
rest, the net force on it must be zero. The magnitude of the
upward force exerted by the spring must equal the magni-
tude of the downward force of gravity, so that the vector
sum of the two forces is zero. By measuring the extension
�L and checking our calibration for that spring to deter-
mine the corresponding force, we can determine the force
of gravity on the body. In fact, calibrated spring scales are
available for just this purpose, such as to weigh fruits and
vegetables in grocery stores.

In a similar way we can measure frictional forces. By
placing the body on a horizontal surface where it experi-
ences a frictional force, we could attach a spring (as in Fig.
3-4b) and pull the body with just the right force so that it
moves at constant velocity. In this case, the magnitude of the
spring force equals that of the frictional force, so their vector
sum is zero (because they have equal magnitudes and oppo-
site directions). We can determine the magnitude of the force
from the amount by which the spring is stretched. Once
again, a calibrated spring scale can be used for this purpose.

Another way to measure force is to use a (commercially
available) electronic force probe, which can be interfaced to
a computer to read forces directly (see Fig. 3-5). A force
applied to the probe causes a small deflection of a mechani-
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Figure 3-3. (a) A standard body at rest on a horizontal fric-
tionless surface. (b) The body is accelerated by pulling to the right
to stretch the spring by �L.

(a)

(b)

L

L ∆L+

Force
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Frictional
force

Spring force
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force

Gravity

v

Figure 3-4. (a) A body is suspended at rest,
acted upon by the spring force and gravity. (b) A
body moves at constant velocity on a horizontal
surface where a frictional force is exerted upon it.



cal or electromagnetic device; the deflection can be read
electronically and calibrated against a “standard” spring.

3-4 MASS

In the previous section we discussed a series of experiments
that we used to calibrate a set of springs based on the accel-
erations given to a standard body when the springs were
stretched to different lengths. Now we want to repeat those
experiments to answer a different question: What effect will
the same force have when applied to different bodies?

Everyday experience leads us to guess at a qualitative
answer: it is much easier to accelerate a bicycle than a car
by pushing it. Clearly the same force produces different ac-
celerations when applied to different bodies. What makes
these bodies differ in our ability to accelerate them by
pushing is their mass, which is the property of a body that
determines its resistance to a change in its motion.

Let us see how we can study the relationship between
force and mass by accelerating bodies of different masses
using our calibrated spring set. We start by obtaining a sec-
ond identical standard body and attaching it to the first
body. We then apply one unit of force (as previously deter-
mined from the single body) to this combined object, and

we observe the acceleration to be 0.5 m/s2. Applying two
units of force, we find an acceleration of 1.0 m/s2. We can
repeat the experiment with three standard bodies joined to-
gether, then four, and so forth. Here is a possible set of out-
comes of these experiments:

Applied Force 1 unit 2 units 3 units 4 units

Acceleration of one 1.0 m/s2 2.0 m/s2 3.0 m/s2 4.0 m/s2

standard body

Acceleration of two 0.5 m/s2 1.0 m/s2 1.5 m/s2 2.0 m/s2

standard bodies

Acceleration of three 0.33 m/s2 0.67 m/s2 1.0 m/s2 1.3 m/s2

standard bodies

It is clear from the results of these measurements that, for
each combination of bodies, the acceleration is directly pro-
portional to the force (for example, in each case two units
of force gives twice the acceleration as one unit of force).
The proportionality constant between force and accelera-
tion, however, is different for each horizontal row of the
data table and is a characteristic property of the object be-
ing accelerated. This property of the object is its mass,
which gives the proportionality between force and accelera-
tion. Figure 3-6 illustrates these experiments, which show
the relationships among force, mass, and acceleration.

From many experiments similar to these, we conclude
that the greater the total mass of a body, the smaller the ac-
celeration produced by a given force. That is, the accelera-
tion produced by a given force is inversely proportional to
the mass being accelerated. The mass of a body can thus be
regarded as a quantitative measure of the resistance of a
body to acceleration by a given force.

This observation gives us a direct way to compare the
masses of different bodies: we apply the same force to both
bodies and measure the resulting acceleration. The ratio of
the masses of the two bodies is then the same as the inverse
ratio of the accelerations. For example, suppose we apply a
force F to the standard body (whose mass we take to be
mstd) and measure acceleration astd . We then observe that
the same force F applied to body x of unknown mass mx

gives acceleration ax . Forming the ratios, we then have

(same force F acting). (3-1)

This allows us to find the mass of the unknown body in
terms of the mass of our chosen standard body. For exam-
ple, if the acceleration of body x is of the acceleration of
the standard body when the same force is applied to both,
then the mass of body x is three times the mass of the stan-
dard body. Note that this remains true no matter how many
units of force we choose to apply to both bodies, as you can
see from the above table of measured values— for example,
the accelerations of the triple body in the last line of the
table are of the corresponding accelerations of the single1

3

1
3

m x

m std
�

a std

ax
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Figure 3-5. A mass hangs from a spring attached to an elec-
tronic probe, which can be interfaced to a computer for measuring
forces. Courtesy Vernier Software and Technology.



body for each value of the applied force. More specifically,
if we apply a different force F� to both the standard body
and body x, giving accelerations and we then find
that the ratio of the accelerations with force F � is the same
as the ratio with force F:

(3-2)

We obtain the same value for the unknown mass mx , no
matter what the value of the common force. The mass ratio
mx /mstd is independent of the force; the mass is a fundamen-
tal property of the object, unrelated to the value of the force
used to compare the unknown mass to the standard mass.

By a simple extension of this procedure, we can com-
pare the masses of any two bodies with each other, rather
than comparing a single body with the standard. Consider
two arbitrary objects, of masses m1 and m2 . We apply a
given force of magnitude F to m1 and measure acceleration
a1 . Applying the same force to m2 , we obtain acceleration
a2 . The mass ratio is

(same force acting), (3-3)

which turns out to be identical with the ratio we would ob-
tain by deducing the masses m1 and m2 separately by direct
comparison with the standard, as in Eq. 3-1.

This procedure also shows that, when two masses m1

and m2 are fastened together, they behave mechanically like
a single object of mass m1 � m2 . This demonstrates that
masses add like (and are) scalar quantities.

One practical example of the use of this technique—as-
signing masses by comparing the accelerations produced by
a given force— is in the precise measurement of the masses
of atoms. The force in this case is magnetic, and the accel-

m 2

m1
�

a 1

a 2

m x

m std
�

a std

ax

�
a�std

a�x
.

a�x ,a�std

eration is perpendicular to the velocity of the atom and so
causes a deflection in its path, but the principle is exactly
the same: the ratio of the masses of the two atoms is equal
to the inverse ratio of their accelerations. Measuring the de-
flection permits precise mass ratios to be measured, and
comparing with a standard mass (that of 12C, defined to be
exactly 12 u) permits precise values of masses, such as
those shown in Table 1-6, to be obtained.

3-5 NEWTON’S SECOND LAW

We can now summarize all the previously described experi-
ments and definitions in one equation, the fundamental
equation of classical mechanics,

(3-4)

In this equation is the (vector) sum of all the forces
acting on the body, m is the mass of the body, and is its
(vector) acceleration. We shall usually refer to as the
resultant force or net force.

Equation 3-4 is a statement of Newton’s second law. If
we write it in the form we can easily see that
the acceleration of the body is in magnitude directly pro-
portional to the resultant force acting on it and in direction
parallel to this force. We also see that the acceleration, for a
given force, is inversely proportional to the mass of the
body.

Note that the first law of motion appears to be contained
in the second law as a special case, for if then

In other words, if the resultant force on a body is
zero, the acceleration of the body is zero and the body
moves with constant velocity, as stated by the first law.
However, the first law has an independent and important

aB � 0.
� F

B
� 0,

aB � (� F
B

)/m,

� F
B

aB
� F

B

� F
B

� maB.
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Figure 3-6. Experiments illustrating the
relationship among force (given in arbitrary
units), mass, and acceleration. Acceleration
vectors are drawn to scale above the blocks.
Reading across each row, we see that the ac-
celeration is always proportional to the force,
but the proportionality is different for different
masses. Reading down each column, we see
that when the same force acts, the acceleration
is inversely proportional to the mass.



role in defining inertial reference frames. Without that defi-
nition, we would not be able to choose the frames of refer-
ence in which to apply the second law. We therefore need
both laws for a complete system of mechanics.

Equation 3-4 is a vector equation. As in the case of all
vector equations, we can write this single vector equation
as three one-dimensional equations,

(3-5)

relating the x, y, and z components of the resultant force
to the x, y, and z compoonents of

acceleration (ax , ay , and az) for the mass m. It should be
emphasized that is the algebraic sum of the x compo-
nents of all the forces, is the algebraic sum of the y
components of all the forces, and is the algebraic
sum of the z components of all the forces acting on m. In
taking the algebraic sum, the signs of the components (that
is, the relative directions of the forces) must be taken into
account.

Like all equations, Newton’s second law must be di-
mensionally consistent. On the right side, the dimensions
are, recalling from Chapter 1 that [ ] denotes the dimen-
sions of, [m][a] � ML/T2, and therefore these must also be
the dimensions of force:

No matter what the origin of the force—gravitational, elec-
trical, nuclear, or whatever—and no matter how compli-
cated the equation describing the force, these dimensions
must hold for it.

In the SI system of units, the standard body has a mass
of one kilogram (see Section 1-5), and we in effect measure
the masses of objects by comparing them with the standard
kilogram. To impart an acceleration of 1 m/s2 to a mass of
1 kg requires a force of 1 kg	m/s2. This combination of
units is called the newton (abbreviated N):

If we measure the mass in kg and the acceleration in m/s2,
Newton’s second law gives the force in N.

Two other systems of units in common use are the cgs
(centimeter-gram-second) and the British systems. In the
cgs system, mass is measured in grams and acceleration in
cm/s2. The force unit in this system is the dyne and is
equivalent to the g	cm/s2. Since 1 kg � 103 g and 1 m/s2 �
100 cm/s2, it follows that 1 N � 105 dyne. A dyne is a very
small unit, roughly equal to the weight of a cubic millime-
ter of water. (A newton, on the other hand, is about the
weight of a half-cup of water.)

In the British system, force is measured in pounds and
acceleration in ft/s2. In this system, the mass that is acceler-
ated at 1 ft/s2 by a force of 1 lb is called the slug (from the
word sluggish, meaning slow or unresponsive).

Other variants on these basic systems are occasionally
found, but these three are by far the most common. Table

1 N � 1 kg 	m/s2.

[F ] � ML/T2.

� Fz

� Fy

� Fx

(� Fx , � Fy , and � Fz)

� Fx � max , � Fy � may , � Fz � maz ,
3-2 summarizes these common force units; a more exten-
sive listing can be found in Appendix G.

Dynamical Analysis Using Newton’s
Second Law
In analyzing problems using Newton’s second law, there
are several steps that you should follow:

1. Choose a suitable inertial reference frame. Select the
orientation and the positive direction for the coordinate
axes in that reference frame. Force components in the
positive direction are taken to be positive, and those in
the opposite direction are negative.

2. For each object in the problem, draw a free-body dia-
gram, showing all of the forces acting on that body. The
body is regarded as a particle in this diagram.

3. Label each force with two subscripts: the first one in-
dicates the body on which the force acts, and the sec-
ond indicates the body in the environment that causes
the force. For example, FAB indicates the force on body
A due to body B, and FBA indicates the force on body B
due to body A. If there are several objects A, B, C . . .
in the problem, then the forces on body A might in-
clude FAB , FAC , and so forth. This method of labeling
the forces is very important, because it will help you
avoid making the mistake of including a fictitious
force that is not associated with a body in the environ-
ment.

4. For each body, find the vector sum of all the forces. In
practice, this usually means separately adding (with
proper attention to the signs) the x, y, and z components
of the forces. Then use Eqs. 3-5 to find the acceleration
components of that body.

The following examples illustrate the application of these
procedures.

Sample Problem 3-1. A worker W pushes a loaded sled
S whose mass m is 240 kg for a distance d of 2.3 m over the sur-
face of a frozen lake. The sled moves with negligible friction on
the ice. The worker exerts a constant horizontal force FSW of 
130 N (� 29 lb) as she does so; see Fig. 3-7a. If the sled starts
from rest, what is its final velocity?

Solution As Fig. 3-7b shows, we lay out a horizontal x axis, we
take the direction of increasing x to be to the right, and we treat
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System Force Mass Acceleration

SI newton (N) kilogram (kg) m/s2

cgs dyne gram (g) cm/s2

British pound (lb) slug ft/s2

Units in Newton’s Second LawTable 3-2



the sled as a particle. Figure 3-7b is a partial free-body diagram.
In drawing free-body diagrams, it is important always to include
all forces that act on the particle, but here we have omitted two
vertical forces that will be discussed later and that do not affect
our solution. We assume that the force FSW exerted by the worker
is the only horizontal force acting on the sled, so that � Fx � FSW .
We can then find the acceleration of the sled from Newton’s sec-
ond law, or

With this acceleration, we can find the time necessary to move a dis-
tance d using Eq. 2-28 with x � x0 � d

and v0x � 0). Solving, we obtain t � � 2.9 s. Equation 2-26
(with v0x � 0) now gives the final velocity

The force, acceleration, displacement, and final velocity of the
sled are all positive, which means that they all point to the right in
Fig. 3-7b.

Note that to continue applying the constant force, the worker
would have to run faster and faster to keep up with the accelerat-
ing sled. Eventually, the velocity of the sled would exceed the
fastest speed at which the worker could run, and thereafter she
would no longer be able to apply a force to the sled. The sled
would then continue (in the absence of friction) to coast at con-
stant velocity.

Sample Problem 3-2. The worker in Sample Problem
3-1 wants to reverse the direction of the velocity of the sled 
in 4.5 s. With what constant force must she push on the sled to 
do so?

vx � axt � (0.54 m/s2)(2.9 s) � 1.6 m/s.

√2d/ax

(x � x0 � v0xt � 1
2axt 2)

ax �
� Fx

m
�

FSW

m
�

130 N

240 kg
� 0.54 m/s2.

Solution If she exerts a constant force, then the acceleration of
the sled will be constant. Let us find this constant acceleration, us-
ing Eq. 2-26 (vx � v0x � axt). Solving for a gives

This is larger in magnitude than the acceleration in Sample Prob-
lem 3-1 (0.54 m/s2), so it stands to reason that the worker must
push harder this time. We find this (constant) force from

The negative sign shows that the worker is pushing the sled in the
direction of decreasing x— that is, to the left as shown in the free-
body diagram of Fig. 3-7c.

Sample Problem 3-3. A crate whose mass m is 360 kg
rests on the bed of a truck that is moving at a speed v0 of 
105 km/h, as in Fig. 3-8a. The driver applies the brakes and slows
to a speed v of 62 km/h in 17 s. What force (assumed constant)
acts on the crate during this time? Assume that the crate does not
slide on the truck bed.

Solution We first find the (constant) acceleration of the crate.
Solving Eq. 2-26 (vx � v0x � axt) for ax yields

Because we have taken the positive sense of the horizontal direc-
tion to the right, the acceleration must point to the left.

The force FCT exerted on the crate by the truck follows from
Newton’s second law:

This force acts in the same direction as the acceleration—
namely, to the left in Fig. 3-8b. The force must be supplied by an
external agent, such as the straps or other mechanical means used
to secure the crate to the truck bed. If the crate is not secured, then
friction between the crate and the truck bed must supply the re-
quired force. If there is not enough friction to provide a force of
250 N, the crate will slide on the truck bed because, as measured
by a ground-based observer, it will slow down less rapidly than
the truck.

� (360 kg)(�0.70 m/s2) � �250 N.
FCT � max

ax �
vx � v0x

t
�

(62 km/h) � (105 km/h)

(17 s)(3600 s/h)
� �0.70 m/s2.

� �170 N (� �38 lb). 

F �SW � max � (240 kg)(�0.71 m/s2)

F �SW

ax �
vx � v0x

t
�

(�1.6 m/s) � (1.6 m/s)

4.5 s
� �0.71 m/s2.
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Figure 3-7. Sample Problems 3-1 and 3-2. (a) A worker
pushing a loaded sled over a frictionless surface. (b) A free-body
diagram, showing the sled as a “particle” and the force acting on
it. (c) A second free-body diagram, showing the force acting when
the worker pushes in the opposite direction.
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Figure 3-8. Sample Problem 3-3. (a) A crate on the truck that
is slowing down. (b) The free-body diagram of the crate.
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3-6 NEWTON’S THIRD LAW

Consider the Earth and the Moon. The Earth exerts a gravi-
tational force on the Moon, and the Moon exerts a gravita-
tional force on the Earth. All forces are part of such mutual
interactions between two (or more) bodies— it is not possi-
ble to have only a single isolated force.

The forces that act on a body (let us call it body A) are
due to the other bodies in its environment. Suppose that
body B is one of these bodies in the environment of body A.
Then among the forces acting on body A is the force
on body A due to body B. Alternatively, we might direct our
attention to body B. Among the bodies in the environment
of body B is body A, which exerts a force on body B.
Newton’s third law concerns the relationship between 
and 

We find by experiment that when one body exerts a
force on a second body, then the second body always exerts
a force on the first. Furthermore, we find the forces always
to be equal in magnitude and opposite in direction. In the
Earth–Moon system, the magnitude of the force on the
Moon due to the Earth is equal to the magnitude of the
force of the Earth due to the Moon. The forces are also op-
posite in direction— if we imagine a line connecting the
Earth and the Moon, then the force on the Moon by the
Earth acts along that line toward the Earth and the force on
the Earth by the Moon acts along that same line toward the
Moon.

Newton’s third law summarizes these observations:

When one body exerts a force on another, the second ex-
erts a force on the first. These two forces are always
equal in magnitude and opposite in direction.

Formally (see Fig. 3-9), let body B exert a force on
body A; experiment then shows that body A exerts a force

on body B. These forces are related by

(3-6)

The negative sign reminds us that the forces act in opposite
directions, as shown in Fig. 3-9. 

It is customary to label the two forces and due
to the mutal interaction of two bodies as the “action” and
“reaction” forces. These labels are completely arbitrary; ei-
ther force could be called the “action,” and its partner
would then be the “reaction.” By using these common la-
bels, we do not mean to imply that the “action” somehow
causes the “reaction.” Both forces exist due to the mutual
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interaction, and we simply pick one as the “action,” which
then leaves the other as the “reaction.” This gives us a
shorthand way of stating Newton’s third law:

To every action there is an equal and opposite reaction.

This law requires that the reaction force must exist and it
also specifies its magnitude and direction.

It is important to remember that the action and reaction
forces always act on different bodies, as the subscripts re-
mind us. Often you will encounter situations in which two
equal and opposite forces act on the same body (as in Fig.
3-4). Equation 3-6 shows that these two forces cannot be an
action– reaction pair, because they act on the same body. In
a true action– reaction pair, one force acts on body A and
the other on body B. If you have labeled your forces care-
fully by specifying the body on which the force acts and the
body that causes the force, then you can identify the reac-
tion force by simply interchanging the names of the two
bodies. For example:

Action: Force on book due to Reaction: Force on table due to 
table book

Action: Force on Moon due to Reaction: Force on Earth due to 
Earth Moon

Action: Force on electron due Reaction: Force on nucleus due
to nucleus to electron

Action: Force on baseball by Reaction: Force on bat by
bat baseball

If our goal is to study the dynamics of one body (say, the
book or the baseball) then only one member of the
action– reaction pair would be considered (the force that
acts on that body). The other member would be considered
only if we were also studying the dynamics of the second
body (the table or the bat).

The following examples illustrate applications of the
third law.

1. An orbiting satellite. Figure 3-10 shows a satellite
orbiting the Earth. The only force that acts on it is theF

B
SE ,
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Figure 3-9. Newton’s third law. Body A exerts a force on
body B. Body B must then exert a force on body A, and
F
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Figure 3-10. A satellite in Earth orbit. The forces shown are
an action– reaction pair. Note that they act on different bodies.
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force exerted on the satellite by the gravitational pull of the
Earth. Where is the corresponding reaction force? It is 
the force acting on the Earth due to the gravitational pull of
the satellite.

You may think that the tiny satellite cannot exert much
of a gravitational pull on the Earth but it does, exactly as
Newton’s third law requires The force 
causes the Earth to accelerate, but, because of the Earth’s
large mass, its acceleration is so small that it cannot easily
be detected.

2. A book resting on a table. Figure 3-11a shows a
book resting on a table. The Earth pulls downward on the
book with a force The book does not accelerate be-
cause the effect of this force is balanced by an equal and
opposite contact force exerted on the book by the table.

Even though and are equal in magnitude and
oppositely directed, they do not form an action– reaction
pair. Why not? Because they act on the same body— the
book. The two forces sum to zero and thus account for the
fact that the book is not accelerating.

Each of these forces must then have a corresponding re-
action force somewhere. Where are they? The reaction to

is the (gravitational) force with which the book
attracts the Earth. We show this action– reaction pair in Fig.
3-11b.

Figure 3-11c shows the reaction force to It is 
the contact force on the table due to the book. The
action– reaction pairs involving the book in this problem,
and the bodies on which they act, are

and

3. Pushing a row of crates. Figure 3-12 shows a worker
W pushing two crates, each of which rests on a wheeled
cart that can roll with negligible friction. The worker exerts
a force on crate 1, which in turn pushes back on the
worker with a reaction force Crate 1 pushes on crate 2
with a force and crate 2 pushes back on crate 1 with a
force (Note that the worker exerts no force on crate 2
directly.) To move forward, the worker must push backward
against the ground. The worker exerts a force on the
ground, and the reaction force of the ground on the worker,
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pushes the worker forward. The figure shows three

action– reaction pairs:

Note that in this example the worker is the active agent
that is responsible for the motion, but it is the reaction force
on the worker by the ground that makes this possible. If
there were no friction between the worker’s shoes and the
ground, the worker could not move the system forward.

4. Block hanging from a spring. Figure 3-13a shows a
block hanging at rest from a spring, the other end of which
is fixed to the ceiling. The forces on the block, shown sepa-
rately in Fig. 3-13b, are its weight (the gravitational
force on the block by the Earth) and the force exerted
on the block by the spring. The block is at rest under the in-
fluence of these forces, but they are not an action– reaction
pair, because once again they act on the same body. The re-
action force to the weight is the gravitational force 
that the block exerts on the Earth, which is not shown.

The reaction force to (the force exerted on the block
by the spring) is the force exerted on the spring by the
block. To show this force, we illustrate the forces acting on
the spring in Fig. 3-13c. These forces include the reaction
to which we show as a force acting
downward, the weight of the spring (usually negligi-
ble), and the upward pull on the spring by the ceiling.
If the spring is at rest, the net force must be zero:
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FTB
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Figure 3-11. (a) A book rests
on a table, which in turn rests on
the Earth. (b) The book and the
Earth exert gravitational forces on
each other, forming an action–
reaction pair. (c) The table and
book exert action– reaction contact
forces on each other.

Figure 3-12. A worker pushes against crate 1, which in turn
pushes on crate 2. The crates are on wheels that move freely, so
there is no friction between the crates and the ground.
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The reaction force to acts on the ceiling. Since we
are not showing the ceiling as an independent body in this
diagram, the reaction to does not appear.

Verifying Newton’s Third Law
We can easily verify Newton’s third law by attaching elec-
tronic force probes (Fig. 3-5) to two carts that collide on a
frictionless track. These force probes are connected to a
computer, which plots the force instantaneously as the two
carts collide.

Figure 3-14 shows the results of three different collisions
between the carts. In Fig. 3-14a, cart 1 was originally at rest
when cart 2 (of equal mass) collided with it. Note that at
every instant of time, the force exerted on cart 1 by cart 2 is
equal and opposite to that exerted on cart 2 by cart 1.

Figure 3-14b shows the results when the same two carts
experience a head-on collision with both carts in motion, and

F
B

SC

F
B

SC

Fig. 3-14c shows the results of a head-on collision between
two carts when cart 2 has three times the mass of cart 1.

In every case, no matter which cart is in motion and no
matter what the relative masses of the two carts are, the
forces are exactly equal and opposite, just as Newton’s
third law requires.

3-7 WEIGHT AND MASS

Consider a body of mass m that is released from rest near
the surface of the Earth. As we discussed in Section 2-6, the
body will fall downward with the free-fall acceleration 
(if we neglect other forces that may be acting, such as air
resistance). Here is a vector whose magnitude g is the
free-fall acceleration and whose direction is vertically down
(toward the center of the Earth). Assuming the Earth’s sur-
face to be an inertial frame so that we may apply Newton’s
second law, the net force on the object must equal or

in our case since This force is due to the
Earth’s gravitational attraction for the body.

If we instead hold the body in our hand rather than releas-
ing it, its acceleration is zero and hence the net vertical force
must be zero (by Newton’s second law). We have not “turned
off” the Earth’s gravitational attraction for the body; this force
still acts on the body and can still be expressed as The
hand must therefore be exerting an upward force equal in
magnitude to the downward force , so the net force is
zero. (These two forces are not an action– reaction pair, be-
cause they act on the same body.) We sense the need to exert
this upward force by the tension in our muscles; in this way
we can “feel” the Earth’s gravitational attraction for the body.

The downward force of the Earth’s gravity acting on the
body is called the weight of the body. The force of the
Earth’s gravity on the body is the same whether it is at rest
or falling; the force has magnitude mg and a direction to-
ward the center of the Earth. In terms of magnitudes, the
weight W is

(3-7)W � mg.

mgB

mgB.

aB � gB.mgB
maB,

gB

gB
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Figure 3-14. Electronic force probes of the type shown in Fig. 3-5 are mounted on two colliding carts. The probes simul-
taneously measure the force exerted on each cart by the other. The plots show the forces exerted on the two carts as functions
of the time during the collisions. (a) Cart 2 is initially in motion and collides with cart 1, which is initially at rest. The two
carts have equal masses. (b) A head-on collision between two carts of equal masses. (c) A head-on collision between two carts
in which cart 2 has three times the mass of cart 1.

Figure 3-13. (a) A block hangs at rest supported by a stretched
spring. (b) The forces on the block. (c) The forces on the spring.
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Weight is measured in force units, such as newtons or-
pounds.

We can measure the weight directly if we place the
body on a platform scale (such as a bathroom scale) with a
display that indicates the magnitude of the force that the
platform is exerting on the body; if the body is at rest, then
the net vertical force is zero, and so the upward force on the
body due to the platform must equal the downward force on
the body due to the Earth (the weight). We can also mea-
sure this force using a spring scale, such as might be found
in the produce section of a supermarket; again, the net force
on the body must be zero, and the spring exerts an upward
force (which can be read on the scale) equal in magnitude
to the downward force mg.

When you draw a free-body diagram for a body near the
Earth’s surface, you should include a force directed to-
ward the center of the Earth. This represents the weight, the
gravitational force on the body due to the Earth. The third-
law reaction force to the weight is the gravitational force on
the Earth due to the body; this force would appear only on a
free-body diagram of the Earth (as in Figs. 3-10 or 3-11b).

In this discussion, we have assumed that the surface of
the Earth is an inertial frame. This is only approximately
true; because of the Earth’s rotation its surface is not an in-
ertial frame, but the error resulting from this assumption is
very small—about 0.3% at the equator, where the effect is
largest. That is, the weight indicated on a scale at the equa-
tor is 0.3% smaller than the force of gravity on the body. At
the poles, the scale reading and the free-fall acceleration are
not affected by the rotation. Neglecting this effect, we can
regard the scale readings at the Earth’s surface as a suffi-
ciently precise measure of the weight of an object.

The Difference between Weight and Mass
As Eq. 3-7 shows, the weight depends on the mass— the
greater the mass, the greater the weight. A second body
with twice the mass of the first will have twice the weight
at the same location. However, weight and mass are very
different quantities. Our definition of mass in Section 3-4
and our operational procedure for measuring it make no
reference to the gravitational force of attraction by the
Earth. We could use the same procedure, and arrive at the
same values of the mass in comparison with the standard
kilogram, if we carried out the measurements on the Moon
(where the free-fall acceleration is only the value on
Earth) or even in empty space far from any planet or star
(where the free-fall acceleration is zero). The weight of the
body would be different in these locations, but the mass is
the same; that is, we must apply the same amount of force
at each location to produce a given acceleration.

The mass of a body has the same value in any location,
but its weight will vary on the surface of the Earth where the
free-fall acceleration varies with location. At a location on
the Earth’s surface where g � 9.78 m/s2 (near the equator,
for example) a body of mass 1.00 kg has a weight of 9.78 N,
while near the poles where g � 9.83 m/s2 (because the poles

1
6

mgB

are closer to the center of the Earth than the equator) that
same body has a weight of 9.83 N. Identical spring scales in
the two locations would stretch by slightly different amounts
to record these different weights. Unlike the mass, which is
an intrinsic property of the body, the weight of a body de-
pends on its location relative to the center of the Earth.
(Variations in g on Earth are discussed in Section 14-4.)

Equation 3-7 shows that, for a given value of g, mass and
weight are proportional to each other. Sometimes you may
see an equation in which mass units are set equal to weight
units— for example, 1 kg � 2.2 lb. This equation violates
the rules for dimensional consistency we discussed in Sec-
tion 1-7. Here the equal sign means “is equivalent to,” and
the equation should be taken to mean that at a location
where g has a certain value, an object of mass 1 kg is equiva-
lent to a weight of 2.2 lb. On the surface of the Moon, this
equation would read 1 kg � 0.37 lb, but at the surface of
Jupiter 1 kg � 5.1 lb. A “quarter-pounder” hamburger at a
fast-food outlet on Jupiter would contain about 14 times as
much meat as one on the Moon, but a 0.1-kg hamburger
(about lb on Earth) would contain exactly the same amount
of meat at all locations. When we colonize the planets, we
should be sure to order supplies by mass, not by weight!

Weightlessness
Photographs of astronauts in orbiting space vehicles (such
as Fig. 3-15) show them floating freely in a state that we
call “weightless.” We must be careful how we analyze the
astronauts’ motion, because in their rapidly orbiting craft
they are not even approximately in an inertial frame. An ob-
ject released from rest, according to the astronaut’s nonin-
ertial reference frame, stays at the same location. Thus the
free-fall acceleration appears to be zero in that frame. How-
ever, an object released from a nonorbiting craft at that
same altitude (about 400 km in the case of the space shut-
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Figure 3-15. Astronaut Dr. Mae C. Jemison in free-fall in the
orbiting space shuttle Endeavor appears to float as if weightless.



tle) would fall toward the center of the Earth with a free-fall
acceleration of about 8.7 m/s2.

If we were to place a body on a platform scale or attach
it to a spring scale in the astronaut’s noninertial reference
frame, the scale would read zero. In this reference frame,
we cannot use the scale reading to determine the weight of
the body. However, the body is certainly not “massless,”
nor is it “gravityless.” With g � 8.7 m/s2 at that altitude, a
1-kg body would have a weight of 8.7 N, about 11% less
than its weight on the Earth’s surface.

Our perception or sensation of weight involves the force
with which the floor pushes up on us. Floating in water, we
are less aware of our weight, but we are fully aware of our
mass, such as when we try to accelerate by swimming
through the water. If we stand in an elevator that is acceler-
ating upward, the floor exerts a force on us that is greater
than the pull of gravity and so we feel as if our weight in-
creases; when the elevator accelerates downward, we feel
as if our weight has become smaller. If we stand on a plat-
form scale in an accelerating elevator, the scale readings
will confirm these perceptions (see Sample Problem 3-7).
However, the magnitude of the weight remains mg, inde-
pendent of any acceleration.

True weightlessness can be achieved only in deep space,
far from any star or planet. In a spacecraft drifting with its en-
gines off, the astronauts would float freely. If the engines fire,
the resulting acceleration would cause the ship to be a nonin-
ertial frame; in the astronauts’ frame of reference, the floor of
the accelerating ship would exert an upward force that would
be perceived by the astronauts as similar to weight. In a simi-
lar way, if the ship rotates, the outer wall of the ship would be

the floor that provides the sensation of weight by pushing
anything in contact with the floor toward the axis of rotation.
This effect is sometimes referred to as “artificial gravity” and
will be used in the International Space Station to provide the
sensation of weight for biological specimens.

A body in free fall near the Earth’s surface has no floor
to push on it and therefore would feel weightless. If you
were inside a chamber that is also in free fall (such as an el-
evator cab in which the cable breaks), the floor would not
push on you and you would feel no sensation of weight. As
we will learn in the next chapter, a projectile in free fall near
the Earth’s surface follows a parabolic trajectory; if an air-
plane flies a chosen parabolic trajectory, the passengers in-
side will be objects in free fall and will feel weightless be-
cause they are not in contact with the floor of the plane. This
effect is used to train astronauts for working in the similar
free fall of Earth orbit and has also been used in movies to
simulate the effects of orbit (Fig. 3-16). Even though a body
in free fall near the Earth’s surface lacks the sensation of
weight that ordinarily comes from the upward push of a
floor, the weight remains at the value mg, indicating the
strength of the Earth’s gravitational attraction for the body.

3-8 APPLICATIONS OF NEWTON’S
LAWS IN ONE DIMENSION

Although each problem to be solved with Newton’s laws
will require a unique approach, the general procedure that
we gave in Section 3-5 forms the basis for the analysis of
all such problems. The best way to learn the applications of
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Figure 3-16. Actors in simu-
lated weightlessness during the film-
ing of the movie Apollo 13. They are
in free-fall in a KC-135 aircraft fly-
ing a parabolic trajectory. This air-
craft, nicknamed the “Vomit
Comet,” is used by NASA for micro-
gravity research.
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the rules is to study the examples. Often in these problems
there are two or more bodies to which Newton’s laws must
be separately applied.

In these problems we make some assumptions that sim-
plify the analysis at the cost of some physical reality. Bod-
ies are treated as particles, so that all forces can be consid-
ered to act at a single point. String are massless (no force is
required to accelerate them) and inextensible (they do not
stretch, so that bodies connected by taut strings have the
same speed and acceleration). Despite these simplifications,
the examples provide insight into the basic techniques of
dynamical analysis. Later in the text we add new tech-
niques that permit us to be more realistic in our analysis.
For now, we ignore many admittedly important effects so
that we can concentrate on the basic methods used to solve
problems.

Sample Problem 3-4. A worker W is pushing a packing
crate of mass m1 � 4.2 kg. In front of the crate is a second crate
of mass m2 � 1.4 kg (Fig. 3-17a). Both crates slide across the
floor without friction. The worker pushes on crate 1 with a force
P1W � 3.0 N. Find the accelerations of the crates and the force ex-
erted by crate 1 on crate 2.

Solution We choose the positive x axis to be in the direction of
motion of the crates, so that force and acceleration components to
the right in Fig. 3-17 are positive. The worker pushes only on
crate 1. The force pushing on crate 2 is exerted on it by crate
1. According to Newton’s third law, crate 2 then exerts a force

on crate 1. With F12 and F21 representing the magni-
tudes of these forces, the x component of is � F12 and that of

is F21 . Figures 3-17b, c show the free-body diagrams of crates
1 and 2. The net force on m1 is and for crate 1
Newton’s second law then gives

(crate 1)

where a1 represents the x component of the acceleration of crate 1.
The net force on crate 2 is � Fx � F21 , so Newton’s second law
gives

(crate 2) F21 � m2 a2 .

P1W � F12 � m1 a1 ,

(� Fx � max)
� Fx � P1W � F12 ,

F
B

21

F
B

12

F
B

12 � � F
B
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If the two crates stay in contact, then a1 � a2 . We call this com-
mon acceleration a. Adding these equations, we obtain

or, using Newton’s third law for the magnitudes of the contact
forces (F12 � F21) and solving for a,

It should not be too surprising that the acceleration is determined
by the total mass m1 � m2 of the system of two crates, because
the force P1W exerted by the worker is ultimately responsible for
accelerating the entire system. To find the contact force exerted on
crate 2 by crate 1, we have

Note that the force exerted on crate 2 by crate 1 (equal to 0.76 N)
is smaller than the force exerted on crate 1 by the worker (3.0 N).
This is reasonable, because F21 acts only to accelerate crate 2, but
P1W acts to give the same acceleration to both crates.

Sample Problem 3-5. A flat-bed cart of mass mC � 360
kg rolls on frictionless wheels. Resting on the cart is a box of mass
mB � 150 kg (Fig. 3-18a). The box can slide on the cart, but each
exerts a force (due to friction) on the other during the sliding.
When a worker pulls on the box with a force both the box
and the cart move forward, but the box moves faster than the cart,
because the frictional force is not strong enough to prevent the box
from sliding forward on the cart. An observer measures the magni-
tudes of the accelerations to be 1.00 m/s2 for the box and 0.167
m/s2 for the cart. Find (a) the frictional force between the box and
the cart and (b) the force that the worker is exerting on the box.

Solution (a) We choose the x axis so that its positive direction is
to the right in Fig. 3-18. Force and acceleration components in
that direction are positive. The worker exerts a force on the
box. It is customary to use a lower-case symbol to represent
frictional forces, so the force on the box due to the cart is 
which points to the left (opposing the motion of the box) and has x
component � fBC . By Newton’s third law, there is an equal and
opposite frictional force on the cart exerted by the box. Fig-
ures 3-18b, c show the free-body diagrams of the cart and the box.
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F21 � m2 a � (1.4 kg)(0.54 m/s2) � 0.76 N.

a �
P1W

m1 � m2
�

3.0 N

4.2 kg � 1.4 kg
� 0.54 m/s2.

P1W � F12 � F21 � m1a � m2 a

Figure 3-17. Sample Problem 3-4. (a) A worker pushes on a
crate, which in turn pushes on another crate. (b) The free-body 
diagram of crate 1. (c) The free-body diagram of crate 2.
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Figure 3-18. Sample Problems 3-5 and 3-6. (a) A worker
pulls on a box that slides on a rolling cart. (b) The free-body dia-
gram of the cart. (c) The free-body diagram of the box.
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The net force on the cart is � Fx � fCB , and applying Newton’s
second law (� Fx � max) to the cart, we obtain

(cart)

(b) Similarly, the net force on the box is � Fx � FBW � fBC , so
Newton’s second law gives

(box)

and solving for FBW we obtain

where we have used fBC � fCB for the magnitudes of the frictional
forces, which form an action– reaction pair.

Friction with the box pulls the cart forward. Even though in
this case friction produces the motion of the cart, friction between
two objects always opposes their relative motion. If there were no
friction in this problem, the cart would not move at all and there
would be more relative motion between the box and the cart. If the
frictional force were sufficiently large (see the next Sample Prob-
lem), the box and the cart could move together with no relative
motion between them.

Sample Problem 3-6. Suppose in the previous Sample
Problem that the frictional force were larger, so that the box does
not slide on the cart (the box and the cart move together as a unit).
If the force applied by the worker remains the same at 210 N,
what is the frictional force of the box on the cart?

Solution The cart and the box move together, so they have the
same acceleration a. Newton’s second law gives

(cart)

(box)

Since we want to solve for the unknown fCB � fBC , we eliminate a
from these two equations and obtain

Sample Problem 3-7. A passenger P of mass m �
72.2 kg is riding in an elevator while standing on a platform scale
(Fig. 3-19a, which is essentially a calibrated spring scale that
reads the upward force FPS exerted on the passenger by the scale.
(The situation would be exactly the same if the passenger were
hanging from a spring scale.) What does the scale read when the
elevator cab is (a) descending with constant velocity and (b) as-
cending with an acceleration of 3.20 m/s2?

Solution (a) First we develop a general result that is valid for any
acceleration a. We choose our inertial reference frame to be that of
the building in which the elevator is located, because an accelerat-
ing elevator is not an inertial reference frame. Both g and a are

fCB �
mC FBW

mC � mB

�
(360 kg)(210 N)

360 kg � 150 kg
� 150 N.

� Fx � FBW � fBC � mB a.

� Fx � fCB � mC a

FBW � fBC � mB aB � 60 N � (150 kg)(1.00 m/ss) � 210 N,

FBW � fBC � mB aB

fCB � mC aC � (360 kg)(0.167 m/s2) � 60 N.

measured by an observer in this inertial frame. We choose our co-
ordinate system so that the y axis is vertical and positive upward.
Figure 3-19b shows the free-body diagram of the passenger. Two
forces act on the passenger: the upward force exerted by the
scale and the downward weight of magnitude W � mg (the
force of the Earth’s gravity on the passenger).

The net force on the passenger is then � Fy � FPS � W, and
Newton’s second law (� Fy � may) gives

or

When ay � 0 (corresponding to motion with constant velocity)
then

The scale reading does not depend on the velocity of the elevator,
and the scale reads the same when the elevator moves with con-
stant velocity as it does when the elevator is at rest.
(b) When ay � � 3.20 m/s2, we have

The scale reading increases when the elevator is accelerating up-
ward and decreases when the elevator is accelerating downward.
What does the scale read when the elevator is moving upward but
accelerating downward (that is, it is slowing down)? What does 
it read when the cable breaks and the elevator is in free fall 
(ay � � g)?

� 939 N (� 211 lb).

FPS � m(g � ay) � (72.2 kg)(9.80 m/s2 � 3.20 m/s2)

FPS � mg � (72.2 kg)(9.80 m/s2) � 708 N ( � 159 lb).

FPS � W � may � mg � may .

FPS � W � may

W
B

F
B

PS
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Figure 3-19. Sample Problem 3-7. (a) A passenger is riding
in an elevator cab while standing on a scale. Like most such
scales, this one reads in mass units (kilograms), rather than in the
corresponding force units (newtons). (b) The free-body diagram of
the passenger.



MULTIPLE CHOICE

3-1 Classical Mechanics
3-2 Newton’s First Law

1. An interstellar spacecraft, far from the influence of any stars
or planets, is moving at high speed under the influence of fu-
sion rockets when the engines malfunction and stop. The
spacecraft will

(A) immediately stop, throwing all of the occupants to the
front of the craft.

(B) begin slowing down, eventually coming to a rest in the
cold emptiness of space.

(C) keep moving at constant speed for a while, but then be-
gin to slow down.

(D) keep moving forever at the same speed.
2. A small child is playing with a ball on a level surface. She gives

the ball a push to get it rolling, then the ball rolls a short dis-
tance before coming to a stop. The ball slows to a stop because

(A) the child stopped pushing it.
(B) speed is proportional to force.
(C) there must have been some force on the ball opposing

the direction of motion.
(D) the net force on the ball was zero, so it wanted to re-

main stationary.

3-3 Force
3. A student attaches a ruler to a block of wood sitting on a hori-

zontal surface as shown in Fig. 3-20a. The surface exerts a
large frictional force on the block. A nail is fastened at the 
0-in. mark. The student pulls the rubber band tight at the 5-in.
mark; he then pulls it tighter and when it reaches the 8-in.
mark, the block of wood just starts to move (Fig. 3-20b). Be-
fore the block begins to move, the net force on the block when
the rubber band is stretched 7 in. is

(A) greater than (B) equal to
(C) less than (D) unrelated to

the net force on the block when the rubber band is stretched 
6 in.

4. The student in multiple-choice question 3 then pulls the rub-
ber band so that it is at the 9-in. mark. The block of wood
slides faster and faster with a constant acceleration, and as it
moves, the student moves his hand so that the rubber band is
always pulled to the 9-in. mark. The net force on the block
when the rubber band is stretched 9 in. is

(A) greater than (B) equal to
(C) less than (D) unrelated to

the net force on the block when the rubber band was stretched
7 in.

3-4 Mass
5. Two objects with masses M and m (M 
 m) are on a friction-

less surface. A force F will accelerate the smaller object with
an acceleration a. If that same force is applied to the larger
object then it will

(A) move with a greater acceleration.
(B) move with the same acceleration.
(C) move but with a smaller acceleration.
(D) move only if the force F is greater than some mini-

mum value.

3-5 Newton’s Second Law
6. An object is moving north. From only this information one

can conclude
(A) that there is a single force on the object directed north.
(B) that there is a net force on the object directed north.
(C) that there may be several forces on the object, but the

largest must be directed north.
(D) nothing about the forces on the object.

7. An object is moving north with an increasing speed. From
only this information one can conclude

(A) that there is a single force on the object directed north.
(B) that there is a net force on the object directed north.
(C) that there may be several forces on the object, but the

largest must be directed north.
(D) nothing about the forces on the object.

8. Which of the following objects is not experiencing a net force
directed north?

(A) An object moving south at a decreasing speed.
(B) An object moving north at an increasing speed.
(C) An object instantaneously at rest that then begins to

move north.
(D) An object moving north at a constant speed.

3-6 Newton’s Third Law
9. A rock rests on a level surface. The magnitude of the force on

the surface due to the rock is FSR , and the magnitude of the
force on the rock due to the surface is FRS . If we compare
these forces, we find

(A) FSR � FRS . (B) FSR � FRS . (C) FSR 
 FRS .
(D) There is not enough information to compare the two

forces.

10. A rock is on an inclined surface. The rock is originally at rest,
but starts to slide down the incline. The magnitude of the
force on the surface due to the rock is FSR , and the magnitude
of the force on the rock due to the surface is FRS . If we com-
pare these forces, we find

(A) FSR � FRS always.
(B) FSR � FRS when the rock is at rest but then FSR 
 FRS .
(C) FSR � FRS always.
(D) FSR 
 FRS always.

11. A piano is rolling down a frictionless slope at an ever increas-
ing speed. The piano tuner sees it, runs up to it and pushes on
it, slowing it down to a constant speed. The magnitude of the
force on the man by the piano is FMP ; the magnitude of the
force on the piano by the man is FPM . If we compare these
forces, we find

(A) FPM 
 FMP always.
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Figure 3-20. Multiple-choice questions 3 and 4.

(a)

(b)
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(B) FPM 
 FMP while the piano slows down but FPM �
FMP when the piano is moving at constant speed.

(C) FPM � FMP always.
(D) FPM � FMP while the piano slows down but FPM �

FMP when the piano is moving at constant speed.

3-7 Weight and Mass
12. A large rock falls on your toe. Which of the concepts is most

important in determining how much it hurts?
(A) The mass of the rock.
(B) The weight of the rock.
(C) Both the mass and the weight of the rock are impor-

tant.
(D) Either the mass or the weight, as the two are related by

a single multiplicative constant g.

13. A large rock sits on your toe. Which of the concepts is most
important in determining how much it hurts?

(A) The mass of the rock.
(B) The weight of the rock.
(C) Both the mass and the weight of the rock are impor-

tant.
(D) Either the mass or the weight, as the two are related by

a single multiplicative constant g.

3-8 Applications of Newton’s Laws in One Dimension
14. An object is free to move on a table, except that there is a

constant frictional force f that opposes the motion of the ob-

ject when it moves. If a force of 10.0 N pulls the object, the
acceleration is 2.0 m/s2. If a force of 20.0 N pulls the object,
the acceleration is 6.0 m/s2.

(a) What is the force of friction f ?

(A) 1.0 N. (B) 3.33 N. (C) 5.0 N. (D) 10.0 N.

(b) What is the mass of the object?

(A) 0.40 kg. (B) 2.5 kg. (C) 3.33 kg. (D) 5.0 kg.

15. A parachutist is in free fall before opening her chute. The net
force on her has magnitude F and is directed down; this net
force is somewhat less than her weight W because of air fric-
tion. Then she opens her chute. At the instant after her chute
fully inflates the net force on her is

(A) greater than F and still directed down.
(B) less than F and still directed down.
(C) zero.
(D) directed upward, but could be more or less than F.

16. (a) You stand on a spring-loaded bathroom scale in a bath-
room. The scale “reads” your mass. What is the scale actually
measuring? (b) You stand on a spring-loaded bathroom scale
in an elevator that is accelerating upward at 2.0 m/s2. The
scale “reads” your mass. What is the scale measuring?

(A) Your mass.
(B) Your weight.
(C) The force of the scale pushing up on your feet.
(D) The force of your feet pushing down on the scale.
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Figure 3-21. Question 4.

QUESTIONS

1. Of the objects listed in Table 3-1, which might be considered
as a particle for the motion described? For those that behave
like particles, can you describe a type of motion in which they
could not be considered as particles?

2. Why do you fall forward when a moving bus decelerates to a
stop and fall backward when it accelerates from rest? Subway
standees often find it convenient to face the side of the car
when the train is starting or stopping and to face the front or
rear when it is running at constant speed. Why?

3. Why did we specify the use of a “light” spring for the experi-
ments described in Section 3-3? What would be the difference
if we used a “heavy” spring?

4. A block with mass m is supported by a cord C from the ceil-
ing, and a similar cord D is attached to the bottom of the
block (Fig. 3-21). Explain this: If you give a sudden jerk to D,
it will break, but if you pull on D steadily, C will break.

5. Criticize the statement, often made, that the mass of a body is
a measure of the “quantity of matter” in it.

6. Using force, length, and time as fundamental quantities, what
are the dimensions of mass?

7. How many slugs are in one kilogram?

8. A car moving at constant speed is suddenly braked. The occu-
pants, all wearing seat belts, are thrown forward. The instant
the car stops, however, the occupants are all jerked backward.
Why? Is it possible to stop an automobile without this “jerk”?

9. Can Newton’s first law be considered merely a special case
of the second law with ? If so, is the first law really
needed? Discuss.

aB � 0

10. What is the relation— if any—between the force acting on
an object and the direction in which the object is moving?

11. Suppose a body that is acted on by exactly two forces is ac-
celerated. Does it then follow that (a) the body cannot move
with constant speed; (b) the velocity can never be zero; (c)
the sum of the two forces cannot be zero; (d) the two forces
must act in the same line?

12. A horse is urged to pull a wagon. The horse refused to try,
citing Newton’s third law as a defense: the pull of the horse
on the wagon is equal but opposite to the pull of the wagon
on the horse. “If I can never exert a greater force on the
wagon than it exerts on me, how can I ever start the wagon
moving?” asks the horse. How would you reply?

C

D

m



13. Comment on whether the following pairs of forces are exam-
ples of action– reaction: (a) The Earth attracts a brick; the
brick attracts the Earth. (b) A propellered airplane pushes air
toward the tail; the air pushes the plane forward. (c) A horse
pulls forward on a cart, moving it; the cart pulls backward on
the horse. (d ) A horse pulls forward on a cart without moving
it; the cart pulls back on the horse. (e) A horse pulls forward
on a cart without moving it; the Earth exerts an equal and op-
posite force on the cart. ( f ) The Earth pulls down on the cart;
the ground pushes up on the cart with an equal and opposite
force.

14. The following statement is true; explain it. Two teams are
having a tug of war; the team that pushes harder (horizon-
tally) against the ground wins.

15. Two students try to break a rope. First they pull against each
other and fail. Then they tie one end to a wall and pull to-
gether. Is this procedure better than the first? Explain your an-
swer.

16. What is your mass in slugs? Your weight in newtons?

17. A French citizen, filling out a form, writes “78 kg” in the
space marked Poids (weight). However, weight is a force and
the kilogram is a mass unit. What do the French (among oth-
ers) have in mind when they use a mass unit to report their
weight? Why don’t they report their weight in newtons? How
many newtons does this person weigh? How many pounds?

18. Comment on the following statements about mass and weight
taken from examination papers. (a) Mass and weight are the
same physical quantities expressed in different units. (b) Mass
is a property of one object alone, whereas weight results from
the interaction of two objects. (c) The weight of an object is
proportional to its mass. (d) The mass of a body varies with
changes in its local weight.

19. A horizontal force acts on a body that is free to move. Can it
produce an acceleration if the force is less than the weight of
that body?

20. Why does the acceleration of a freely falling object not de-
pend on the weight of the object?

21. Describe several ways in which you could, even briefly, expe-
rience weightlessness.

22. Under what circumstances would your weight be zero? Does
your answer depend on the choice of a reference system?

23. The “mechanical arm” on the space shuttle can handle a
2200-kg satellite when extended to 12 m; see Fig. 3-22. Yet,
on the ground, this remote manipulator system (RMS) cannot
support its own weight. In the “weightlessness” of an orbiting
shuttle, why does the RMS have to be able to exert any force
at all?

24. In November 1984, astronauts Joe Allen and Dale Gardner
salvaged a Westar-6 communications satellite from a faulty
orbit and placed it into the cargo bay of the space shuttle Dis-
covery; see Fig. 3-22. Describing the experience, Joe Allen
said of the satellite, “It’s not heavy; it’s massive.” What did he
mean?

25. The owner’s manual of a car suggests that your seat belt
should be adjusted “to fit snugly” and that the front seat head
rest should not be adjusted so that it fits comfortably at the
back of your neck but so that “the top of the head rest is level
with the top of your ears.” How do Newton’s laws support
these good recommendations?

26. Is it possible to derive from some other principle?
Is an experimental conclusion?

27. Observers in two different inertial frames will measure the same
acceleration of a moving object. Will they measure the same ve-
locity of a moving object? Will they measure the same force on
the moving object?

28. You are an astronaut in the lounge of an orbiting space station
and you remove the cover from a long thin jar containing a
single olive. Describe several ways—all taking advantage of
the inertia of either the olive or the jar— to remove the olive
from the jar.

29. In Fig. 3-23, a needle has been placed in each end of a
broomstick, the tips of the needles resting on the edges of
filled wine glasses. The experimenter strikes the broomstick a
swift and sturdy blow with a stout rod. The broomstick breaks
and falls to the floor but the wine glasses remain in place and
no wine is spilled. This impressive parlor stunt was popular at
the end of the nineteenth century. What is the physics behind
it? (If you try it, practice first with empty soft drink cans.
Come to think of it, you might ask your physics instructor to
do it, as a lecture demonstration!)

� F
B

� maB
� F

B
� maB
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Figure 3-22. Questions 23 and 24.

Figure 3-23. Question 29.

30. An elevator is supported by a single cable. There is no coun-
terweight. The elevator receives passengers at the ground
floor and takes them to the top floor, where they disembark.



New passengers enter and are taken down to the ground floor.
During this round trip, when is the force exerted by the cable
on the elevator equal to the weight of the elevator plus pas-
sengers? Greater? Less?

31. You are on the flight deck of the orbiting space shuttle Dis-
covery and someone hands you two wooden balls, outwardly
identical. One, however, has a lead core but the other does
not. Describe several ways of telling them apart.

32. You stand on the large platform of a spring scale and note your
weight. You then take a step on this platform and note that the
scale reads less than your weight at the beginning of the step
and more than your weight at the end of the step. Explain.

33. Could you weigh yourself on a scale whose maximum read-
ing is less than your weight? If so, how?

34. A weight hangs by a spring scale from the ceiling of an eleva-
tor. In which of the following cases will the reading of the
spring scale be greatest: (a) elevator at rest; (b) elevator rising
with uniform speed; (c) elevator descending with decreasing
speed; (d) elevator descending with increasing speed? In
which will it be the least?

35. A woman stands on a spring scale in an elevator. In which of
the following cases will the scale record the minimum read-
ing: (a) elevator stationary; (b) elevator cable breaks, free fall;
(c) elevator accelerating upward; (d) elevator accelerating
downward; (e) elevator moving at constant velocity? In which
will it record the maximum reading?

36. Figure 3-24 shows comet Kohoutek as it appeared in 1973.
Like all comets, it moves around the Sun under the influence
of the gravitational pull that the Sun exerts on it. The nucleus
of the comet is a relatively massive core at a position indi-
cated by P. The tail of a comet is produced by the action of
the solar wind, which consists of charged particles streaming
outward from the Sun. By inspection, what, if anything, can

you say about the direction of the force that acts on the nu-
cleus of the comet? What about the direction in which the nu-
cleus is being accelerated? What about the direction in which
the comet is moving?

37. In general (see Fig. 3-24), comets have a dust tail, consisting
of dust particles pushed away from the Sun by the pressure of
sunlight. Why is this tail often curved?
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Figure 3-24. Questions 36 and 37.

EXERCISES

3-1 Classical Mechanics

3-2 Newton’s First Law

3-3 Force

3-4 Mass

3-5 Newton’s Second Law
1. Suppose that the Sun’s gravitational force was suddenly

turned off, so that Earth became a free object rather than be-
ing confined to orbit the Sun. How long would it take for
Earth to reach a distance from the Sun equal to Pluto’s pres-
ent orbital radius? (Hint: You will find some of the data you
need in Appendix C.)

2. A 5.5-kg block is initially at rest on a frictionless horizontal
surface. It is pulled with a constant horizontal force of 3.8 N.
(a) What is its acceleration? (b) How long must it be pulled
before its speed is 5.2 m/s? (c) How far does it move in this
time?

3. An electron travels in a straight line from the cathode of a
vacuum tube to its anode, which is 1.5 cm away. It starts with
zero speed and reaches the anode with a speed of 5.8 �
106 m/s. Assume constant acceleration and compute the force

on the electron. This force is electrical in origin. The elec-
tron’s mass is 9.11 � 10�31 kg.

4. A neutron travels at a speed of 1.4 � 107 m/s. Nuclear forces
are of very short range, being essentially zero outside a nu-
cleus but very strong inside. If the neutron is captured 
and brought to rest by a nucleus whose diameter is 1.0 �
10�14 m, what is the minimum magnitude of the force, pre-
sumed to be constant, that acts on this neutron? The neutron’s
mass is 1.67 � 10�27 kg.

5. In a modified tug-of-war game, two people pull in opposite
directions, not on a rope, but on a 25-kg sled resting on an icy
road. If the participants exert forces of 90 N and 92 N, what is
the acceleration of the sled?

6. A car traveling at 53 km/h hits a bridge abutment. A passen-
ger in the car moves forward a distance of 65 cm (with re-
spect to the road) while being brought to rest by an inflated
air bag. What force (assumed constant) acts on the passen-
ger’s upper torso, which has a mass of 39 kg?

7. An electron is projected horizontally at a speed of 1.2 �
107 m/s into an electric field that exerts a constant vertical
force of 4.5 � 10�16 N on it. The mass of the electron is

38. Can you think of physical phenomena involving the Earth in
which the Earth cannot be treated as a particle?

39. Consider a jump off a high dive. While waiting to get the
courage to jump, your acceleration is zero, and you “feel” the
force of gravity. When you jump you accelerate toward the
water, but during this “free fall” you feel weightless, as if there
was no force of gravity. Does this contradict Newton’s laws of
motion? How could you explain this to a non-physics student?



9.11 � 10�31 kg. Determine the vertical distance the electron
is deflected during the time it has moved forward 33 mm hori-
zontally.

8. The Sun yacht Diana, designed to navigate in the solar system
using the pressure of sunlight, has a sail area of 3.1 km2 and a
mass of 930 kg. Near Earth’s orbit, the Sun could exert a radi-
ation force of 29 N on its sail. (a) What acceleration would
such a force impart to the craft? (b) A small acceleration can
produce large effects if it acts steadily for a long enough time.
Starting from rest then, how far would the craft have moved
after 1 day under these conditions? (c) What would then be its
speed? (See “The Wind from the Sun,” a fascinating science
fiction account by Arthur C. Clarke of a Sun yacht race.)

9. A certain force gives object m1 an acceleration of 12.0 m/s2.
The same force gives object m2 an acceleration of 3.30 m/s2.
What acceleration would the force give to an object whose
mass is (a) the difference between m1 and m2 and (b) the sum
of m1 and m2 ?

10. (a) Neglecting gravitational forces, what force would be re-
quired to accelerate a 1200-metric-ton spaceship from rest to
one-tenth the speed of light in 3 days? In 2 months? (One
metric ton � 1000 kg.) (b) Assuming that the engines are
shut down when this speed is reached, what would be the
time required to complete a 5-light-month journey for each of
these two cases? (Use 1 month � 30 days.)

3-6 Newton’s Third Law
11. Two blocks, with masses kg and kg, are

connected by a light spring on a horizontal frictionless table.
At a certain instant, when m2 has an acceleration �
2.6 m/s2, (a) what is the force on m2 and (b) what is the accel-
eration of m1 ?

3-7 Weight and Mass
12. What are the weight in newtons and the mass in kilograms of

(a) a 5.00-lb bag of sugar, (b) a 240-lb fullback, and (c) a
1.80-ton car? (1 ton � 2000 lb.)

13. What are the mass and weight of (a) a 1420-lb snowmobile
and (b) a 412-kg heat pump?

14. A space traveler whose mass is 75.0 kg leaves Earth. Com-
pute his weight (a) on Earth, (b) on Mars, where 
m/s2, and (c) in interplanetary space. (d) What is his mass at
each of these locations?

15. A certain particle has a weight of 26.0 N at a point where the
acceleration due to gravity is 9.80 m/s2. (a) What are the
weight and mass of the particle at a point where the accelera-
tion due to gravity is 4.60 m/s2? (b) What are the weight and
mass of the particle if it is moved to a point in space where
the gravitational force is zero?

16. A 12,000-kg airplane is in level flight at a speed of 870 km/h.
What is the upward-directed lift force exerted by the air on
the airplane?

17. What is the net force acting on a 3900-lb automobile acceler-
ating at 13 ft/s2?

18. A 523-kg experimental rocket sled can be accelerated from
rest to 1620 km/h in 1.82 s. What net force is required?

19. A jet plane starts from rest on the runway and accelerates for
takeoff at 2.30 m/s2 ft/s2). It has two jet engines,
each of which exerts a thrust of 1.40 � 105 N tons).
What is the weight of the plane?

(� 15.7
(� 7.55

g � 3.72

a2

m 2 � 3.8m 1 � 4.6

3-8 Applications of Newton’s Laws
20. (a) Two 10-lb weights are attached to a spring scale as shown

in Fig. 3-25a. What is the reading of the scale? (b) A single
10-lb weight is attached to a spring scale which itself is at-
tached to a wall, as shown in Fig. 3-25b. What is the reading
of the scale? (Ignore the weight of the scale.)
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Figure 3-25. Exercise 20.

Figure 3-26. Exercise 22.

(a) 10 lb

Spring scale

Spring scale
10 lb

10 lb(b)

21. A car moving initially at a speed of 50 mi/h (�80 km/h) and
weighing 3000 lb (�13,000 N) is brought to a stop in a dis-
tance of 200 ft (�61 m). Find (a) the braking force and (b)
the time required to stop. Assuming the same braking force,
find (c) the distance and (d ) the time required to stop if the
car were going 25 mi/h (�40 km/h) initially.

22. A meteor of mass 0.25 kg is falling vertically through Earth’s
atmosphere with an acceleration of 9.2 m/s2. In addition to
gravity, a vertical retarding force (due to the frictional drag of
the atmosphere) acts on the meteor. What is the magnitude of
this retarding force? See Fig. 3-26.

23. A man of mass 83 kg (weight 180 lb) jumps down to a con-
crete patio from a window ledge only 0.48 m ft) above
the ground. He neglects to bend his knees on landing, so that
his motion is arrested in a distance of about 2.2 cm 
in.). (a) What is the average acceleration of the man from the
time his feet first touch the patio to the time he is brought
fully to rest? (b) With what average force does this jump jar
his bone structure?

(� 0.87

(� 1.6



24. What strength fishing line is needed to stop a 19-lb salmon
swimming at 9.2 ft/s in a distance of 4.5 in.?

25. How could a 100-lb object be lowered from a roof using a
cord with a breaking strength of 87 lb without breaking the
cord?

26. An object is hung from a spring scale attached to the ceiling
of an elevator. The scale reads 65 N when the elevator is
standing still. (a) What is the reading when the elevator is
moving upward with a constant speed of 7.6 m/s? (b) What is
the reading of the scale when the elevator is moving upward
with a speed of 7.6 m/s and decelerating at 2.4 m/s2?

27. Workers are loading equipment into a freight elevator at the
top floor of a building. However, they overload the elevator
and the worn cable snaps. The mass of the loaded elevator at
the time of the accident is 1600 kg. As the elevator falls, the
guide rails exert a constant retarding force of 3700 N on the
elevator. At what speed does the elevator hit the bottom of the
shaft 72 m below?

28. A 26-ton Navy jet (Fig. 3-27) requires an air speed of 280 ft/s
for lift-off. Its own engine develops a thrust of 24,000 lb. The
jet is to take off from an aircraft carrier with a 300-ft flight

deck. What force must be exerted by the catapult of the car-
rier? Assume that the catapult and the jet’s engine each exert a
constant force over the 300-ft takeoff distance.

29. A rocket and its payload have a total mass of 51,000 kg. How
large is the thrust of the rocket engine when (a) the rocket is
“hovering” over the launch pad, just after ignition, and (b)
when the rocket is accelerating upward at 18 m/s2?

30. A 77-kg person is parachuting and experiencing a downward
acceleration of 2.5 m/s2 shortly after opening the parachute.
The mass of the parachute is 5.2 kg. (a) Find the upward
force exerted on the parachute by the air. (b) Calculate the
downward force exerted by the person on the parachute.

31. A 15,000-kg helicopter is lifting a 4500-kg car with an up-
ward acceleration of 1.4 m/s2. Calculate (a) the vertical force
the air exerts on the helicopter blades and (b) the tension in
the upper supporting cable; see Fig. 3-28.
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Figure 3-27. Exercise 28. Figure 3-28. Exercise 31.

Figure 3-29. Problem 1.

Laser
beam

Earth

PROBLEMS

1. A light beam from a satellite-carried laser strikes an object
ejected from an accidentally launched ballistic missile; see
Fig. 3-29. The beam exerts a force of 2.7 � 10�5 N on the
target. If the “dwell time” of the beam on the target is 2.4 s,

by how much is the object displaced if it is (a) a 280-kg war-
head and (b) a 2.1-kg decoy? (These displacements can be
measured by observing the reflected beam.)

2. A 40-kg girl and an 8.4-kg sled are on the surface of a frozen
lake, 15 m apart. By means of a rope the girl exerts a 5.2-N
force on the sled, pulling it toward her. (a) What is the accel-
eration of the sled? (b) What is the acceleration of the girl?
(c) How far from the girl’s initial position do they meet, pre-
suming the force to remain constant? Assume that no fric-
tional forces act.

3. A block is released from rest at the top of a frictionless in-
clined plane 16 m long. It reaches the bottom 4.2 s later. A
second block is projected up the plane from the bottom at the
instant the first block is released in such a way that it returns
to the bottom simultaneously with the first block. (a) Find the
acceleration of each block on the incline. (b) What is the ini-



tial velocity of the second block? (c) How far up the incline
does it travel? You can assume that both blocks experience the
same acceleration.

4. A 1400-kg jet engine is fastened to the fuselage of a passen-
ger jet by just three bolts (this is the usual practice). Assume
that each bolt supports one-third of the load. (a) Calculate the
force on each bolt as the plane waits in line for clearance to
take off. (b) During flight, the plane encounters turbulence,
which suddenly imparts an upward vertical acceleration of
2.60 m/s2 to the plane. Calculate the force on each bolt now.
Why are only three bolts used? See Fig. 3-30.
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Figure 3-31. Problem 5.

Figure 3-32. Problem 6.

Figure 3-30. Problem 4.

Figure 3-34. Problem 8.

Figure 3-33. Problem 7.

P

m1m2m3

m1

m2

m3

F

ing craft in the vicinity of Callisto’s surface? (b) What is the
mass of the craft? (c) What is the acceleration due to gravity
near the surface of Callisto?

6. A research balloon of total mass M is descending vertically
with downward acceleration a (see Fig. 3-32). How much bal-
last must be thrown from the car to give the balloon an up-
ward acceleration a, assuming that the upward lift of the air
on the balloon does not change?

5. A landing craft approaches the surface of Callisto, one of the
satellites (moons) of the planet Jupiter (Fig. 3-31). If an up-
ward thrust of 3260 N is supplied by the rocket engine, the
craft descends with constant speed. Callisto has no atmos-
phere. If the upward thrust is 2200 N, the craft accelerates
downward at 0.390 m/s2. (a) What is the weight of the land-

7. A child’s toy consists of three cars that are pulled in tandem
on small frictionless rollers (Fig. 3-33). The cars have masses
m1 � 3.1 kg, m2 � 2.4 kg, and m3 � 1.2 kg. If they are
pulled to the right with a horizontal force P � 6.5 N, find
(a) the acceleration of the system, (b) the force exerted by the
second car on the third car, and (c) the force exerted by the
first car on the second car.

8. Figure 3-34 shows three crates with masses kg,
kg, and kg on a horizontal frictionless

surface. (a) What horizontal force F is needed to push the
crates to the right, as one unit, with an acceleration of 
1.32 m/s2? (b) Find the force exerted by m2 on m3 . (c) By m1

on m2 .

9. A chain consisting of five links, each with mass 100 g, is
lifted vertically with a constant acceleration of 2.50 m/s2, as
shown in Fig. 3-35. Find (a) the forces acting between adja-

m 3 � 34.3m 2 � 22.8
m 1 � 45.2



COMPUTER PROBLEM

1. A 10.0 kg object is launched vertically into the air with an
initial velocity of 50.0 m/s. In addition to the force of gravity
there is a frictional force which is proportional to velocity ac-
cording to note that this frictional force is nega-
tive (down) when the object is moving up, but positive (up)
when the object is moving down.

(a) Numerically generate distance-time graphs for the object,
using but use several different step sizes for �t, suchb � 0,

fy � �bvy ;

as 1.0 s, 0.1 s, 0.01 s, and 0.001 s. Show the results on a sin-
gle graph. How does the highest point vary with the step size?

(b) Numerically generate distance-time graphs for the object,
using a step size of s. Now, however, try non-zero
values for b, such as 0.1 0.5 1.0 
5.0 and 10.0 How does the highest point vary
with b? What do you notice about the shape of the graphs as b
increases?

N 	s/m.N 	s/m,
N 	s/m,N 	s/m,N 	s/m,

�t � 0.01

cent links, (b) the force F exerted on the top link by the agent
lifting the chain, and (c) the net force on each link.

11. A block of mass M is pulled along a horizontal frictionless
surface by a rope of mass m, as shown in Fig. 3-37. A hori-
zontal force is applied to one end of the rope. Assuming
that the sag in the rope is negligible, find (a) the accelera-
tionof rope and block, and (b) the force that the rope exerts on
the block.

P
B
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Figure 3-35. Problem 9.

Figure 3-36. Problem 10.

Figure 3-37. Problem 11.

F

m1

m2F

m
M

P

10. Two blocks are in contact on a frictionless table. A horizontal
force is applied to one block, as shown in Fig. 3-36. (a) If

kg, kg, and N, find the force of
contact between the two blocks. (b) Show that if the same
force F is applied to m2 rather than to m1 , the force of contact
between the blocks is 2.1 N, which is not the same value de-
rived in (a). Explain.

F � 3.2m 2 � 1.2m 1 � 2.3
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MOTION IN TWO AND
THREE DIMENSIONS

In this chapter we consider an extension of the con-

cepts presented in Chapters 2 and 3. In those chapters we introduced kinematics and dynamics in terms of

vectors, but we considered only applications in one dimension. In this chapter we broaden the discussion to

include two- and three-dimensional applications. Keeping track of the separate x, y, and z components of

the motion is greatly simplified if we rely on vectors to describe the particle’s position, velocity, and accel-

eration, as well as the forces that may act on the particle. To illustrate the vector techniques, we discuss two

examples: a projectile launched with both horizontal and vertical velocity components in the Earth’s grav-

ity, and an object moving in a circular path.

4-1 MOTION IN THREE
DIMENSIONS WITH CONSTANT
ACCELERATION

In Section 2-5 we developed a procedure for analyzing the
position, velocity, and acceleration of a particle that moves
in one dimension with constant acceleration. Knowing the
acceleration, we can find the velocity at all times according
to Eq. 2-26 and the position at all times
from Eq. 2-28 

Now we consider the possibility that the particle moves
in three dimensions with constant acceleration. That is, as
the particle moves, the acceleration does not vary in either
magnitude or direction. Equivalently, we can represent the
acceleration as a vector with three components

each of which is constant. In general the parti-
cle moves in a curved path. As is the case in one-dimen-
sional motion, we would like to know the particle’s velocity

(a vector with components and its position 
(a vector with components x, y, z) at all times.

We can obtain the general equations for motion with
constant by setting

and az � constant.ay � constant,ax � constant,

aB

rBvx , vy , vz)vB

(ax , ay , az),
aB

(x � x 0 � v0xt � 1
2axt

2).
(vx � v0x � axt)

The particle starts at with initial position
and an initial velocity 

We now proceed as we did in Section 2-5 and
develop, in analogy with Eq. 2-26, three one-
dimensional equations: and

which we write as the single three-dimen-
sional vector equation

(4-1)

When using this or any other vector equation, remember
that it represents three independent one-dimensional equa-
tions. That is, a vector equality such as means that
three conditions must be fulfilled: and

In this way it is clear how Eq. 4-1 represents the
three one-dimensional equations for the components.

By referring to the three component equations as “inde-
pendent,” we mean that the velocity components vary inde-
pendently of one another— for example, ax affects only vx

and not vy or vz . If but then vy and vz

would remain constant but vx would vary with time.
The second term on the right side of Eq. 4-1 involves

the multiplication of the vector by the scalar t. As dis-
cussed in Appendix H, this gives a vector of length at that
points in the same direction as the original vector aB.

aB

ax � 0,ay � az � 0

Az � Bz .
Ax � Bx ,  Ay � By ,

A
B

� B
B

vB � vB0 � aBt.

vz � v0z � azt,
vx � v0x � axt,  vy � v0y � ayt,

v0y ĵ � v0zk̂.
vB0 � v0xî �rB0 � x 0î � y0 ĵ � z 0k̂

t � 0
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In a similar way, we can write the three equations for
the components of the position vector, as in Eq. 2-28:

These three one-dimensional equations can be
combined into a single three-dimensional vector equation:

(4-2)

which contains within it the three one-dimensional equa-
tions for the components.

Sample Problem 4-1. Starship Enterprise is coasting
through space (where gravity is negligible) at a speed of 15.0 km/s
relative to a particular inertial reference frame. Suddenly, the ship
is gripped by a tractor beam, which pulls it in a direction perpen-
dicular to its original velocity and gives it an acceleration of 
4.2 km/s2 in that direction. After the tractor beam has acted for
4.0 s, the Enterprise fires its engines, giving the ship a constant
acceleration of 18.0 km/s2 in the direction parallel to its original
motion. After an additional 3.0 s, both the engines and the tractor
beam stop operating, and the ship is again coasting. Find the
ship’s velocity at that time and its position relative to its location
when the tractor beam first appeared.

Solution We set up our coordinate system with the positive x axis
in the direction of the ship’s original motion and the positive y
axis in the direction of the tractor beam’s pull, and we choose the
origin at the location where the tractor beam began
to act. (With this choice of coordinate system, there is no motion
in the z direction.) The problem breaks into two parts, which must
be analyzed separately: (1) from to s the ship moves
with ax � 0, ay � �4.2 km/s2, and (2) from s to 
7.0 s it moves with km/s2, km/s2.

We analyze each part in turn. For the first part, with 
km/s and the x and y components of Eqs. 4-1 and

4-2 become

For the 3.0-s interval from s to s, we write a simi-
lar set of equations using a new variable t� that ranges from 0 to
3.0 s (but we keep the origin of the coordinate system in the origi-
nal location). For this interval, the starting velocities and locations
are the values found above for s km/s,

km/s, km, km), and so

� 103 km.

� 33.6 km � (16.8 km/s)(3.0 s) � 1
2(4.2 km/s2)(3.0 s)2

y � y0 � v0yt� � 1
2 ayt�

2

� 186 km

� 60.0 km � (15.0 km/s)(3.0 s) � 1
2 (18.0 km/s2)(3.0 s)2

x � x 0 � v0xt� � 1
2 axt�2

vy � v0y � ayt� � 16.8 km/s � (4.2 km/s2)(3.0 s) � 29.4 km/s 

vx � v0x � axt� � 15.0 km/s � (18.0 km/s2)(3.0 s) � 69.0 km/s 

y0 � 33.6x 0 � 60.0v0y � 16.8
(v0x � 15.0t � 4.0

t � 7.0t � 4.0

� 33.6 km.

y � y0 � v0yt � 1
2 ayt

2 � 0 � 0 � 1
2 (4.2 km/s2)(4.0 s)2

x � x 0 � v0xt � 1
2 axt 2 � 0 � (15.0 km/s)(4.0 s) � 0 � 60.0 km

vy � v0y � ay t � 0 � (4.2 km/s2)(4.0 s) � 16.8 km/s 

vx � v0x � axt � 15.0 km/s � 0 � 15.0 km/s 

v0y � 0,�15.0
v0x �

ay � �4.2ax � �18.0
t �t � 4.0

t � 4.0t � 0

(x � 0, y � 0)

rB � rB0 � vB0t � 1
2 aBt 2,

v0zt � 1
2 azt 2.

z � z 0 �y � y0 � v0yt � 1
2 ayt 2,x � x 0 � v0xt � 1

2 axt 2,

At s, the ship is at km, km (or, a dis-
tance km from the initial reference point).
The components of its velocity are m/s, m/s, cor-

responding to a speed km/s and a direction
given by the angle relative to the x axis.
Figure 4-1 shows the path of the starship and its position at vari-
ous times. In general, as shown at s, the directions of the
position and velocity vectors are different.

Note in this problem how using the components of vectors
helps us to separate the x and y motions. That is, the solutions to
the equations for the x components do not depend on the y motion.
If the tractor beam did not exist and the Enterprise fired its engines
in the same way from 4.0 s to 7.0 s, it would still be at km
moving with velocity km/s at 7.0 s. If the tractor beam
were present but the engines did not fire, the Enterprise would still
be at km moving with km/s at 7.0 s.

4-2 NEWTON’S LAWS IN THREE-
DIMENSIONAL VECTOR FORM

Before we can write Newton’s laws in their three-dimensional
vector form, we first must verify that force, as we have de-
fined it, is a vector quantity. We have seen in Chapter 3 that,
even in one dimension, we must carefully account for the di-
rection of each force. Since force has both magnitude and di-
rection, we suspect that it may be a vector quantity. However,
to be a vector it is not enough for a quantity to have both mag-
nitude and direction; it also must obey the laws of vector ad-
dition described in Section 2-2. Only from experiment can we
learn whether forces, as we defined them, obey these laws.

Let us arrange to exert a force of 4 N along the x axis and
a force of 3 N along the y axis. We apply these forces first
separately and then simultaneously to the standard 
1-kg body placed, as before, on a horizontal, frictionless sur-

vy � 29y � 103

vx � 69
x � 186

t � 7

� � tan�1 vy /vx � 23�
v � √v2

x � v2
y � 75

vy � 29vx � 69
r � √x2 � y2 � 213

y � 103x � 186t � 7.0
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t = 2 s

t = 4 s

t = 7 s

v

v0
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50 100 150 200
  x
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Figure 4-1. Sample Problem 4-1. The dots show the position
of the starship at successive 1-second intervals from to

s. The vectors and show the position and velocity at
s. Note that is tangent to the path at and is tan-

gent to the path at s.t � 7
vBt � 0,vB0t � 7

vBrBt � 7
t � 0



face. What will be the acceleration of the standard body? We
would find by experiment that the 4-N force in the 
x direction acting alone produced an acceleration of 4 m/s2 in
the x direction, and that the 3-N force in the y direction acting
alone produced an acceleration of 3 m/s2 in the y direction
(Fig. 4-2a). When the forces are applied simultaneously, as
shown in Fig. 4-2b, we find that the acceleration is 5 m/s2 di-
rected along a line that makes an angle of 37° with the x axis.
This is the same acceleration that would be produced if the
standard body were experiencing a force of 5 N in that direc-
tion. This same result can be obtained if we first add the 4-N
and 3-N forces vectorially (Fig. 4-2c) to a 5-N resultant di-
rected at 37° from the x axis, and then apply that single 5-N
net force to the body. Experiments of this kind show conclu-
sively that forces are vectors; they have magnitude and direc-
tion, and they add according to the vector addition law.

Now that we are convinced that force is a vector, we are
justified in writing Newton’s second law in vector form, as
we already have done in Chapter 3:

(4-3)

which includes the three component equations

(4-4)

That is, all three equations must simultaneously be satisfied
when we apply Newton’s second law.

Equation 4-3 suggests that we can find the direction of
the acceleration by taking the vector sum of all the forces
acting on the particle. Because the mass m is a scalar, the
direction of is the same as the direction of Once we
have the resultant force we can also find the magnitude of

from Eq. 4-3. However, as we shall see in the examples
in this chapter, it is often easier to use Eqs. 4-4 to solve
problems by first resolving each force into its components
and then finding the sum of each of the force components
to obtain each component of the acceleration.

If the forces are constant, then the acceleration is con-
stant and we can use the equations of Section 4-1 to find the
position and velocity of the particle at all times. If the forces
are not constant, then it is not possible to use the equations
for constant acceleration; an example of a nonconstant force,
the drag on a projectile, is discussed later in this chapter.

aB

	 F
B

.aB

� Fx � max, � Fy � may, � Fz � maz.

� F
B

� maB

Newton’s third law is also a vector equation:

(4-5)

which tells us that, no matter what the direction in three-di-
mensional space of the vector that represents the force
exerted on A by B, the vector that represents the force
on B by A has the same magnitude and acts in the opposite
direction.

Sample Problem 4-2. A crate of mass kg is
sliding without friction with an initial velocity of m/s
along the floor. In an attempt to move it in a different direction,
Tom pushes opposite to its initial motion with a constant force of
magnitude N, while Jane pushes in a perpendicular di-
rection with a constant force of magnitude N (Fig.
4-3a). If they each push for 3.0 s, in what direction is the crate
moving when they stop pushing?

Solution Let us take the positive x direction to be that of the ini-
tial motion of the crate (so that Tom’s force is in the negative
x direction) and the positive y direction to be that of Jane’s force

Figure 4-3b shows the free-body diagram of the crate. The
only force in the x direction is that exerted by Tom, so

similarly, Using Newton’s second law
in its component form (Eqs. 4-4) we can write the equations of
motion of the crate as

x direction ( Fx � max): �FCT � max

y direction ( Fy � may): �FCJ � may

Solving, we find

Using Eq. 4-1 in its component form, we can find the velocity
components at s:

A graph of the path of the crate is shown in Fig. 4-3c, which also
shows the velocity components at s. To find the magnitudet � 3.0

vy � v0y � ayt � 0 � (1.69 m/s2)(3.0 s) � 5.1 m/s.

vx � v0x � axt � 6.4 m/s � (�1.31 m/s2)(3.0 s) � 2.5 m/s

t � 3.0

ay �
FCJ

m
�

105 N

62 kg
� 1.69 m/s2. 

ax � �
FCT

m
�

�81 N

62 kg
� �1.31 m/s2

�
�

	Fy � FCJ .	Fx � �FCT ;

F
B

CJ .

F
B

CT

FCJ � 105
FCT � 81

v0 � 6.4
m � 62

F
B

BA

F
B

AB

F
B

AB � �F
B

BA ,
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a = 5 m/s2
a = 5 m/s2

a = 3 m/s2

a = 4 m/s2

F = 5 N

37°

37°

y

xx x

yy

F = 3 NF = 3 N

F = 4 N F = 4 N

(b) (c)(a)

Figure 4-2. (a) A 4-N force in the x direction gives an acceleration of 4 m/s2 in the x direction, and a 3-N force in the y direction gives
an acceleration of 3 m/s2 in the y direction. (b) When the forces are applied simultaneously, the resultant acceleration is 5 m/s2 in the direc-
tion shown. (c) The same acceleration can be produced by a single 5-N force in the direction shown.



of the velocity and its direction, we use Eqs. 2-2:

Note that is in the direction of motion (tangent to the curve that
represents the path of the crate).

Can you find the location of the crate at s?

4-3 PROJECTILE MOTION

A common example of motion in two dimensions is projec-
tile motion near the Earth’s surface, in which a projectile,
such as a golf ball or a baseball, is launched in an arbitrary
direction. For the time being we neglect air resistance (a
nonconstant force), which simplifies the calculation.

Figure 4-4a shows the initial motion of the projectile at
the instant of launch. Its initial velocity is directed at an
angle 
0 from the horizontal. We choose our coordinate
system with the x axis horizontal, its positive direction cor-
responding to the horizontal component of the initial veloc-
ity. The y axis is vertical, with its positive direction upward.
We also place the origin of the coordinate system at the lo-
cation of launch, so that and The compo-
nents of the initial velocity are

(4-6)

The free-body diagram of the projectile (of mass m) is
shown in Fig. 4-4b. Gravity is the only force that acts. It is

v0x � v0 cos 
0 , v0y � v0 sin 
0 .

y0 � 0.x 0 � 0

vB0

t � 3.0

vB

� � tan�1 vy

vx

� tan�1 5.1 m/s

2.5 m/s
� 64�. 

v � √vx
2 � vy

2 � √(2.5 m/s)2 � (5.1 m/s)2 � 5.7 m/s

a constant force, having a downward direction and the same
magnitude mg everywhere on the path of the projectile, no
matter what its location or direction of motion. With our
choice of coordinate system, the components of the net
force are

(4-7)

and the vector components of Newton’s second law (Eqs. 4-
4) then give

(4-8)

The horizontal component of the acceleration is zero every-
where along the path, and the vertical component of the ac-
celeration is �g everywhere.

Applying the formulas for constant acceleration from
Section 4-1, we obtain

(4-9)

(4-10)

Note that the horizontal component of the velocity remains
constant (and equal to its initial value) throughout the flight.
We know from Eqs. 4-4 that the x component of the acceler-
ation can be affected only by a net force with an x compo-
nent. In this case so vx remains constant. The
force in the y direction affects only y and vy , not x or vx .

The equations for the vertical motion (Eqs. 4-9b and 4-
10b) are exactly those of free fall (Eqs. 2-29 and 2-30). In
fact, if we observed the motion from a car traveling along
the ground at velocity v0x in the direction of the projectile,
the motion would appear to be that of a projectile thrown
vertically upward with initial speed v0y .

Figure 4-5 shows the motion. At any point, the magni-
tude of the velocity vector is

(4-11)

and its direction is given by

(4-12)tan 
 �
vy

vx

,

v � √vx
2 � vy

2

	 Fx � 0,

 (a) x � v0x t, (b) y � v0y t � 1
2 gt 2

position components:

(a) vx � v0x , (b) vy � v0y � gt
velocity components:

ax � � Fx

m
� 0 and ay � � Fy

m
� �g.

� Fx � 0 and � Fy � �mg
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Figure 4-4. (a) A projectile is launched with initial velocity
(b) The free-body diagram of the projectile.vB0 .

(b)(a)

v0

0
v0y

v0x

x

x

mg

y y

(b)(a) (c)

FCT

FCJ

y

x 

x
O 5 m

1 s

2 s

3 s

vvy

vv0

Tom
Jane

vvx

vv

5 m

10 m

10 m

y

Figure 4-3. Sample Problem 4-2. (a) Tom pushes opposite to the initial motion of the crate and Jane pushes in a perpendicular direc-
tion. (b) The free-body diagram of the crate. (c) The tangent to the path gives the direction of the crate’s motion. The velocity components
at s are shown.t � 3.0



where 
 is the angle that the velocity vector makes with the
horizontal. At every point of the motion, the velocity vector
is tangent to the path of the projectile.

Equations 4-10 give us x and y as functions of the com-
mon parameter t. By combining and eliminating t from
them, we obtain

(4-13)

which relates y to x and is the equation of the trajectory of
the projectile. Since v0 , 
0 , and g are constants, this equa-
tion has the form

the equation of a parabola. Hence the trajectory of a projec-
tile is parabolic, as shown in Fig. 4-5.

The horizontal range R of the projectile, as shown in Fig.
4-5, is defined as the distance along the horizontal where the
projectile returns to the level from which it was launched. We
can find the range by putting into Eq. 4-13. One solu-
tion immediately arises at the other gives the range:

(4-14)

using the trigonometric identity sin 2� � 2 sin � cos �.
Note that, for a given initial speed, we get the maximum
range for 
0 � 45°, such that sin 2
0 � 1.

Figure 4-6 shows a strobe photo of the path of a projec-
tile that is not severely affected by air resistance. The path
certainly appears parabolic in its shape. Figure 4-7 compares
the motions of a projectile dropped from rest to one simulta-
neously fired horizontally. Here you can see directly the pre-
dictions of Eqs. 4-10 when 
0 � 0. Note that (1) the hori-
zontal motion of ball 2 does indeed follow Eq. 4-10: its x
coordinate increases by equal amounts in equal intervals of

�
v0

2

g
 sin 2
0 , R �

2v0
2

g
 sin 
0 cos 
0

x � 0;
y � 0

y � bx � cx2,

y � (tan 
0)x �
g

2(v0 cos 
0)2 x2,

time, independent of the y motion; and (2) the y motions of
the two projectiles are identical: the vertical increments of
the position of the two projectiles are the same, independent
of the horizontal motion of one of them.
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Figure 4-5. The trajectory of a projectile, showing the initial
velocity and its components and also the velocity and its
components at five later times. Note that throughout the
flight. The horizontal distance R is the range of the projectile.

vx � v0x

vBvB0

y

v0

v

v

v

v0y

vy

vy

vy
v0x

vx
vx

vx

vy

vx

R

x
O

0

v

v

Figure 4-6. A strobe photo of a golf ball (which enters the
photo from the left) bouncing off a hard surface. Between im-
pacts, the ball shows the parabolic path characteristic of projectile
motion. Why do you suppose the height of successive bounces is
decreasing? (Chapter 6 may provide the answer.)

Figure 4-7. One ball is released from rest at the same instant
that a second ball is fired to the right. Note that both balls fall at
exactly the same rate; the horizontal motion of ball 2 does not af-
fect its vertical rate of fall. The exposures in this strobe photo
were taken at intervals of 1/30 s. Does the horizontal velocity of
the second ball appear to be constant?



Sample Problem 4-3. In a contest to drop a package on
a target, one contestant’s plane is flying at a constant horizontal
velocity of 155 km/h at an elevation of 225 m toward a point di-
rectly above the target. At what angle of sight � should the pack-
age be released to strike the target (Fig. 4-8)?

Solution We choose a reference frame fixed with respect to the
Earth, its origin O being the release point. The motion of the pack-
age at the moment of release is the same as that of the plane.
Hence the initial package velocity is horizontal and its magni-
tude is 155 km/h. The angle of projection 
0 is zero.

We find the time of fall from Eq. 4-10b. With v0y � 0 and
y � �225 m at the ground this gives

Note that the time of fall does not depend on the speed of the
plane for a horizontal projection.

The horizontal distance traveled by the package in this time is
given by Eq. 4-10a:

so that the angle of sight (Fig. 4-8) should be

Does the motion of the package appear to be parabolic when
viewed from a reference frame fixed with respect to the plane?
(Can you recall having seen films of bombs dropping from a
plane, taken by a camera either on that plane or on another plane
flying a parallel course at the same speed?)

Sample Problem 4-4. A soccer player kicks a ball at an
angle of 36° from the horizontal with an initial speed of 15.5 m/s.
Assuming that the ball moves in a vertical plane, find (a) the time
t1 at which the ball reaches the highest point of its trajectory, (b)
its maximum height, (c) its time of flight and range, and (d) its ve-
locity when it strikes the ground.

Solution (a) The vertical component of the initial velocity is
(15.5 m/s) sin 36° � 9.1 m/s. At the top of itsv0y � v0 sin 
0 �

� � tan�1 x

� y �
� tan�1 292 m

225 m
� 52�.

� 0.292 km � 292 m 

x � v0xt � (155 km/h)(1 h/3600 s)(6.78 s)

t � √�
2y

g
� √�

(2)(�225 m)

9.8 m/s2 � 6.78 s.

vB0

trajectory, Solving Eq. 4-9b for the time and substituting
the numerical values we obtain:

(b) The maximum height ymax is reached at s. Using Eq.
4-10b, we have

(c) To find the total time of flight t2 , we set y � 0 in Eq. 4-10b
and, after eliminating the solution t � 0 (which reminds us that
the ball did indeed start at y � 0 when t � 0) we solve to find the
other time when the ball is at y � 0:

Note that t2 � 2t1 , which must occur because the time required
for the ball to go up (reach its maximum height from the ground)
is the same as the time required for it to come down (reach the
ground from its maximum height). The range is the horizontal dis-
tance traveled during the time t2 :

(d) To find the velocity of the ball when it strikes the ground, we
use Eq. 4-9a to obtain vx , which remains constant throughout the
flight:

and from Eq. 4-9b we obtain vy for t � t2 ,

Hence, the velocity has magnitude given by

and direction given by

so that or 36° clockwise from the x axis. Note that

 � � 
0 , as we expect from symmetry (Fig. 4-5).

The final speed turned out to be equal to the initial speed. Can
you explain this? Is it a coincidence?

Shooting a Falling Target
In a favorite lecture demonstration an air gun is sighted at an
elevated target, which is released in free fall by a trip mech-
anism as the “bullet” leaves the muzzle. No matter what the
initial speed of the bullet, it always hits the falling target.

To understand this surprising outcome, consider that if
there were no acceleration due to gravity, the target would not
fall and the bullet would move along the line of sight directly
into the target (Fig. 4-9). The effect of gravity is to cause each
body to accelerate down at the same rate from the position it
would otherwise have had. Therefore, in the time t, the bullet
will fall a distance from the position it would have had1

2gt 2


 � �36�,

tan 
 � vy /vx � (�9.1 m/s)/(12.5 m/s),

v � √vx
2 � vy

2 � √(12.5 m/s)2 � (�9.1 m/s)2 � 15.5 m/s,

� �9.1 m/s. 

vy � v0y � gt � 9.1 m/s � (9.8 m/s2)(1.86 s)

vx � v0x � v0 cos 
0 � (15.5 m/s)(cos 36�) � 12.5 m/s,

x � v0x t2 � (v0 cos 
0)t2 � (15.5 m/s)(cos 36�)(1.86 s) � 23.3 m.

t2 �
2v0y

g
�

2(9.1 m/s)

9.8 m/s2 � 1.86 s.

� (9.1 m/s)(0.93 s) � 1
2 (9.8 m/s2)(0.93 s)2 � 4.2 m.

ymax � v0yt1 � 1
2 gt 2

1

t1 � 0.93

t1 �
v0y � vy

g
�

9.1 m/s � 0

9.8 m/s2 � 0.93 s.

vy � 0.
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Figure 4-8. Sample Problem 4-3.



along the line of sight and the target will fall the same dis-
tance from its starting point. When the bullet reaches the line
of fall of the target, it will be the same distance below the tar-
get’s initial position as the target is and hence the collision. If
the bullet moves faster than shown in the figure (v0 larger), it
will have a greater range and will cross the line of fall at a
higher point; but since it gets there sooner, the target will fall
a correspondingly smaller distance in the same time and col-
lide with it. A similar argument holds for slower speeds.

For an equivalent analysis, let us use Eq. 4-2

to describe the positions of the projectile and the target at
any time t. For the projectile and and we
have

(4-15)

For the target and leading to

(4-16)

If there is a collision, we must have Inspection
shows that this will always occur at a time t given by

—that is, in the time that it would
take for an unaccelerated projectile to travel to the target
position along the line of sight. Because multiplying a vec-
tor by a positive scalar gives another vector in the same di-
rection, the equation tells us that and 
must be in the same direction. That is, the gun must be
aimed at the initial position of the target.

4-4 DRAG FORCES AND THE
MOTION OF PROJECTILES (Optional)

Raindrops fall from clouds whose height h above the ground
is about 2 km. Using our equations for freely falling bodies
(Eqs. 2-29 and 2-30), we expect the raindrop to strike the
ground with a speed of m/s, or about 440 mi/h.
The impact of a projectile, even a raindrop, at that speed

v � 200

vB0PrB0TrB0T � vB0Pt

t (� r0T /v0P)rB0T � vB0Pt

rBP � rBT .

rBT � rB0T � 1
2 gBt 2.

aB � gB,T, rB0 � rB0T , vB0 � 0,

rBP � vB0Pt � 1
2 gBt 2.

aB � gB,P, rB0 � 0

rB � rB0 � vB0t � 1
2 aBt 2

would be lethal; since raindrops move at much slower
speeds, we have obviously made an error in the analysis.

The error occurs when we neglect the effect of the fric-
tional force exerted by the air on the falling raindrop. This
frictional force is an example of a drag force, experienced by
any object that moves through a fluid medium, such as air or
water. Drag forces have important effects on a variety of ob-
jects, such as baseballs, which deviate considerably from the
ideal drag-free trajectory, and downhill skiers, who try to
streamline their bodies and skiing position to reduce the
drag. Drag forces must be taken into account in the design of
aircraft and seacraft. From the standpoint of falling bodies,
from raindrops to skydivers, drag forces prevent the velocity
from increasing without limit and they impose a maximum
or terminal speed that can be attained by a falling body.

One particular characteristic of drag forces is that they
depend on the speed: the faster an object moves, the greater
is the drag force. We therefore cannot use our formulas for
constant acceleration to analyze motion under drag forces.

We illustrate the technique for handling problems with
nonconstant forces by considering a body of mass m that is
dropped from rest. We assume that the magnitude of the
drag force D depends linearly on the speed:

(4-17)

and always acts in a direction opposite to the motion. The
constant b depends on properties of the falling object (its size
and shape, for instance) and on the properties of the fluid (air,
in this case) through which the object falls. Our goal is to find
the velocity of the falling object as a function of the time.

Figure 4-10 shows the free-body diagram, which
changes with time as the object falls. When the object is re-
leased, (because and D increases as the ob-
ject falls. As D continues to increase, at some point it will
equal the weight of the object, and at that point there is no
net force acting on the object; its acceleration is zero, so its
velocity remains constant, as does the drag force. From that
time on, the object falls with constant velocity, which is the
terminal velocity.

vy � 0),D � 0

D � bv
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Figure 4-9. In the motion of a projectile, its displacement
from the origin at any time t can be thought of as the sum of two
vectors: directed along and directed down.1
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Figure 4-10. Forces acting on a body falling in air. (a) At the
instant of release, and there is no drag force. (b) The drag
force increases as the body gains speed. (c) Eventually the drag
force equals the weight; for all later times it remains equal to the
weight and the body falls at its constant terminal speed.

vy � 0



We choose the y axis to be vertical and the positive di-
rection to be downward. (The choice of direction is arbi-
trary, and here it is convenient to work with positive veloc-
ity and acceleration components.) With the weight mg
acting downward and the drag force bvy acting upward, the
net force is then so that Newton’s sec-
ond law gives

(4-18)

or

(4-19)

Our goal is to find the velocity as a function of the time. We
begin by substituting in Eq. 4-19, which gives

(4-20)

With at time we seek the velocity vy at time t.
We can therefore integrate the left side of Eq. 4-20 from ve-
locity 0 to vy and the right side from time 0 to t. (See Eq. 5
of Appendix I.) The result is

(4-21)

and solving for vy we obtain

(4-22)

This is the expression for the velocity as a function of time.
It is interesting to examine this result in the two limiting

cases of small and large values of t. The velocity starts with
at Just after near the beginning of the

projectile’s fall, we can find the velocity by approximat-
ing the exponential function using for small 
x (x �� 1). This gives

(4-23)

which agrees with Eq. 2-29 when (recalling that
here we chose the positive y direction to be downward).
Early in the motion, when the velocity is small and the drag
force has not increased significantly, the object is approxi-
mately in free fall.

For large t, the exponential approaches zero 
as and the magnitude of the velocity approaches
the terminal speed given by

(4-24)

We can also find the terminal speed directly from Eq. 4-19
—when the speed increases to the point at which the drag
force and the weight are equal, and Eq. 4-19 then
gives Eq. 4-24.

We see that, just as we expect, the larger is the drag
force coefficient b, the smaller is the terminal speed. The

ay � 0

vT �
mg

b
.

x : )
(e�x : 0

v0y � 0

vy(t) �
mg

b �1 � �1 �
bt

m �� � gt (small t),

e�x � 1 � x

t � 0,t � 0.vy � 0

vy(t) �
mg

b
 (1 � e�bt/m).

�
m

b
 ln � mg � bvy

mg � � t

t � 0,vy � 0

dvy

g � bvy/m
� dt.

ay � dvy /dt

ay � g �
bvy

m
.

mg � bvy � may

	 Fy � may

	 Fy � mg � bvy ,

terminal speed of a pebble falling in water is less than that
of the same pebble falling in air, because the drag coeffi-
cient is much larger in water.

Now that we have an expression for vy(t), we can differ-
entiate it to find ay(t) or integrate it to find y(t). (See Prob-
lem 17.) Figure 4-11 shows the time dependence of y, vy ,
and ay .

A drag force proportional to v is representative of vis-
cous drag, which is the force that might be experienced by
a small particle falling through a thick fluid. Large objects
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Terminal 95%
Speed Distancea

Object (m/s) (m)

16-lb shot 145 2500
Skydiver (typical) 60 430
Baseball 42 210
Tennis ball 31 115
Basketball 20 47
Ping-Pong ball 9 10
Raindrop (radius � 1.5 mm) 7 6
Parachutist (typical) 5 3

aThis is the distance through which the body must fall from rest to reach
95% of its terminal speed.

Source: Adapted from Peter J. Brancazio, Sport Science (Simon &
Schuster, 1984).

Table 4-1 Some Terminal Speeds in Air

2m2g
b2

1
2

m2g
b2

vT

y(
t)

v y
(t

) vy = gt

t (units of m/b)
a y

(t
)

vT

1
2

g

g

0

0 1 2 3

Figure 4-11. Position, velocity, and acceleration for a falling
body subject to a drag force. Note that the acceleration starts at g
and falls to zero; the velocity starts at zero and approaches vT .
Note also that y(t) becomes nearly linear at large t, as we expect
for motion with constant velocity.



in air experience aerodynamic drag, in which D is propor-
tional to v2. This case is more complicated mathematically,
but it also yields a terminal speed (different from the termi-
nal speed calculated for 

Table 4-1 shows typical measured values of terminal
speeds of different objects in air.

Projectile Motion with Air Resistance
Drag calculations are also important for two-dimensional
projectile motion. A baseball, for example, leaves the bat
with a speed of about 100 mi/h or 45 m/s. This is already
greater than its terminal speed in air when dropped from rest
(Table 4-1). The magnitude of the drag force can be
estimated from our previous calculation. From  Eq. 4-24 we
see that the constant b is the weight mg of the baseball
(about 1.4 N, corresponding to a mass of 0.14 kg) divided
by its terminal speed, 42 m/s. Thus 0.033 N/(m/s). If
the ball travels at 45 m/s, it experiences a drag force bv with
a magnitude of about 1.5 N, which is greater than its weight
and therefore has a substantial effect on its motion.

Figure 4-12 shows the free-body diagram at a particular
point in the baseball’s trajectory. Like all frictional forces,

is in a direction opposite to and we assume no wind is
blowing. If we take we can use Newton’s lawsD

B
� �bvB,

vB,D
B

b �

D � bv

D � v).

to find an analytic solution for the trajectory, an example of
which is illustrated in Fig. 4-13. When air resistance is
taken into account, the range is reduced from 179 m to 
72 m and the maximum height from 78 m to 48 m. Note
also that the trajectory is no longer symmetric about the
maximum; the descending motion is much steeper than the
ascending motion. For the projectile strikes the
ground at an angle of �79°, while in the absence of drag it
would strike the ground at an angle equal to 

For other (and more realistic) choices for the drag force
the calculation must be done numerically.* �

4-5 UNIFORM CIRCULAR MOTION

In projectile motion in the absence of air resistance, the ac-
celeration is constant in both magnitude and direction, but
the velocity changes in both magnitude and direction. We
now examine a different case of motion in two dimensions
in which a particle moves at constant speed in a circular
path. As we shall see, both the velocity and acceleration are
constant in magnitude, but both change their directions
continuously. This situation is called uniform circular mo-
tion. Examples of this kind of motion may include Earth
satellites and points on spinning rotors such as fans or
merry-go-rounds. In fact, to the extent that we can regard
ourselves as particles, we are in uniform circular motion
because of the rotation of the Earth.

As an example, imagine you are swinging a ball on a
string in a horizontal plane, as in Fig. 4-14. (We neglect the
drag force and the force of gravity for the time being.) As
you swing the ball, your fingers are exerting a force on the
string (and the string in turn exerts a force on the ball). If
you were to loosen your grip on the string slightly, the
string would slide between your fingers and the ball would
move away from the center of the circle, so to prevent this

D
B

,

�
0 � �60�.


0 � 60�,
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D
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0
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y

Figure 4-12. A projectile in motion. It is launched with ve-
locity v0 at an angle 
0 with the horizontal. At a certain time later
its velocity is at the angle 
. The weight and the drag force
(which always points in a direction opposite to are shown at
that time.

vB)
vB

* You can find more information about this calculation in “Trajectory of a
Fly Ball,” by Peter J. Brancazio, The Physics Teacher, January 1985, p. 20.
For an interesting collection of articles about similar problems, see The
Physics of Sports, edited by Angelo Armenti, Jr. (American Institute of
Physics, 1992). See http://www.physics.uoguelph.ca/fun/JAVA/trajplot/
trajplot.html for an interesting program that allows you to display the trajec-
tories of a projectile for various choices of launch angle and air resistance.

Figure 4-13. Projectile motion with and without a drag
force, calculated for 45 m/s and 
0 � 60°.v0 �

y (m)
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Figure 4-14. A ball on a string is whirled in a horizontal cir-
cle. Vectors representing the velocity and the force of the string on
the ball are shown at three different instants.
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from happening your fingers must be exerting an inward
force on the string.

A similar example occurs in planetary motion. As the
Moon moves in its orbit about the Earth, the Earth exerts a
gravitational force that always points toward the center of
the Earth (Fig. 4-15).

In both of these cases, the force is constant in magni-
tude but varies in direction as the object revolves in its cir-
cular path. Because the force always points toward the cen-
ter of the circle, it is known as a centripetal (“seeking the
center”) force. Since no other force acts, the acceleration
must also point toward the center of the circle (centripetal
acceleration). From the geometry of the circular motion, we
can obtain an expression for the centripetal acceleration.

It is important to note that, in uniform circular motion,
the magnitude of the velocity stays constant but the particle
is still accelerating because the direction of its velocity is
changing. Even though we usually associate an acceleration
with a change in the magnitude of there must also be an
acceleration present to change the direction of 

To find the relationship between this acceleration and
the constant magnitude of the velocity, consider the geome-
try of Fig. 4-16. A particle is moving in a circle of radius r.
We set up an xy coordinate system with its origin at the
center of the circle, and we examine the motion of the parti-
cle at two locations: at P1 , where its velocity is and at
P2 , where its velocity is The points P1 and P2 are lo-
cated symmetrically with respect to the y axis, with the ra-
dius to each location making an angle � with the y axis.

The magnitudes of and are equal, but they have
different directions, each being tangent to the circle at the
location of the particle. The velocity components are:

(4-25)

where we have used v to represent the common magnitude
of and vB2 .vB1

v2x � �v cos � v2y � �v sin �

v1x � �v cos � v1y � �v sin �

vB2vB1

vB2 .
vB1 ,

vB.
vB,

As the particle moves along the arc from P1 to P2 , it
covers a distance of 2r� (where � is measured in radians),
and if it does so in a time interval �t then its speed v is

We can therefore express the time interval as

(4-26)

Now we can find the components of the average accelera-
tion. We use the definition of average acceleration from Eq.
2-14, where means The x com-
ponent of the average acceleration is then

(4-27)

As shown in Fig. 4-16, the x components of the velocity are
the same at P1 and P2 , so it is not surprising that the x com-
ponent of the average acceleration is zero in that interval.
The y component of the average acceleration is

(4-28)

We can find the instantaneous acceleration from this result
by taking the limit as the time interval approaches zero.
Equivalently, we can let the angle � go to zero, so that P1

and P2 both approach P, which gives

ay � lim
� : 0 ��� v2

r �� sin �

� �� � �� v2

r � lim
� : 0 �

sin �

� �.

�
�2v sin �

2r�/v
� �� v2

r � � sin �

� �.

aav, y �
v2y � v1y

�t
�

�v sin � � v sin �

�t

aav, x �
v2x � v1x

�t
�

v cos � � v cos �

�t
� 0.

vB2 � vB1 .�vBaB av � �vB/�t

�t �
2r�

v
.

2r�/�t.
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Figure 4-15. The Moon moves in its orbit around the Earth.
The velocity and force vectors are shown at four different instants.
The velocity is always tangent to the circular path, and the force
on the Moon due to the Earth always points toward the center of
the circle.
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Figure 4-16. A particle moves at constant speed in a circle of
radius r. It is shown at locations P1 and P2 , where the radius makes
equal angles � on opposite sides of the y axis. The inset shows the
vector this vector always points toward the center
of the circle, no matter where we choose points P1 and P2 .
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For small angles, sin (in radians), so the limit ap-
proaches the value 1. The y component of the instantaneous
acceleration at P is then the minus sign indi-
cating that the acceleration at P points in the negative y di-
rection— that is, toward the center of the circle.

Point P is an arbitrary point on the circle. We could have
repeated the above calculation for any point on the circle
and we would have obtained the same result: the accelera-
tion points toward the center of the circle and has magni-
tude v2/r. This is a general result for any particle that moves
in a circle at constant speed; the centripetal acceleration is

(4-29)

The centripetal acceleration is sometimes also called the ra-
dial acceleration, since its direction is always along a radius
of the circle. In Fig. 4-16 you can see that the direction of

is the same as the direction of just as the vector rela-
tionship of Eq. 2-14 requires.

Both in free fall and in projectile motion is constant
in direction and magnitude, and we can use the equations
developed for constant acceleration. We cannot use these
equations for uniform circular motion because varies in
direction and is therefore not constant.

The units of centripetal acceleration are the same as
those of an acceleration resulting from a change in the mag-
nitude of a velocity. Dimensionally, we have

which are the usual dimensions of acceleration. The units
therefore may be m/s2, km/h2, or similar units of dimension
L/T2.

The acceleration resulting from a change in direction of
a velocity is just as real and just as much an acceleration in
every sense as that arising from a change in magnitude of a
velocity. By definition, acceleration is the time rate of
change of velocity, and velocity, being a vector, can change
in direction as well as magnitude. If a physical quantity is a
vector, its directional aspects cannot be ignored, for their
effects will prove to be every bit as important and real as
those produced by changes in magnitude.

According to Newton’s second law in its vector form
the acceleration and the net force must have

the same direction. In the case of circular motion at con-
stant speed, the net force must thus point toward the center
of the circle. For now we will write this result in terms of
magnitudes: For uniform circular motion,

and so

(4-30)

The quantity on the left side of Eq. 4-30 is sometimes
called the “centripetal force.” The centripetal force is not a
new kind of force. When a particle moves in a circular path

��F
B� �

mv2

r
.

a � ac � v2/r
� 	 F

B � � ma.

(	 F
B

� maB),

[a] �
[v2]

[r]
�

(L/T)2

L
�

L

T2 ,

aB

aB

�vB,aB

ac �
v2

r
.

ay � �v2/r,

� � � at constant speed, several forces may act on it. The resultant
of all those forces must point toward the center of the cir-
cle, and we call that resultant the centripetal force. New-
ton’s second law then gives the magnitude and direction of
the acceleration.

In Fig. 4-14, the string provides the centripetal force
that acts on the ball; in Fig. 4-15, the gravitational force of
the Earth provides the centripetal force that acts on the
Moon. To label a force as “centripetal” simply means that it
acts toward the center of the circle, but that label tells us
nothing about the nature of the force or the body that is ex-
erting it. All forces, including those that act centripetally,
must always be associated with a specific body in the envi-
ronment. The centripetal force can be any type of force and
might, for example, be provided by the action of gravity,
strings, springs, or electric charges. As indicated in Eq. 
4-30, it can also be a combination of two or more forces, as
long as the direction of the resultant force is toward the
center of the circle.

In this section we have discussed uniform circular mo-
tion as an example of a case in which vector laws are essen-
tial to understand motion in two dimensions. More general
vector techniques can be used to describe the case in which
the acceleration has both radial and tangential components.
These techniques are described in Chapter 8.

Sample Problem 4-5. The Moon revolves about the
Earth, making a complete revolution in 27.3 days. Assume that the
orbit is circular and has a radius 238,000 miles. What is the
magnitude of the gravitational force exerted on the Moon by the
Earth?

Solution We have mi � 3.82 � 108 m. From Ap-
pendix C, we find the mass of the Moon is kg.
The time for one complete revolution, called the period, is

2.36 � 106 s. The speed of the Moon (assumed
constant) is therefore

The centripetal force is provided by the gravitational force on the
Moon by the Earth:

Sample Problem 4-6. A satellite of mass 1250 kg is to
be placed in a circular orbit at a height km above the
Earth’s surface, where m/s2. (a) What is the weight of the
satellite at this altitude? (b) With what tangential speed must it be
inserted into its orbit? The Earth’s radius is km.

Solution (a) The weight of the satellite is

(b) The weight is the force of gravity FSE exerted on the satellite
by the Earth. Since this is the only force that acts on the satellite,

W � mg � (1250 kg)(9.2 m/s2) � 1.15 � 104 N.

R � 6370

g � 9.2
h � 210

� 2.00 � 1020 N. 

FME �
mv2

r
�

(7.36 � 1022 kg)(1018 m/s)2

3.82 � 108 m

v �
2�r

T
�

2� (3.82 � 108 m)

2.36 � 106 s
� 1018 m/s.

T � 27.3 d �

m � 7.36 � 1022
r � 238,000

r �
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it must provide the centripetal force. Solving Eq. 4-30 for the tan-
gential speed v, we obtain (with 

At this speed, the satellite completes one orbit every 1.48 h.

4-6 RELATIVE MOTION

In Section 3-2 we discussed inertial frames and how ob-
servers in motion relative to one another will deduce identi-
cal accelerations if they are both in inertial frames. These
observers will thus agree on the application of Newton’s
second law.

In this section, we expand the comparison of observa-
tions from different inertial frames using vector considera-
tions. As before, we consider the description of the motion
of a single particle by two observers who are in uniform
motion relative to one another. The two observers might be,
for example, a person in a car moving at constant velocity
along a long, straight road and another person standing at
rest on the ground. The particle they are both observing
might be a ball tossed in the air or another moving car.

We call the two observers S and S�. Each has a corre-
sponding reference frame to which is attached a Cartesian
coordinate system. For convenience, we assume the ob-
servers to be located at the origins of their respective coor-
dinate systems. We make only one restriction on this situa-
tion: the relative velocity between S and S� must be a
constant. Here we mean constant in both magnitude and di-
rection. Note that this restriction does not include the mo-
tion of the particle being observed by S and S�. The particle
need not necessarily be moving with constant velocity, and
indeed the particle may well be accelerating.

� 7780 m/s � 17,400 mi/h.

v � √ FSEr

m
� √ (1.15 � 104 N)(6370 km � 210 km)

1250 kg

r � R � h):
Figure 4-17 shows, at a particular time t, the two coordi-

nate systems belonging to S and S�. For simplicity, we con-
sider motion in only two dimensions, the common xy and
x�y� planes shown in Fig. 4-17. The origin of the S� system
is located with respect to the origin of the S system by the
vector S�S . Note in particular the order of the subscripts we
use to label the vector: the first subscript gives the system
being located (in this case, the coordinate system of S�) and
the second subscript gives the system with respect to which
we are doing the locating (in this case, the coordinate sys-
tem of S). The vector would then be read as “the posi-
tion of S� with respect to S.”

Figure 4-17 also shows a particle P in the common xy
and x�y� planes. Both S and S� locate the particle P with re-
spect to their coordinate systems. According to S, the parti-
cle P is at the position indicated by the vector whereas
according to S� the particle P is at From Fig. 4-17 we
can deduce the following relationship among the three vec-
tors:

(4-31)

where we have used the commutative law of vector addition
to exchange the order of the two vectors. Once again, pay
careful attention to the order of the subscripts. In words,
Eq. 4-31 tells us: “the position of P as measured by S is
equal to the position of P as measured by S� plus the posi-
tion of S� as measured by S.”

Suppose the particle P is moving with velocity ac-
cording to S�. What velocity will S measure for the parti-
cle? To answer this question, we need only take the deriva-
tive with respect to time of Eq. 4-31, which gives

The rate of change of each position vector gives the corre-
sponding velocity, so that

(4-32)

Thus, at any instant, the velocity of P as measured by S is
equal to the velocity of P as measured by S� plus the rela-
tive velocity of S� with respect to S. Although we have il-
lustrated Eqs. 4-31 and 4-32 for motion in two dimensions,
they hold equally well in three dimensions.

Equation 4-32 is a law of the transformation of veloci-
ties. It permits us to transform a measurement of velocity
made by an observer in one frame of reference— say, S�—
to another frame of reference— say, S—as long as we
know the relative velocity between the two reference
frames. It is a law firmly grounded both in the common
sense of everyday experience and in the concepts of space
and time that are essential to the classical physics of
Galileo and Newton. In fact, Eq. 4-32 is often called the
Galilean form of the law of transformation of velocities.

We consider here only the very important special case in
which the two reference frames are moving at constant ve-
locity with respect to one another. That is, is constantvBS�S

vBPS � vBPS� � vBS�S .

d rBPS

dt
�

d rBPS�

dt
�

d rBS�S

dt
.

vBPS�

rBPS � rBS�S � rBPS� � rBPS� � rBS�S ,

rBPS� .
rBPS ,

rBS�S

rB
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Figure 4-17. Observers S and S�, who are moving with re-
spect to each other, observe the same moving particle P. At the
time shown, they measure the position of the particle with respect
to the origins of their coordinate systems to be and re-
spectively. At this same instant, observer S measures the position
of S� with respect to the origin O to be rBS�S .
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both in magnitude and direction. The velocities and 
that S and S� measure for the particle P may not be con-
stant, and of course they will in general not be equal to one
another. If, however, one of the observers— say, S�—mea-
sures a velocity that is constant in time, then both terms on
the right-hand side of Eq. 4-32 are independent of time and
therefore the left side of Eq. 4-32 must also be independent
of time. Thus, if one observer concludes that the particle
moves with constant velocity, then all other observers con-
clude the same, as long as the other observers are in frames
of reference that move at constant velocity with respect to
the frame of the first observer.

We can see this in a more formal way by differentiating
Eq. 4-32:

(4-33)

The last term of Eq. 4-33 vanishes, because we assume that
the relative velocity of the two reference frames is a con-
stant. Thus

Replacing these two derivatives of velocity with the corre-
sponding accelerations, we obtain

(4-34)

The accelerations of P measured by the two observers are
identical!

Equation 4-34 indicates directly why Newton’s laws can
be equally well applied by observers in any inertial frame.
If our observers deduce identical accelerations for the mov-
ing particle, then they will agree on the results of applying

If observer S successfully tests to determine that
Newton’s laws are valid, then all other observers whose ref-
erence frames move relative to S with a velocity that is con-
stant in both magnitude and direction will likewise find
Newton’s laws to be valid.

Sample Problem 4-7. The compass in an airplane indi-
cates that it is headed due east; its air speed indicator reads 
215 km/h. A steady wind of 65 km/h is blowing due north. (a)
What is the velocity of the plane with respect to the ground? (b) If
the pilot wishes to fly due east, what must be the heading? That is,
what must the compass read?

Solution (a) The moving “particle” in this problem is the plane P.
There are two reference frames, the ground (G) and the air (A).
We let the ground be our S system and the air be the S� system,
and by a simple change of notation, we can rewrite Eq. 4-32 as

vBPG � vBPA � vBAG .

F
B

� maB.

aBPS � aBPS� .

d vBPS

dt
�

d vBPS�

dt
.

d vBPS

dt
�

d vBPS�

dt
�

d vBS�S

dt
.

vBPS�vBPS

Figure 4-18a shows these vectors, which form a right triangle. The
terms are, in sequence, the velocity of the plane with respect to the
ground, the velocity of the plane with respect to the air, and the
velocity of the air with respect to the ground (that is, the wind ve-
locity). Note the orientation of the plane, which is consistent with
a due east reading on its compass.

The magnitude of the ground velocity (the ground speed) is
found from

The angle � in Fig. 4-18a follows from

Thus, with respect to the ground, the plane is flying at 225 km/h
in a direction 16.8° north of east. Note that its ground speed is
greater than its air speed.

(b) In this case the pilot must head into the wind so that the veloc-
ity of the plane with respect to the ground points east. The wind
remains unchanged and the vector diagram representing Eq. 4-32
is as shown in Fig. 4-18b. Note that the three vectors still form a
right triangle, as they did in Fig. 4-18a, but in this case the hy-
potenuse is vPA rather than vPG .

The pilot’s ground speed is now

As the orientation of the plane in Fig. 4-18b indicates, the pilot
must head into the wind by an angle � given by

Note that, by heading into the wind as the pilot has done, the
ground speed is now less than the air speed.

� � sin�1 vAG

vPA

� sin�1 65 km/h

215 km/h
� 17.6�.

vPG � √vPA
2 � vAG

2 � √(215 km/h)2 � (65 km/h)2 � 205 km/h.

� � tan�1 vAG

vPA

� tan�1 65 km/h

215 km/h
� 16.8�.

vPG � √vPA
2 � vAG

2 � √(215 km/h)2 � (65 km/h)2 � 225 km/h.

4-6 Relative Motion 77

Figure 4-18. Sample Problem 4-7. (a) A plane, heading due
east, is blown to the north. (b) To travel due east, the plane must
head into the wind.
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MULTIPLE CHOICE

4-1 Motion in Three Dimensions with Constant 
Acceleration

1. An object moves in the xy plane with an acceleration that has
a positive x component. At time the object has a veloc-
ity given by 
(a) What can be concluded about the y component of the ac-
celeration?

(A) The y component must be positive and constant.
(B) The y component must be negative and constant.
(C) The y component must be zero.
(D) Nothing at all can be concluded about the y compo-

nent.

(b) What can be concluded about the y component of the ve-
locity?

(A) The y component must be increasing.
(B) The y component must be constant.
(C) The y component must be decreasing.
(D) Nothing at all can be concluded about the variation of

the y component.
(c) What can be concluded about magnitude of the velocity?

(A) The magnitude of the velocity must be increasing.
(B) The magnitude of the velocity must be constant.
(C) The magnitude of the velocity component must be de-

creasing.
(D) Nothing at all can be concluded about the magnitude

of the velocity.

2. An object moves with a constant acceleration Which of the
following expressions are also constant?

(A) (B)
(C) d(v2)/dt (D)

4-2 Newton’s Laws in Three-Dimensional Vector Form
3. Suppose the net force on an object is a nonzero constant.

Which of the following could also be constant?
(A) Position. (B) Speed.
(C) Velocity. (D) Acceleration.

4. Two forces of magnitude F1 and F2 are acting on an object.
The magnitude of the net force Fnet on the object will be in the
range

(A)
(B)
(C)
(D) F 1

2 � F 2
2 � (Fnet)2 � F 1

2 � F 2
2.

� F1 � F2 � � Fnet � � F1 � F2 �.
(F1 � F2)/2 � Fnet � (F1 � F2)/2.
F1 � Fnet � F2 .

F
B

d(vB/� vB �)/dt
� d vB/dt �d� vB �/dt

aB.

vB � 3î � 0ĵ.
t � 0

5. A small 2.0-kg object is suspended at rest from two strings as
shown in Fig. 4-19. The magnitude of the force exerted by
each string on the object is 13.9 N; the magnitude of the force
of gravity is 19.6 N. The magnitude of the net force on the
object is

(A) 47.4 N. (B) 33.5 N. (C) 13.9 N.
(D) 8.2 N. (E) 0 N.

6. The string on the left in Fig. 4-19 suddenly snaps. At the in-
stant when the string snaps, the magnitude of the net force on
the object is

(A) 47.4 N. (B) 33.5 N. (C) 13.9 N.
(D) 8.2 N. (E) 0 N.

4-3 Projectile Motion
7. A projectile is launched with initial velocity at an angle 
0

with the horizontal. Neglect air resistance. (a) Where in the
motion is the net force on the projectile equal to zero?
(b) Where in the motion is the acceleration of the projectile
equal to zero?

(A) Somewhere before reaching its maximum height.
(B) At its highest point.
(C) Somewhere after reaching its maximum height.
(D) Nowhere in the trajectory.

8. An object is launched into the air with an initial velocity
given by m/s. Ignore air resistance.

(a) At the highest point the magnitude of the velocity is
(A) 0. (B)
(C) (D)

(b) At s the magnitude of the velocity is

(A) (B)
(C) (D)

9. During the Battle of Tarawa in World War II, battleships fired
ballistic projectiles at the Japanese garrisons on Betio from as
far as 40 miles out at sea. Assuming no air resistance, and as-
suming the trajectories were chosen to give the optimum range,

(a) the projectiles would have risen to a maximum altitude in
the range of

(A) 0 to mi. (B) to 2 mi. (C) 2 to 5 mi.
(D) 5 to 8 mi. (E) 8 to 12 mi.

before returning to the ground.

(b) What would be the approximate muzzle velocity of the
projectiles?

(A) 25,000 ft/s. (B) 2,500 ft/s.
(C) 250 ft/s. (D) 25 ft/s.

10. A projectile fired vertically up from a cannon rises 200 meters
before returning to the ground. If the same cannon were to
fire the same projectile at an angle, then the maximum range
would be approximately

(A) 200 m. (B) 400 m.
(C) 800 m. (D) 1600 m.

(Assume that air resistance is negligible.)

4-4 Drag Forces and the Motion of Projectiles
11. Which graph in Fig. 4-20 best shows the velocity– time graph

for an object launched vertically into the air when air resis-
tance is given by The dashed line shows the velocity
graph if there were no air resistance.

D � bv?

1
2

1
2

√(4.9/2)2 � (9.8/2)2 m/s.√(4.9/2)2 � 9.82 m/s.
√4.92 � (9.8/2)2 m/s.√(4.9 � 9.8/2)2 m/s.

t � 0.5

√4.92 � 9.82 m/s.√9.82 m/s.
√4.92 m/s.

vB0 � (4.9î � 9.8ĵ)

vB0
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Figure 4-19. Multiple-choice questions 5 and 6.

45°45°



12. You calculate that to throw an object vertically to a height h it
needs to be launched with an initial upward velocity v0 , as-
suming no air resistance. The dashed lines in Fig. 4-21 show
the motion according to this calculation. Which of the
velocity– time graphs shows the motion of an object tossed
with initial upward velocity that will also rise to height h,
but this time with air resistance?

v�0

eventually acquiring the same speed as before the
chute opened.

4-5 Uniform Circular Motion
14. Which statement is most correct?

(A) Uniform circular motion causes a constant force to-
ward the center.

(B) Uniform circular motion is caused by a constant force
toward the center.

(C) Uniform circular motion is caused by a constant mag-
nitude net force toward the center.

(D) Uniform circular motion is caused by a constant mag-
nitude net force away from the center.

15. A puck is moving in a circle of radius r0 with a constant speed
v0 on a level frictionless table. A string is attached to the puck,
which holds it in the circle; the string passes through a fric-
tionless hole and is attached on the other end to a hanging ob-
ject of mass M. (See Fig. 4-22.)

(a) The puck is now made to move with a speed 
but still in a circle. The mass of the hanging object is left un-
changed. The acceleration a� of the puck and the radius r� of
the circle are now given by

(A) and (B) and 
(C) and (D) and 

(b) The puck continues to move at speed in a circle,
but now the mass of the hanging object is doubled. The accel-
eration a� of the puck and the radius r� of the circle are now
given by

(A) and (B) and 
(C) and (D) and r� � 4r0 .a� � a0r� � 2r0 .a� � 2a0

r� � r0 .a� � 2a0r� � r0 .a� � 4a0

v� � 2v0

r� � 4r0 .a� � a0r� � 2r0 .a� � 2a0

r� � r0 .a� � 2a0r� � r0 .a� � 4a0

v� � 2v0 ,
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Figure 4-20. Multiple-choice question 11.

Figure 4-21. Multiple-choice question 12.
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Figure 4-22. Multiple-choice question 15.
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13. A parachutist jumps out of a plane. He falls freely for some
time, and then opens his chute. Shortly after his chute inflates
the parachutist

(A) keeps falling but quickly slows down.
(B) momentarily stops, then starts falling again, but more

slowly.
(C) suddenly shoots upward, and then starts falling again,

but more slowly.
(D) suddenly shoots upward, and then starts falling again,

4-6 Relative Motion
16. An object has velocity relative to the ground. An observer

moving past with a constant velocity relative to the ground
measures the velocity of the object to be (relative to the
observer). The magnitudes of these velocities are related by

(A) (B)
(C) (D) All the above are true.

17. (a) A boy sitting in a railroad car moving at constant velocity
throws a ball straight up into the air, according to the person
sitting next to him. Where will the ball fall?

(A) Behind him (B) In front of him
(C) Into his hands (D) Beside him

(b) Where would the ball fall if the train accelerates forward
while the ball is in the air? If it rounds a curve?

(A) Behind him (B) In front of him
(C) Into his hands (D) Beside him

v2 � v0 � v1 .
v1 � v2 � v0 .v0 � v1 � v2 .

vB2

vB0

vB1



QUESTIONS

1. A particle moves in three-dimensional space with a constant
acceleration. Can the z component of the acceleration affect
the x component of its location? Can the z component of the
acceleration affect the y component of the velocity?

2. Describe a physical situation in which an object that moves in
the xy plane might have an acceleration with a constant posi-
tive x component and a constant negative y component.

3. Can the acceleration of a body change its direction without its
velocity changing direction?

4. Let and represent the velocity and acceleration, respec-
tively, of an automobile. Describe circumstances in which (a)

and are parallel; (b) and are antiparallel; (c) and
are perpendicular to one another; (d) is zero but is not

zero; (e) is zero but is not zero.

5. In Fig. 4-23, we show four forces that are equal in magnitude.
What combination of three of these, acting together on the
same particle, might keep that particle at rest?

vBaB
aBvBaB

vBaBvBaBvB

aBvB

9. In broad jumping, sometimes called long jumping, does it
matter how high you jump? What factors determine the span
of the jump?

10. Why doesn’t the electron in the beam from an electron gun
fall as much because of gravity as a water molecule in the
stream from a hose? Assume horizontal motion initially in
each case.

11. At what point or points in its path does a projectile have its
minimum speed? Its maximum?

12. Figure 4-25 shows the path followed by a NASA airplane in a
run designed to simulate low-gravity conditions for a short
period of time. Make an argument to show that, if the plane
follows a particular parabolic path, the passengers will experi-
ence weightlessness.
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Figure 4-23. Question 5.

Figure 4-24. Question 8.

Figure 4-25. Question 12.

Figure 4-26. Question 15.
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6. You shoot an arrow into the air and keep your eye on it as it
follows a parabolic flight path to the ground. You note that the
arrow turns in flight so that it is always tangent to its flight
path. What makes it do that?

7. In a tug-of-war, three men pull on a rope to the left at A and
three men pull to the right at B with forces of equal magni-
tude. Now a 5-lb weight is hung vertically from the center of
the rope. (a) Can the men get the rope AB to be horizontal?
(b) If not, explain. If so, determine the magnitude of the
forces required at A and B to do this.

8. A tube in the shape of a rectangle with rounded corners is
placed in a vertical plane, as shown in Fig. 4-24. You intro-
duce two ball bearings at the upper right-hand corner. One
travels by path AB and the other by path CD. Which will ar-
rive first at the lower left-hand corner?

13. A shot-putter heaves a shot from above ground level. The
launch angle that will produce the longest range is less than
45°; that is, a flatter trajectory has a longer range. Explain why.

14. Consider a projectile at the top of its trajectory. (a) What is its
speed in terms of v0 and 
0 ? (b) What is its acceleration? (c)
How is the direction of its acceleration related to that of its
velocity?

15. Trajectories are shown in Fig. 4-26 for three kicked footballs.
Pick the trajectory for which (a) the time of flight is least, (b)
the vertical velocity component at launch is greatest, (c) the
horizontal velocity component at launch is greatest, and (d)
the launch speed is least. Ignore air resistance.

16. A rifle is bore-sighted with its barrel horizontal. Show
that, at the same range, it will shoot too high when shoot-



ing either uphill or downhill. (See “A Puzzle in Elementary
Ballistics,” by Ole Anton Haugland, The Physics Teacher,
April 1983, p. 246.)

17. In his book, Sport Science, Peter Brancazio, with such projec-
tiles as baseballs and golf balls in mind, writes: “Everything
else being equal, a projectile will travel farther on a hot day
than on a cold day, farther at high altitude than at sea level,
farther in humid than in dry air.” How can you explain these
claims?

18. A graph of height versus time for an object thrown vertically
upward is a parabola. The path of a projectile, thrown upward
but not vertically upward, is also a parabola. Is this a coinci-
dence? Justify your answer.

19. Long-range artillery pieces are not set at the “maximum
range” angle of 45° but at larger elevation angles, in the range
of 55° to 65°. What is wrong with 45°?

20. In projectile motion when air resistance is negligible, is it
ever necessary to consider three-dimensional motion rather
than two-dimensional?

21. Under what conditions would it be necessary to consider
three-dimensional motion of a projectile?

22. Discuss how the choice of angle for maximum range of a pro-
jectile would be affected by the resistance of the air to motion
of the projectile through it.

23. Which raindrops, if either, fall faster: small ones or large ones?

24. The terminal speed of a baseball is 95 mi/h. However, the
measured speeds of pitched balls often exceed this, topping
100 mi/h. How can this be?

25. Describe the motion of an object that is fired vertically down-
ward with an initial speed that is greater than its terminal
speed.

26. A log is floating downstream. How would you calculate the
drag force acting on it?

27. You drop two objects of different masses simultaneously from
the top of a tower. Show that, if you assume the air resistance
to have the same constant value for each object, the one with
the larger mass will strike the ground first. How good is this
assumption?

28. Why does Table 4-1 list the “95% distance” and not the
“100% distance”?

29. Is it possible to be accelerating if you are traveling at constant
speed? Is it possible to round a curve with zero acceleration?
With constant acceleration?

30. Describe qualitatively the acceleration acting on a bead that,
sliding along a frictionless wire, moves inward with constant
speed along a flat spiral.

31. Show that, taking the Earth’s rotation and revolution into ac-
count, a book resting on your table moves faster at night than
it does during the daytime. In what reference frame is this
statement true?

32. An aviator, pulling out of a dive, follows the arc of a circle
and is said to have “pulled 3g’s” in pulling out of the dive.
Explain what this statement means.

33. Could the acceleration of a projectile be represented in terms
of a radial and a tangential component at each point of the
motion? If so, is there any advantage to this representation?

34. If the acceleration of a body is constant in a given reference
frame, is it necessarily constant in all other reference frames?

35. A woman on the rear platform of a train moving with constant
velocity drops a coin while leaning over the rail. Describe the
path of the coin as seen by (a) the woman on the train, (b) a
person standing on the ground near the track, and (c) a person
in a second train moving in the opposite direction to the first
train on a parallel track.

36. An elevator is descending at a constant speed. A passenger
drops a coin to the floor. What accelerations would (a) the
passenger and (b) a person at rest with respect to the elevator
shaft observe for the falling coin?

37. Water is collecting in a bucket during a steady downpour. Will
the rate at which the bucket is filling change if a steady hori-
zontal wind starts to blow?

38. A bus with a vertical windshield moves along in a rainstorm
at speed vb . The raindrops fall vertically with a terminal speed
vr . At what angle do the raindrops strike the windshield?

39. Drops are falling vertically in a steady rain. In order to go
through the rain from one place to another in such a way as to
encounter the least number of raindrops, should you move
with the greatest possible speed, the least possible speed, or
some intermediate speed? (See “An Optimal Speed for Tra-
versing a Constant Rain,” by S. A. Stem, American Journal of
Physics, September 1983, p. 815.)

40. What is wrong with Fig. 4-27? The boat is sailing with the
wind.
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Figure 4-27. Question 40.

41. The Galilean velocity transformation, Eq. 4-32, is so instinc-
tively familiar from everyday experience that it is sometimes
claimed to be “obviously correct, requiring no proof.” Many
so-called refutations of relativity theory turn out to be based
on this claim. How would you refute someone who made this
claim?



EXERCISES

4-1 Motion in Three-Dimensions with Constant 
Acceleration

1. In a cathode-ray tube, a beam of electrons is projected hori-
zontally with a speed of 9.6 � 108 cm/s into the region be-
tween a pair of horizontal plates 2.3 cm long. An electric field
between the plates causes a constant downward acceleration
of the electrons of magnitude 9.4 � 1016 cm/s2. Find (a) the
time required for the electrons to pass through the plates, (b)
the vertical displacement of the beam in passing through the
plates, and (c) the horizontal and vertical components of the
velocity of the beam as it emerges from the plates.

2. An iceboat sails across the surface of a frozen lake with con-
stant acceleration produced by the wind. At a certain instant
its velocity is 6.30 in m/s. Three seconds later the
boat is instantaneously at rest. What is its acceleration during
this interval?

3. A particle moves so that its position as a function of time is

where A � 1.0 m, B � 4.0 m/s2, and C � 1.0 m/s. Write ex-
pressions for (a) its velocity and (b) its acceleration as func-
tions of time. (c) What is the shape of the particle’s trajectory?

4. A particle leaves the origin at t � 0 with an initial velocity
It experiences a constant acceleration

(a) At what time does the
particle reach its maximum x coordinate? (b) What is the ve-
locity of the particle at this time? (c) Where is the particle at
this time?

4.2 Newton’s Laws in Three-Dimensional Form
5. A body with mass m is acted on by two forces and as

shown in Fig. 4-28. If m � 5.2 kg, F1 � 3.7 N, and F2 �
4.3 N, find the vector acceleration of the body.

F
B

2 ,F
B

1

aB � �(1.2 m/s2)î � (1.4 m/s2)ĵ.
vB0 � (3.6 m/s)î.

rB(t) � Aî � Bt 2 ĵ � Ct k̂,

î � 8.42ĵ

block? (b) The force P is slowly increased. What is the value of
P just before the block is lifted off the floor? (c) What is the ac-
celeration of the block just before it is lifted off the floor?

8. A worker drags a crate across a factory floor by pulling on a
rope tied to the crate. The rope, which is inclined at 38.0°
above the horizontal, exerts a force of 450 N on the crate. The
floor exerts a horizontal resistive force of 125 N, as shown in
Fig. 4-30. Calculate the acceleration of the crate (a) if its
mass is 96.0 kg, and (b) if its weight is 96.0 N.
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Figure 4-28. Exercise 5.

Figure 4-29. Exercise 7.

Figure 4-30. Exercise 8.

Figure 4-31. Exercise 9.

Figure 4-32. Exercise 10.
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F2m

P5.1 kg

25°

125 N

450 N

38.0°

18°

27°

110 kg

34°

F

6. An 8.5-kg object passes through the origin with a velocity of 42
m/s parallel to the x axis. It experiences a constant 19-N force
in the direction of the positive y axis. Calculate (a) the velocity
and (b) the position of the particle after 15 s have elapsed.

7. A 5.1-kg block is pulled along a frictionless floor by a cord that
exerts a force P � 12 N at an angle � � 25° above the horizon-
tal, as shown in Fig. 4-29. (a) What is the acceleration of the

9. A 1200-kg car is being towed up an 18° incline by means of a
rope attached to the rear of a truck. The rope makes an angle
of 27° with the incline. What is the greatest distance that the
car can be towed in the first 7.5 s starting from rest if the rope
has a breaking strength of 4.6 kN? Ignore all resistive forces
on the car. See Fig. 4-31.

10. A 110-kg crate is pushed at constant speed up the frictionless
34° ramp shown in Fig. 4-32. What horizontal force F is re-
quired? (Hint: Resolve forces into components parallel to the
ramp.)

11. In earlier days, horses pulled barges down canals in the man-
ner shown in Fig. 4-33. Suppose that the horse pulls a rope
that exerts a horizontal force of 7900 N at an angle of 18° to
the direction of motion of the barge, which is headed straight
along the canal. The mass of the barge is 9500 kg and its ac-
celeration is 0.12 m/s2. Calculate the horizontal force exerted
by the water on the barge.



12. A jet fighter takes off at an angle of 27.0° with the horizontal,
accelerating at 2.62 m/s2. The weight of the plane is
79,300 N. Find (a) the thrust T of the engine on the plane and
(b) the lift force L exerted by the air perpendicular to the
wings; see Fig. 4-34. Ignore air resistance.
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Figure 4-33. Exercise 11.

Figure 4-34. Exercise 12.

Figure 4-35. Exercise 15.

Figure 4-36. Exercise 22.

Figure 4-37. Exercise 24.
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4-3 Projectile Motion
13. A ball rolls off the edge of a horizontal tabletop, 4.23 ft high.

It strikes the floor at a point 5.11 ft horizontally away from
the edge of the table. (a) For how long was the ball in the air?
(b) What was its speed at the instant it left the table?

14. Electrons, like all forms of matter, fall under the influence of
gravity. If an electron is projected horizontally with a speed of
3.0 � 107 m/s (one-tenth the speed of light), how far will it
fall in traversing 1.0 m of horizontal distance?

15. A dart is thrown horizontally toward the bull’s eye, point P on
the dart board, with an initial speed of 10 m/s. It hits at point
Q on the rim, vertically below P, 0.19 s later; see Fig. 4-35.
(a) What is the distance PQ? (b) How far away from the dart
board did the player stand?

16. You throw a ball from a cliff with an initial velocity of 15 m/s
at an angle of 20° below the horizontal. Find (a) its horizontal
displacement and (b) its vertical displacement 2.3 s later.

17. Show that the maximum height reached by a projectile is

18. A ball rolls off the top of a stairway with a horizontal velocity
of magnitude 5.0 ft/s. The steps are 8.0 in. high and 8.0 in.
wide. Which step will the ball hit first?

ymax � (v0 sin 
0)2/2g.

19. A ball is thrown from the ground into the air. At a height of
9.1 m, the velocity is observed to be 

(x axis horizontal, y axis vertical and up). (a) To
what maximum height will the ball rise? (b) What will be the
total horizontal distance traveled by the ball? (c) What is the
velocity of the ball (magnitude and direction) the instant be-
fore it hits the ground?

20. If the pitcher’s mound is 1.25 ft above the baseball field, can a
pitcher release a fast ball horizontally at 92.0 mi/h and still
get it into the strike zone over the plate 60.5 ft away? Assume
that, for a strike, the ball must fall at least 1.30 ft but no more
than 3.60 ft.

21. According to Eq. 4-14, the range of a projectile depends not
only on v0 and 
0 but also on the value g of the gravitational
acceleration, which varies from place to place. In 1936, Jesse
Owens established a world’s running broad jump record of
8.09 m at the Olympic Games in Berlin m/s2).
Assuming the same values of v0 and 
0 , by how much would
his record have differed if he had competed instead in 1956 at
Melbourne m/s2)? (In this connection see “The
Earth’s Gravity,” by Weikko A. Heiskanen, Scientific Ameri-
can, September 1955, p. 164.)

22. At what initial speed must the basketball player throw the
ball, at 55° above the horizontal, to make the foul shot, as
shown in Fig. 4-36? The basket rim is 18 in. in diameter. Ob-
tain other data from Fig. 4-36.

(g � 9.7999

(g � 9.8128

(6.1 m/s)ĵ
vB � (7.6 m/s)î �

23. A football player punts the football so that it will have a “hang
time” (time of flight) of 4.50 s and land 50 yd away.
If the ball leaves the player’s foot 5.0 ft above the
ground, what is its initial velocity (magnitude and direction)?

24. A certain airplane has a speed of 180 mi/h and is diving at an
angle of 27° below the horizontal when a radar decoy is re-
leased. The horizontal distance between the release point and
the point where the decoy strikes the ground is 2300 ft. (a)
How long was the decoy in the air? (b) How high was the
plane when the decoy was released? See Fig. 4-37.

(�1.52 m)
(�45.7 m)



25. (a) During a tennis match, a player serves at 23.6 m/s (as
recorded by radar gun), with the ball leaving the racquet
2.37 m above the court surface, horizontally. By how much
does the ball clear the net, which is 12 m away and 0.90 m
high? (b) Suppose the player serves the ball as before except
that the ball leaves the racquet at 5.0° below the horizontal.
Does the ball clear the net now?

26. A batter hits a pitched ball at a height 4.0 ft above the ground
so that its angle of projection is 45° and its horizontal range is
350 ft. The ball travels down the left field line where a 24-ft-
high fence is located 320 ft from home plate. Will the ball
clear the fence? If so, by how much?

27. In a baseball game, a batter hits the ball at a height of 4.60 ft
above the ground so that its angle of projection is 52.0° to the
horizontal. The ball lands in the grandstand, 39.0 ft up from the
bottom; see Fig. 4-38. The grandstand seats slope upward at
28.0° with the bottom seats 358 ft from home plate. Calculate
the speed with which the ball left the bat. (Ignore air resistance.)

35. An astronaut is rotated in a centrifuge of radius 5.2 m. (a) What
is the speed if the acceleration is 6.8g? (b) How many revolu-
tions per minute are required to produce this acceleration?

36. A carnival Ferris wheel has a 15-m radius and completes five
turns about its horizontal axis every minute. (a) What is the
acceleration, magnitude and direction, of a passenger at the
highest point? (b) What is the acceleration at the lowest
point? (c) What force (magnitude and direction) must the Fer-
ris wheel exert on a 75-kg person at the highest point and at
the lowest point?

37. Certain neutron stars (extremely dense stars) are believed to
be rotating at about 1 rev/s. If such a star has a radius of
20 km (a typical value), (a) what is the speed of a point on the
equator of the star, and (b) what is the centripetal acceleration
of this point?

38. (a) What is the centripetal acceleration of an object on the
Earth’s equator due to the rotation of the Earth? (b) A 25.0-kg
object hangs from a spring scale at the equator. If the free-fall
acceleration due only to the Earth’s gravity is 9.80 m/s2, what
is the reading on the spring scale?

4-6 Relative Motion
39. A person walks up a stalled 15-m-long escalator in 90 s.

When standing on the same escalator, now moving, the per-
son is carried up in 60 s. How much time would it take that
person to walk up the moving escalator? Does the answer de-
pend on the length of the escalator?

40. The airport terminal in Geneva, Switzerland has a “moving
sidewalk” to speed passengers through a long corridor. Peter,
who walks through the corridor but does not use the moving
sidewalk, takes 150 s to do so. Paul, who simply stands on the
moving sidewalk, covers the same distance in 70 s. Mary not
only uses the sidewalk but walks along it. How long does
Mary take? Assume that Peter and Mary walk at the same
speed.

41. A transcontinental flight at 2700 mi is scheduled to take 50
min longer westward than eastward. The air speed of the jet is
600 mi/h. What assumptions about the jet-stream wind veloc-
ity, presumed to be east or west, are made in preparing the
schedule?

42. A train travels due south at 28 m/s (relative to the ground) in
a rain that is blown to the south by the wind. The path of each
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Figure 4-38. Exercise 27.

Figure 4-39. Exercise 45.
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28. What is the maximum vertical height to which a baseball
player can throw a ball if he can throw it a maximum distance
of 60.0 m? Assume that the ball is released at a height of
1.60 m with the same speed in both cases.

4-4 Drag Forces and the Motion of Projectiles
29. A small 150-g pebble is 3.4 km deep in the ocean and is

falling with a constant terminal speed of 25 m/s. What force
does the water exert on the falling pebble?

30. An object is dropped from rest. Find the terminal speed as-
suming that the drag force is given by 

31. How long does it take for the object described by Eq. 4-22 to
reach one-half of its terminal speed?

32. From Table 4-1, calculate the value of b for the raindrop, as-
suming that the drag force is given by The density of
water is 1.0 g/cm3.

33. A locomotive accelerates a 23-car train along a level track.
Each car has a mass of 48.6 metric tons and is subject to a drag
force where v is the speed in m/s and the force f is in
N. At the instant when the speed of the train is 34.5 km/h, the
acceleration is 0.182 m/s2. (a) Calculate the force exerted by
the locomotive on the first car. (b) Suppose that the force found
in part (a) is the greatest force the locomotive can exert on the
train. What, then, is the steepest grade up which the locomotive
can pull the train at 34.5 km/h? (1 metric ton � 1000 kg.)

4-5 Uniform Circular Motion
34. In Bohr’s model of the hydrogen atom, an electron revolves

around a proton in a circular orbit of radius 5.29 � 10�11 m
with a speed of 2.18 � 106 m/s. (a) What is the acceleration
of the electron in this model of the hydrogen atom? (b) What
is the magnitude and direction of the net force that acts on the
electron?

f � 243v,

D � bv.

D � bv2.



raindrop makes an angle of 64° with the vertical, as measured
by an observer stationary on the Earth. An observer on the
train, however, sees perfectly vertical tracks of rain on the
windowpane. Determine the speed of the drops relative to the
Earth.

43. An elevator ascends with an upward acceleration of 4.0-ft/s2.
At the instant its upward speed is 8.0 ft/s, a loose bolt drops
from the ceiling of the elevator 9.0 ft from the floor. Calculate
(a) the time of flight of the bolt from ceiling to floor and (b)
the distance it has fallen relative to the elevator shaft.

44. A light plane attains an air speed of 480 km/h. The pilot sets
out for a destination 810 km to the north but discovers that the
plane must be headed 21° east of north to fly there directly.
The plane arrives in 1.9 h. What was the vector wind velocity?

45. A battleship steams due east at 24 km/h. A submarine 4.0 km
away fires a torpedo that has a speed of 50 km/h; see Fig. 4-
39. If the bearing of the ship as seen from the submarine is
20° east of north, (a) in what direction should the torpedo be
fired to hit the ship, and (b) what will be the running time for
the torpedo to reach the battleship?
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Figure 4-40. Problem 1.

Figure 4-41. Problem 2.

Figure 4-42. Problem 5.

Figure 4-43. Problem 6.

PROBLEMS

1. A particle A moves along the line (30 m) with a con-
stant velocity m/s) directed parallel to the positive
x axis (Fig. 4-40). A second particle B starts at the origin with
zero speed and constant acceleration m/s2) at the
same instant that particle A passes the y axis. What angle �
between and the positive y axis would result in a collision
between these two particles?

aB

aB (a � 0.40

(v � 3.0vB
y � d the rocket at motor cut-out and (b) the total distance from fir-

ing point to impact.

4. A baseball leaves the pitcher’s hand horizontally at a speed of
92.0 mi/h. The distance to the batter is 60.0 ft. (a) How long
does it take for the ball to travel the first 30.0 ft horizontally?
The second 30.0 ft? (b) How far does the ball fall under grav-
ity during the first 30 ft of its horizontal travel? (c) During the
second 30.0 ft? (d) Why are these quantities not equal? Ig-
nore the effects of air resistance.

5. You throw a ball with a speed of 25.3 m/s at an angle of 42.0°
above the horizontal directly toward a wall as shown in Fig.
4-42. The wall is 21.8 m from the release point of the ball. (a)
How long is the ball in the air before it hits the wall? (b) How
far above the release point does the ball hit the wall? (c) What
are the horizontal and vertical components of its velocity as it
hits the wall? (d) Has it passed the highest point on its trajec-
tory when it hits?

y

x

d

v
A

B
a

39 m

1.2 m/s2

R

 21.8 m

42°

0

H

R

2. A ball is dropped from a height of 39.0 m. The wind is blow-
ing horizontally and imparts a constant acceleration of
1.20 m/s2 to the ball. (a) Show that the path of the ball is a
straight line and find the values of R and � in Fig. 4-41. (b)
How long does it take for the ball to reach the ground? (c)
With what speed does the ball hit the ground?

3. A rocket with mass 3030 kg is fired from rest from the ground
at an elevation angle of 58.0°. The motor exerts a thrust of
61.2 kN at a constant angle of 58.0° with the horizontal for
48.0 s and then cuts out. Ignore the mass of fuel consumed
and neglect aerodynamic drag. Calculate (a) the altitude of

6. A projectile is fired from the surface of level ground at an an-
gle 
0 above the horizontal. (a) Show that the elevation angle
� of the highest point as seen from the launch point is related
to 
0 by tan � � tan 
0 . See Fig. 4-43. (b) Calculate � for

0 � 45°.

1
2



7. A stone is projected at an initial speed of 120 ft/s directed 62°
above the horizontal, at a cliff of height h, as shown in Fig.
4-44. The stone strikes the ground at A 5.5 s after launching.
Find (a) the height h of the cliff, (b) the speed of the stone
just before impact at A, and (c) the maximum height H
reached above the ground.

load, is 10.8 kN. A constant upward buoyant force of 10.3 kN
is exerted on the balloon. The air also exerts a drag force
given by where v is the speed of the balloon and b
is a constant. The crew drops 26.5 kg of ballast. What will be
the eventual constant downward speed of the balloon?

14. Repeat Problem 13, but this time assume that the drag force is
given by Note that the constant b must be reevaluated.

15. A body of mass m falls from rest through the air. A drag force
D � bv2 opposes the motion of the body. (a) What is the ini-
tial downward acceleration of the body? (b) After some time
the speed of the body approaches a constant value. What is
this terminal speed vT? (c) What is the downward acceleration
of the body when 

16. A canal barge of mass m is traveling at speed vi when it shuts
off its engines. The drag force D with the water is given by

(a) Find an expression for the time required for the
barge to reduce its speed to vf . (b) Evaluate the time numeri-
cally for a 970-kg barge traveling initially at 32 km/h to re-
duce its speed to 8.3 km/h; the value of b is 68 N � s/m.

17. Consider the falling object in Section 4-4. (a) Find the accel-
eration as a function of time. What is the acceleration at small
t; at large t? (b) Find the distance the object falls, as a func-
tion of time.

18. (a) Assuming that the drag force D is given by show
that the distance y95 through which an object must fall from
rest to reach 95% of its terminal speed is given by

where vT is the terminal speed. (Hint: Use the result for y(t) ob-
tained in Problem 17.) (b) Using the terminal speed of 42 m/s
for the baseball given in Table 4-1, calculate the 95% distance.
Why does the result not agree with the value listed in Table 4-1?

19. The fast train known as the TGV Atlantique (Train Grande
Vitesse) that runs south from Paris to Le Mans in France has a
top speed of 310 km/h. (a) If the train goes around a curve at
this speed and the acceleration experienced by the passengers
is to be limited to 0.05g, what is the smallest radius of curva-
ture for the track that can be tolerated? (b) If there is a curve
with a 0.94-km radius, to what speed must the train be
slowed?

20. A particle P travels with constant speed on a circle of radius
3.0 m and completes one revolution in 20 s (Fig. 4-46). The
particle passes through O at With respect to the origin
O, find (a) the magnitude and direction of the vectors describ-
ing its position 5.0, 7.5, and 10 s later, (b) the magnitude and
direction of the displacement in the 5.0-s interval from the
fifth to the tenth second, (c) the average velocity vector in this
interval, (d) the instantaneous velocity vector at the beginning

t � 0.

y95 � (vT
2 /g)(ln 20 � 19

20),

D � bv,

D � bv.

v � vT /2?

D � bv.

D � bv2,

86 Chapter 4 / Motion in Two and Three Dimensions

Figure 4-44. Problem 7.

Figure 4-45. Problem 8.

Figure 4-46. Problem 20.
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8. (a) In Galileo’s Two New Sciences, the author states that “for el-
evations [angles of projection] which exceed or fall short of 45°
by equal amounts, the ranges are equal.” Prove this statement.
See Fig. 4-45. (b) For an initial speed of 30.0 m/s and a range of
20.0 m, find the two possible elevation angles of projection.

9. The kicker on a football team can give the ball an initial speed
of 25 m/s. Within what angular range must he kick the ball if
he is to just score a field goal from a point 50 m in front of the
goalposts whose horizontal bar is 3.44 m above the ground?

10. A radar observer on the ground is “watching” an approaching
projectile. At a certain instant she has the following informa-
tion: the projectile is at maximum altitude and is moving hori-
zontally with speed v; the straight-line distance to the projec-
tile is L; the line of sight to the projectile is at an angle �
above the horizontal. (a) Find the distance D between the ob-
server and the point of impact on the projectile. D is to be ex-
pressed in terms of the observed quantities v, L, �, and the
known value of g. Assume a flat Earth; assume also that the
observer lies in the plane of the projectile’s trajectory. (b)
How can you tell whether the projectile will pass over the ob-
server’s head or strike the ground before reaching her?

11. Show that for a projectile d2(v2)/dt2 � 2g2.

12. A projectile is launched from the origin at an angle 
0 with the
horizontal; the subsequent position is given by For small
enough angles the distance from the origin always in-
creases. However, if a projectile is launched nearly straight up
it rises to a highest point, and then moves back toward the ori-
gin, so that the distance to the origin first increases then de-
creases. What initial launch angle 
c divides the two types of
motion? (See “Projectiles: Are They Coming or Going?,” by
James S. Walker, The Physics Teacher, May 1995, p. 282.)

13. A balloon is descending through still air at a constant speed
of 1.88 m/s. The total weight of the balloon, including pay-

r � � rB �
rB(t).



and at the end of this interval, and (e) the instantaneous accel-
eration vector at the beginning and at the end of this interval.
Measure angles counterclockwise from the x axis.

21. A child whirls a stone in a horizontal circle 1.9 m above the
ground by means of a string 1.4 m long. The string breaks,
and the stone flies off horizontally, striking the ground 11 m
away. What was the centripetal acceleration of the stone while
in circular motion?

22. A woman 1.6 m tall stands upright at latitude 50° for 24 h. (a)
During this interval, how much farther does the top of her
head move than the soles of her feet? (b) How much greater is
the acceleration of the top of her head than the acceleration of
the soles of her feet? Consider only effects associated with
the rotation of the Earth.

23. A particle moves in a plane according to

where � and R are constants. This curve, called a cycloid, is
the path traced out by a point on the rim of a wheel that rolls
without slipping along the x axis. (a) Sketch the path. (b) Cal-
culate the instantaneous velocity and acceleration when the
particle is at its maximum and minimum value of y.

24. Snow is falling vertically at a constant speed of 7.8 m/s. (a)
At what angle from the vertical and (b) with what speed do
the snowflakes appear to be falling as viewed by the driver of
a car traveling on a straight road with a speed of 55 km/h?

25. One of the early attempts to measure the speed of light was to
measure the position of a star located at right angles to the
path of the Earth in its orbit (Fig. 4-47). (a) If the measured
angle � is found to be between 89°59�39.3� and 89°59�39.4�,
then what would be the range of values for the speed of light?
(b) Describe a reasonable method for measuring this angle to

y � R cos �t � R, 

x � R sin �t � �Rt

the above accuracy. The answer to this question might not be
as straightforward as you think!

26. A pilot is supposed to fly due east from A to B and then back
again to A due west. The velocity of the plane in air is and
the velocity of the air with respect to the ground is The
distance between A and B is l and the plane’s air speed is con-
stant. (a) If (still air), show that the time for the round
trip is (b) Suppose that the air velocity is due east
(or west). Show that the time for a round trip is then

(c) Suppose that the air velocity is due north (or south). Show
that the time for a round trip is then

(d) In parts (b) and (c) one must assume that Why?

27. Two highways intersect, as shown in Fig. 4-48. At the instant
shown, a police car P is 41 m from the intersection and mov-
ing at 76 km/h. Motorist M is 57 m from the intersection and
moving at 62 km/h. At this moment, what is the velocity
(magnitude and angle with the line of sight) of the motorist
with respect to the police car?

u � v.

tN �
t0

√1 � u2/v2 .

tE �
t0

1 � u2/v2 .

t0 � 2l/v.
u � 0

uB.
vB
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Figure 4-47. Problem 25.

Figure 4-48. Problem 27.
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COMPUTER PROBLEMS

1. The force on a 5.0-kg particle is given by 
and Plot the motion of the particle on an xy
graph. Use an initial position of m, and an ini-
tial velocity of m/s. Try different step sizesv0y � 4.0v0x � 0,

y0 � 0x 0 � 2.0
Fy � �(20.0 N/m)y.

Fx � �(20.0 N/m)x for �t until you find one for which the trajectory takes the object
back to within 1.0 cm of the initial position. What is the shape of
the motion? How long did it take to return to the starting point?
What happens to the trajectory if you use m/s instead?v0y � 3.0

28. The New Hampshire State Police use aircraft to enforce
highway speed limits. Suppose that one of the airplanes has
a speed of 135 mi/h in still air. It is flying straight north so
that it is at all times directly above a north-south highway. A
ground observer tells the pilot by radio that a 70 mi/h wind
is blowing but neglects to give the wind direction. The pilot
observes that in spite of the wind the plane can travel 135
mi along the highway in 1 h. In other words, the ground
speed is the same as if there were no wind. (a) What is the
direction of the wind? (b) What is the heading of the
plane— that is, the angle between its axis and the highway?



2. The acceleration of a particle is given by ax �
and The initial

position of the particle is at m and the initial velocity
is in the y direction only. (a) Using a step size of 
choose an initial value for vy so that the numerical solution of
the trajectory is a circle. Compare your result to the theoretical
value. (b) Repeat, except now look for an initial value of vy

that results in a trajectory which is an ellipse that is twice as
long as it is wide. There are actually two answers to part (b);
find both.

3. A 150-g ball is thrown straight upward from the edge of a cliff
with an initial speed of 25 m/s. On the way down it misses the
cliff edge and continues to fall to the ground 300 m below. In
addition to the force of gravity it is subjected to a force of air
resistance given by D � bv with b � 0.0150 kg/s. (a) How
long is the ball in flight? (b) What is its speed just before it hits
the ground? (c) What is the ratio of this speed to its terminal

�t � 0.1 s,
rB0 � 5î

ay � �(10.0 m2/s2)y/� y� 3.�(10.0 m2/s2)x/� x �3
speed? (Try using the Euler method with a time interval of
�t � 0.001 s.)

4. The velocity of a projectile subject to air resistance approaches
a terminal velocity. Suppose the net force is , where
b is the drag coefficient and the y axis is chosen to be positive
in the upward direction. At terminal velocity vT the net force
vanishes, so Notice it has no horizontal compo-
nent. The projectile eventually falls straight down.

Use a computer program or spreadsheet to “watch” a pro-
jectile approach terminal velocity. Consider a 2.5-kg projectile
launched with an initial speed of 150 m/s, at an angle of 40°
above the horizontal. Take the drag coefficient to be 
kg/s. Numerically integrate Newton’s second law and display
results for every 0.5 s from (the time of launch) to the
time the y component of the velocity is 90% of vT . Plot vx(t)
and vy(t) on the same graph. Notice that vx approaches 0 as vy

approaches vT .

t � 0

b � 0.50

vT � �(mg/b).

mgB � bvB
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APPLICATIONS OF
NEWTON’S LAWS

In Chapter 3 we introduced Newton’s laws and gave

some examples of their applications. Those examples were deliberately oversimplified, so that the use of the

laws could be illustrated. In the process of oversimplification, we lost some of the physical insight.

In this chapter we continue with further applications of Newton’s laws, particularly to friction and other

contact forces, to circular motion, and to nonconstant forces. Finally, we show how using a noninertial ref-

erence frame produces effects that can be analyzed by introducing inertial forces or pseudoforces that, in

contrast to real forces, are not caused by specific objects in the environment.

5-1 FORCE LAWS

Before we return to applications of Newton’s laws, we
should briefly discuss the nature of the forces themselves.
We have used the equations of motion to analyze and calcu-
late the effects of forces, but they tell us nothing about the
causes of the forces. To understand what causes a force we
must have a detailed microscopic understanding of the in-
teractions of objects with their environment. On the most
fundamental level, nature appears to operate through a small
number of fundamental forces. Physicists have traditionally
identified four basic forces: (1) the gravitational force,
which originates with the presence of matter; (2) the elec-
tromagnetic force, which includes basic electric and mag-
netic interactions and is responsible for the binding of
atoms and the structure of solids; (3) the weak nuclear
force, which causes certain radioactive decay processes and
certain reactions among the fundamental particles; and (4)
the strong force, which operates among the fundamental
particles and is responsible for binding the nucleus together.

On the most microscopic scale—for example, two pro-
tons in a typical nucleus—the relative strengths of these
forces would be: strong (relative strength � 1); electromag-
netic (10�2); weak (10�9); gravitational (10�38). On the fun-
damental scale, gravity is exceedingly weak and has negli-
gible effects. You can get some appreciation for the
weakness of gravity from some common experiments—for

example, lifting a few bits of paper with an electrostatically
charged comb or lifting a few nails or paper clips with a
magnet. The magnetic force of a small magnet is sufficient
to overcome the gravitational force exerted by the entire
Earth on these objects!

The search for ever more simplification has led physi-
cists to try to reduce the number of forces even below four.
In 1967, a theory was proposed according to which the
weak and electromagnetic forces could be regarded as parts
of a single force, called the electroweak force. The combi-
nation or unification of these two forces is similar to the
19th-century unification of the separate electric and mag-
netic forces into a single electromagnetic force. Other new
theories, called grand unification theories, have been pro-
posed that combine the strong and electroweak forces into a
single framework, and there are even “theories of every-
thing,” which attempt to include gravity as well.

Fortunately, our analysis of mechanical systems need not
invoke such theories. In fact, everything we study about or-
dinary mechanical systems involves only two forces: gravity
and electromagnetism. The gravitational force is apparent in
the Earth’s attraction for objects, which gives them their
weight. The much weaker gravitational attraction of one lab-
oratory object for another is almost always negligible.

All the other forces we normally consider are ultimately
electromagnetic in origin: contact forces, such as the nor-

CHAPTER 5CHAPTER 5



mal force exerted when one object pushes on another and
the frictional force produced when one surface rubs against
another; viscous forces, such as air resistance; tensile
forces, such as in a stretched rope or string; elastic forces,
as in a spring; and many others. Microscopically, these
forces originate with the forces exerted by one atom on an-
other. Fortunately, when we deal with ordinary mechanical
systems we can ignore the microscopic basis and replace
the complicated substructure with a single effective force of
a specified magnitude and direction.

5-2 TENSION AND NORMAL
FORCES*

Figure 5-1a shows a worker pulling with a force on a
string that is attached to a crate, accelerating it over the sur-
face that we assume to be frictionless. The force on the
crate is exerted not directly by the worker, but rather by the
string. We call this force a tension 

Partial free-body diagrams (including only horizontal
forces) for the string and crate are shown in Fig. 5-1b. The
string pulls on the crate with tension and therefore by
Newton’s third law the crate must pull on the string with a
force equal in magnitude to but in the opposite direction.
We assume that the string is very thin, so the tension force
is always along the direction of the string. Furthermore, we
assume that the string is of negligible mass.

Choosing the x axis to be horizontal with its positive di-
rection to the right in Fig. 5-1, we find the net force on the
string in the x direction to be (Here P and T
represent respectively the magnitudes of the forces and

Newton’s second law in the form then
gives because we have assumed
that the mass of the string is zero. From this we conclude
that 

The net force on the crate in the x direction is 
and Newton’s second law gives Thus

The thin, massless string simply
transmits the applied force from one end to the other with
no change in direction or magnitude—that is, the force 
that the worker applies to the string is equal to the force
that the string applies to the crate.

The ideal string likewise does not stretch. Suppose we
add another crate to our system, creating the configuration
shown in Fig. 5-2a. As before, the magnitude of the tension

in the first string is equal to P. Again choosing the x axis
to be horizontal with positive to the right, we can find the x
component of the net force on crate 1 to be

and, similarly for crate 2,
Applying Newton’s second law gives:� Fx � T2 .

� Fx � T1 � T2 � P � T2

T
B

1

P
B

ax � T/m crate � P/m crate .
T � mcrate ax .

� Fx � T,
P � T.

P � T � mstringax � 0,
� Fx � maxT

B
.)

P
B

� Fx � P � T.

T
B

T
B

,

T
B

.

P
B

crate 1: (5-1)

crate 2: (5-2)

If the second string (which connects m1 and m2) does not
stretch, then m1 and m2 move with the same velocity and
acceleration. Putting we can combine Eqs.
5-1 and 5-2 to find

(5-3)

That is, the two crates accelerate just like a single system of
mass to which the force is applied. Consider-
ing only the effort exerted by the worker, we could replace
the two crates by a single crate of mass 

The tension force arises because each small element of
the string pulls on the element next to it (and is in turn pulled
by that element, according to Newton’s third law). In this
way, a force pulling on one end of the string is transmitted to
an object at the other end. This force is due to the force be-
tween atoms and is ultimately electromagnetic in origin.

As shown in Fig. 5-3a, any particular element i of the
string experiences a tension acting in one direction due to
element and an equal tension acting in the opposite
direction due to element If we were to cut the string
at any point and tie a spring scale between the cut ends, the

i � 1.
i � 1,

T
B

m 1 � m 2 .

P
B

m 1 � m 2

ax �
P

m 1 � m 2
and T2 �

m 2

m 1 � m 2
P.

a1x � a2x � ax ,

T2 � m2 a2x

P � T2 � m1a1x
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*To simplify the notation in this chapter, we will no longer label each
force with subscripts indicating the body that the force acts on and the
body that causes the force. However, as you study the examples in this
chapter and solve the problems, you should continue to identify these two
bodies for each force that acts.

(a)

y

x

(b) String Crate

PT T

m

P

Figure 5-1. (a) A worker pulls with force P on a string at-
tached to a crate. (b) Partial free-body diagrams of the string and
the crate, showing only the horizontal forces.

Figure 5-2. (a) A worker pulls on a string attached to a row
of two crates. (b) Partial free-body diagrams of the two crates,
showing only the horizontal forces.

(a)

y

x

(b)

T2T2 T1

P

m2 m1

m1m2



spring scale would read the magnitude of the tension T di-
rectly (Fig. 5-3b).

Note that the spring scale does not read 2T, even though
a tension pulls in each direction on the scale. In the same
way, when we hang an object of weight W from a spring
scale, the scale reads W and not 2W, even though there is a
downward force W on the spring scale from the weight of
the object and also an upward force equal to W on the top
end of the scale due to whatever is supporting the scale.

Sample Problem 5-1. Figure 5-4a shows a block of
mass m � 15.0 kg hanging from three strings. What are the ten-
sions in the three strings?

Solution We first consider the knot at the junction of the three
strings to be the “body.” Figure 5-4b shows the free-body diagram
of the knot, which is at rest under the action of the three forces  

and which are due to the tensions in the strings. Choos-
ing the x and y axes as shown, we can resolve the forces into their x
and y components, as shown in Fig. 5-4c. The acceleration compo-
nents are zero, so Newton’s second law applied to the knot gives

Figure 5-4d shows the free-body diagram of the block. The forces
have only y components, and once again the acceleration is zero, so

� Fy � TC � mg � may � 0.

y component: � Fy � TA sin 30� � TB sin 45� � TC � may � 0.

x component: � Fx � �TA cos 30� � TB cos 45� � max � 0

T
B

C ,T
B

B ,
T
B

A ,

T
B

Solving for TC , we find

Substituting this result, we can solve the two equations for the
forces on the knot simultaneously to find

Check these results to see whether the vector sum of the three
forces acting on the knot is indeed zero.

Sample Problem 5-2. A package (mass 2.4 kg) tied to a
string hangs from the ceiling of an elevator (Fig. 5-5a). What is the
tension in the string when the elevator is (a) descending with con-
stant velocity, and (b) ascending with an acceleration of 3.2 m/s2?

Solution (a) The free-body diagram of the package is shown in
Fig. 5-5b. Two forces act on the package: the upward force due to
the tension in the string and the downward force of the Earth’s grav-
ity. We choose the y axis to be vertical and positive upward. The net
force on the package is Newton’s second law

then gives or, solving for the ten-
sion T,

T � m(g � ay).

T � mg � may(� Fy � may)
� Fy � T � mg.

TA � 108 N and TB � 132 N.

TC � mg � (15.0 kg)(9.80 m/s2) � 147 N.
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Figure 5-3. (a) Three small elements of a stretched string, la-
beled i, and The forces acting on element i are
shown. (b) If the string is cut so that element i is replaced by a
spring scale (the rest of the string being undisturbed), the scale
reads the tension T.

i � 1.i � 1,

(a)

(b)

T TT

TT

i – 1 i + 1i

Figure 5-4. Sample Problem 5-1. (a) A block hangs from three strings A, B, and C. (b) The free-body diagram of the knot
that joins the strings. (c) The free-body diagram of the knot, with and resolved into their x and y vector components.
The double lines on a vector remind us that we have replaced the vector by its vector components. (d) The free-body diagram
of the block. 
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Figure 5-5. Sample Problem 5-2. (a) A package hangs from a
string in an ascending elevator. (b) The free-body diagram of the
package.



When the elevator moves with constant velocity, and so

(b) When the elevator moves with the tension is

In this case the elevator is moving upward and increasing its
speed. Would you expect the tension to be greater than it is when
the elevator is at rest or moving with constant velocity? Suppose
the elevator were moving downward and braking, so that its accel-
eration is upward and again equal to �3.2 m/s2. Would the tension
in the string have the same value? Is this reasonable? What would
be the tension if the elevator were in free fall?

Compare this problem with Sample Problem 3-7 and account
for any similarities or differences.

The Normal Force
Consider a book resting on a table, as shown in Fig. 5-6a.
Gravity exerts a downward force on the book, but the book
has no vertical acceleration. The net vertical force on the
book must therefore be zero, so there must be an additional
upward force acting on it. This force is the normal force ex-
erted on the book by the table. In this sense, the word “nor-
mal” means “perpendicular”— the normal force exerted by a
surface is always perpendicular to (or normal to) the surface.

Even though the normal force shown in the free-body di-
agram of Fig. 5-6b is equal and opposite to the weight, it is
not the reaction force to the weight. The weight is the force
of the Earth on the book, and its reaction force is the force
exerted by the book on the Earth. The reaction force to the
normal force is the downward force exerted by the book on
the table; it would appear in a free-body diagram of the
table. Remember that the action– reaction pairs of Newton’s
third law never act on the same body, so the forces N and W
that act on the book cannot be an action– reaction pair.

If someone placed a hand on top of the book and pushed
downward with a force P, the book would remain at rest.
For an acceleration of zero, the net force on the book must
be zero and so the total downward force must equal
the total upward force N. The normal force must therefore
increase as P increases, since Eventually, P
could become large enough to exceed the ability of the

N � W � P.

W � P

T � m(g � ay) � (2.4 kg)(9.8 m/s2 � 3.2 m/s2) � 31 N.

ay � �3.2 m/s2,

T � mg � (2.4 kg)(9.8 m/s2) � 24 N.

ay � 0 table to provide the upward normal force, and the book
would break through the tabletop.

Tension and normal forces are examples of contact
forces, in which one body exerts a force on another because
of the contact between them. These forces originate with
the atoms of each body—each atom exerts a force on its
neighbor (which may be an atom of another body). A con-
tact force can be maintained only if it does not exceed the
interatomic forces within either of the bodies; otherwise the
binding between atoms can be overcome and the string or
the surface will split into pieces.

Sample Problem 5-3. A sled of mass kg is
pulled along a frictionless horizontal surface by a cord (Fig. 5-7a).
A constant force of N is applied to the cord. Analyze the
motion if (a) the cord is horizontal and (b) the cord makes an an-
gle of with the horizontal.

Solution (a) The free-body diagram with the cord horizontal is
shown in Fig. 5-7b. The surface exerts a force N, the normal force,
on the sled. The components of the net force acting on the sled are

and and applying Newton’s second
law we obtain

If there is to be no vertical motion, the sled remains on the surface
and Thus

The horizontal acceleration is

ax �
P

m
�

21.0 N

7.5 kg
� 2.80 m/s2.

N � mg � (7.5 kg)(9.80 m/s2) � 74 N.

ay � 0.

y component (� Fy � may):  N � mg � may

x component (� Fx � max): P � max

� Fy � N � mg,� Fx � P

� � 15�

P � 21.0

m � 7.5
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Figure 5-6. (a) A book resting on a table. (b) The free-body
diagram of the book.

Figure 5-7. Sample Problem 5-3. (a) A sled is pulled along a
frictionless horizontal surface. (b) The free-body diagram of the
sled when (c) The free-body diagram of the sled when
� � 15�.

� � 0�.

(a) (b)

y

x

W

N

(b)
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Note that, if the surface is truly frictionless, as we have as-
sumed, the person would find it difficult to continue to exert this
force on the sled for very long. After 30 s at this acceleration, the
sled would be moving at 84 m/s or 188 mi/h!
(b) When the pulling force is not horizontal, the free-body dia-
gram is shown in Fig. 5-7c, and the components of the net force
are cos � and sin � � mg. Newton’s sec-
ond law then gives

Let us assume for the moment that the sled stays on the surface;
that is, Then

A normal force is always perpendicular to the surface in contact;
with the coordinates chosen as in Fig. 5-7b, N must be positive. If
we increase P sin �, N would decrease and at some point would
become zero. At that point the sled would leave the surface, under
the influence of the upward component of P, and we would need
to analyze its vertical motion. With the values of P and � we have
used, the sled remains on the surface and 

Note that ax is smaller in part (b) than in part (a). Can you ex-
plain this?

Sample Problem 5-4. A block of mass kg is
held in place by a string on a frictionless plane inclined at an an-
gle of 27° (see Fig. 5-8a). (a) Find the tension in the string and the
normal force exerted on the block by the plane. (b) Analyze the
subsequent motion after the string is cut.

Solution (a) The free-body diagram of the block is shown in Fig.
5-8b. The block is acted on by the normal force its weight

and a force due to the tension of the string. We
choose a coordinate system with the x axis along the plane and the
y axis perpendicular to it. With this choice, two of the forces 
( and are already resolved into components, and the motion
that will eventually occur along the plane has only one component
as well. The weight is resolved into its x component �mg sin �
and its y component �mg cos �. The net force in the x direction is
then sin � and the net force in the y direction is

cos �.
In the static case, and Newton’s second law

then gives and so

Examine these equations. Are they reasonable? What happens in
the limit It looks like the tension would be zero. Would
you expect the tension to be zero if the block were resting on a
horizontal surface? What happens to the normal force when

Is this reasonable? What happens to T and N in the limit
of You should form the habit of asking questions like
these before starting on the algebra to find the solution. If there is
an error, now is the best time to find and correct it.

Solving the equations,

N � mg cos � � (18.0 kg)(9.80 m/s2)(cos 27�) � 157 N.

T � mg sin � � (18.0 kg)(9.80 m/s2)(sin 27�) � 80 N, 

� � 90�?
� � 0�?

� � 0�?

T � mg sin � � 0 and N � mg cos � � 0.

� Fy � may � 0,� Fx � max � 0
ay � 0.ax � 0

� Fy � N � mg
� Fx � T � mg

N
B

)T
B

T
B

W
B

� mgB
N
B

,

m � 18.0

ay � 0.

ax �
P cos �

m
�

(21.0 N)(cos 15�)

7.5 kg
� 2.70 m/s2. 

N � mg � P sin � � 74 N � (21.0 N)(sin 15�) � 69 N,

ay � 0.

y component (� Fy � may):  N � P sin � � mg � may

x component (� Fx � max): P cos � � max

� Fy � N � P� Fx � P

(b) When the string is cut, the tension disappears from the equations
and the block is no longer in equilibrium. The components of the
net force are now sin � and cos �.
Newton’s second law for the x and y components now gives

Cutting the string doesn’t change the motion in the y direction (the
block doesn’t jump off the plane!), so as before and the
normal force still equals mg cos �, or 157 N. In the x direction

The negative sign shows that the block accelerates in the negative
x direction— that is, down the plane. Check the limits � � 0° and
� � 90°. Are they consistent with your expectations?

Additional Applications
Here we consider some additional applications of Newton’s
laws. These examples involve two objects that must be ana-
lyzed separately but not quite independently, because the
motion of one object is constrained by the motion of an-
other, such as when they are attached to one another by a
string of fixed length. Study these examples, and note the
independent choices of coordinate systems used for the sep-
arate objects.

Sample Problem 5-5. Two blocks with unequal masses
m1 and m2 are connected by a string that passes over an ideal pul-
ley (whose mass is negligible and that rotates with negligible fric-
tion), as shown in Fig. 5-9. (The arrangement is also known as an

ax � �g sin � � �(9.80 m/s2)(sin 27�) � �4.45 m/s2.

ay � 0

�mg sin � � max and N � mg cos � � may.

� Fy � N � mg� Fx � �mg
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Figure 5-8. Sample Problem 5-4. (a) A mass m is supported
at rest by a string on a frictionless inclined plane. (b) The free-
body diagram of m. Note that the xy coordinate system is tilted so
that the x axis is parallel to the plane. The weight has been re-
solved into its vector components; the double line through the
vector reminds us that this vector has been replaced by its
components.
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Atwood’s machine.*) Let m2 be greater than m1 . Find the tension
in the string and the acceleration of the blocks.

Solution We choose our coordinate system with the positive y
axis upward; only y components of forces and accelerations need
be considered. The free-body diagrams are shown in Fig. 5-9b.
For m1 the net force is for m2,

Applying Newton’s second law in the y direc-
tion for each block gives:

block 1:

block 2:

where a1y and a2y are the respective accelerations of m1 and m2 . If
the string is massless and doesn’t stretch, and if the pulley is
massless and frictionless, then the tension has the same magnitude
everywhere in the string and the magnitudes of the accelerations
of the blocks are equal. (This ideal pulley doesn’t change the mag-
nitude of the tension or the acceleration from one side of the string
to the other; its only function is to change their directions.) We set

T2 � m 2 g � m 2 a2y

T1 � m 1g � m1a1y

� Fy � T2 � m2 g.
� Fy � T1 � m 1g;

the common value of the tension in the string. If we
let a represent the common magnitude of the accelerations, then
a1y � a (a positive number, because the less massive block 1
moves upward) and (a negative number, because the
more massive block 2 moves downward). Making these substitu-
tions and solving the two equations simultaneously, we find

(5-4)

Consider what happens in the limiting cases 
and Note that and be sure

you understand why this must be true. If the system is accelerat-
ing, then the tension in the string is not equal to the weight of ei-
ther block.

Sample Problem 5-6. Figure 5-10a shows a block of
mass m1 on a frictionless horizontal surface. The block is pulled
by a string of negligible mass that is attached to a hanging block
of mass m2 . The string passes over a pulley whose mass is negli-
gible and whose axle rotates with negligible friction. Find the ten-
sion in the string and the acceleration of each block.

Solution Figures 5-10b and 5-10c show the free-body diagrams
for the two blocks.

Block 1 is acted on by a normal force due to the surface, by
gravity, and by a force due to the tension in the string. The compo-
nents of the net force on block 1 are and

and Newton’s second law for block 1 then
gives:

We expect that block 1 does not move in the y direction, so that

For block 2, there are no forces in the x direction. The net
force in the y direction is and Newton’s second
law gives

If the string is of negligible mass and the pulley is ideal (fric-
tionless and of negligible mass), then the magnitudes of the ten-
sion forces T1 and T2 are equal; we let T represent the common
value of the tension. If the string doesn’t stretch, then the accelera-
tions of the blocks are equal; letting a be the common value of the
acceleration, we set and We now have two
equations:

T � m1a and T � m2 g � m 2(�a).

a2y � �a.a1x � a

T2 � m 2g � m 2 a2y .

� Fy � T2 � m2g,

a1y � 0.

T1 � m1a1x and N � m1g � m1a1y .

� Fy � N � m 1g,
� Fx � T1

m1 g � T � m2 g,m 1 � m 2 .g � 0,
m 2 � 0,m 1 � 0,

a �
m 2 � m 1

m 2 � m 1
g and T �

2m 1m 2

m 1 � m 2
g.

a2y � �a

T1 � T2 � T,
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*George Atwood (1745–1807) was an English mathematician who devel-
oped this device in 1784 for demonstrating the laws of accelerated motion
and measuring g. By making the difference between m1 and m2 small, he
was able to “slow down” the effect of free fall and time the motion of the
falling weight with a pendulum clock, the most precise way to measure
time intervals in his day.
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Figure 5-9. Sample Problem 5-5. (a) Diagram of Atwood’s
machine, consisting of two suspended blocks connected by a
string that passes over a pulley. (b) Free-body diagrams of m1

and m2 .

Figure 5-10. Sample Problem 5-6.
(a) Block m1 is pulled along a smooth
horizontal surface by a string that passes
over a pulley and is attached to block
m2 . (b) The free-body diagram of block
m1 . (c) The free-body diagram of block
m2 .
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Solving these simultaneously, we obtain

(5-5)

It is helpful to consider the limiting cases of these results. What
happens when m1 is zero? We would expect the string to be slack

and m2 to be in free fall The equations correctly
predict these limits. When there is no horizontal force on
block 1 and it does not accelerate; again, the equations give the
correct prediction.

Note that as we should expect. Also, note that T is less
than mg, as we should expect when the block is accelerating
downward (see Sample Problem 5-2).

Do Eqs. 5-5 behave properly in the limit 

Sample Problem 5-7. In the system shown in Fig. 5-
11a, a block (of mass slides on a frictionless plane
inclined at an angle The block is attached by a string to a
second block (of mass The system is released from
rest. Find the acceleration of the blocks and the tension in the
string.

Solution The free-body diagrams for blocks 1 and 2 are shown in
Figs. 5-11b and 5-11c. We choose coordinate systems as shown,
so that one coordinate axis is parallel to the anticipated accelera-
tion of each body. As in the previous examples, we expect that the
tension has a common value and that the vertical motion of m2 and
the motion along the plane of m1 can be described by accelera-
tions of the same magnitude. We arbitrarily assume that m1 moves
in the positive x direction (if our assumption is wrong, a will come
out negative). The components of the net force on m1 are

sin � and cos �, and Newton’s
second law gives (with and 

For m2 the y component of the net force is and
Newton’s second law is (with 

Solving simultaneously gives

(5-6a)

and

(5-6b)T �
m1m2g

m1 � m2
 (1 � sin �).

a �
m2 � m1 sin �

m1 � m2
g

T � m2g � m 2(�a).

a2y � �a)
� Fy � T � m2g,

T � m1g sin � � m1a and N � m1g cos � � 0.

a1y � 0):a1x � a
� Fy � N � m1g� Fx � T � m1g

m 2 � 2.6 kg).
� � 34�.

m 1 � 9.5 kg)

g � 0?

a � g,

m 2 � 0,
(a � g).(T � 0)

a �
m 2

m 1 � m 2
g and T �

m 1m 2

m 1 � m 2
g.

Note that these results duplicate Eqs. 5-5 of Sample Problem 5-6
if we put � � 0 (so that block 1 moves horizontally) and Eqs. 5-4
of Sample Problem 5-5 if we put � � 90° (so that block 1 moves
vertically).

Putting in the numbers, we have

The acceleration comes out to be negative, which means our ini-
tial guess about the direction of motion was wrong. Block 1 slides
down the plane, and block 2 moves upward. Because the dynami-
cal equations do not involve forces that depend on the direction of
motion, this incorrect initial guess has no effect on the equations
and we can accept the final value as correct. In general, this will
not be the case when we consider frictional forces that act oppo-
site to the direction of motion.

For the tension in the string, we find

This value is greater than the weight of m2 which
is consistent with the acceleration of m2 being upward.

5-3 FRICTIONAL FORCES*

A block of mass m moving with initial velocity along a
long horizontal table will eventually come to rest. This means
that, while it is moving, it experiences an average accelera-
tion that points in the direction opposite to its motion. If
(in an inertial frame) we see that a body is accelerated, we al-
ways associate a force, defined from Newton’s second law,
with the motion. In this case we declare that the table exerts a
force of friction, whose average value is on the sliding
block. We generally take friction to mean a contact interac-
tion between solids. Frictionlike effects caused by liquids and
gases are described by other terms (see Section 4-4).

Actually, whenever the surface of one body slides over
that of another, each body exerts a frictional force on the
other. The frictional force on each body is in a direction 

maB av ,

aB av

vB0

(m2 g � 26 N),

T �
(9.5 kg)(2.6 kg)(9.80 m/s2)

9.5 kg � 2.6 kg
 (1 � sin 34�) � 31 N.

a �
2.6 kg � (9.5 kg)(sin 34�)

9.5 kg � 2.6 kg
 (9.80 m/s2) � �2.2 m/s2.
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*See “Friction at the Atomic Scale” by Jacqueline Krim, Scientific Ameri-
can, October 1996, p. 74.

Figure 5-11. Sample Problem 5-7.
(a) Block m1 slides on a frictionless in-
clined plane. Block m2 hangs from a
string attached to m1 . (b) Free-body dia-
gram of m1 . (c) Free-body diagram of
m2 .
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opposite to its motion relative to the other body. Frictional
forces automatically oppose this relative motion and never
aid it. Even when there is no relative motion, frictional
forces may exist between surfaces.

Although we have ignored its effects up to now, friction
is very important in our daily lives. Left to act alone it
brings every rotating shaft to a halt. In an automobile, about
20% of the engine power is used to counteract frictional
forces. Friction causes wear and seizing of moving parts,
and much engineering effort is devoted to reducing it. On
the other hand, without friction we could not walk; we
could not hold a pencil, and if we could it would not write;
wheeled transport as we know it would not be possible.

We want to express frictional forces in terms of the prop-
erties of the body and its environment; that is, we want to
know the force law for frictional forces. In what follows we
consider the sliding (not rolling) of one dry (unlubricated)
surface over another. As we shall see later, friction, viewed
at the microscopic level, is a very complicated phenomenon.
The force laws for dry, sliding friction are empirical in char-
acter and approximate in their predictions. They do not have
the elegant simplicity and accuracy that we find for the grav-
itational force law (Chapter 14) or for the electrostatic force
law (Chapter 25). It is remarkable, however, considering the
enormous diversity of surfaces one encounters, that many
aspects of frictional behavior can be understood qualita-
tively on the basis of a few simple mechanisms.

Consider a block at rest on a horizontal table as in Fig.
5-12a. Attach a spring to it to measure the horizontal force

required to set the block in motion. We find that the block
will not move even though we apply a small force (Fig. 5-
12b). We say that our applied force is balanced by an oppo-
site frictional force exerted on the block by the table, act-
ing along the surface of contact. As we increase the applied
force (Fig. 5-12c, d) we find some definite force at which
the block will “break away” from the surface and begin to
accelerate (Fig. 5-12e). By reducing the force once motion
has started, we find that it is possible to keep the block in
uniform motion without acceleration (Fig. 5-12f ). Figure 5-
12g shows the results of an experiment to measure the fric-
tional force. An increasing force F is applied starting at
about s, after which the frictional force increases with
the applied force and the object remains at rest. At s,
the object suddenly begins to move and the frictional force
becomes constant, independent of the applied force.

The frictional forces acting between surfaces at rest with
respect to each other are called forces of static friction. The
maximum force of static friction (corresponding to the peak
at s in Fig. 5-12g) will be the same as the smallest ap-
plied force necessary to start motion. Once motion is started,
the frictional forces acting between the surfaces usually de-
crease so that a smaller force is necessary to maintain uni-
form motion (corresponding to the nearly constant force at

s in Fig. 5-12g). The forces acting between surfaces in
relative motion are called forces of kinetic friction.

The maximum force of static friction between any pair
of dry unlubricated surfaces follows these two empirical

t 	 4

t � 4

t � 4
t � 2

f
B

F
B

laws: (1) It is approximately independent of the area of
contact over wide limits and (2) it is proportional to the
normal force.*

The ratio of the magnitude of the maximum force of sta-
tic friction to the magnitude of the normal force is called
the coefficient of static friction for the surfaces involved. If
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Figure 5-12. (a–d) An external force applied to a resting
block, is counterbalanced by an equal but opposite frictional force

As is increased, also increases, until reaches a certain
maximum value. (e) The block then “breaks away,” accelerating to
the left. ( f ) If the block is to move with constant velocity, the ap-
plied force must be reduced from the maximum value it had just
before the block began to move. (g) Experimental results; here the
applied force is increased from zero starting at about s,
and the motion suddenly begins at about s. For details of the
experiment, see “Undergraduate Computer-Interfacing Projects,”
by Joseph Priest and John Snyder, The Physics Teacher, May
1987, p. 303.
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*The two laws of friction were first discovered experimentally by
Leonardo da Vinci (1452–1519). Leonardo’s statement  of the two laws
was remarkable, coming as it did two centuries before Newton developed
the concept of force. The mathematical expressions of the laws of friction
and the concept of the coefficient of friction were developed by Charles
Augustin Coulomb (1736–1806), who is best known for his studies of
electrostatics (see Chapter 25).



fs represents the magnitude of the force of static friction, we
can write

(5-7)

where 
s is the coefficient of static friction and N is the
magnitude of the normal force. The equality sign holds
only when fs has its maximum value.

The force of kinetic friction fk between dry, unlubricated
surfaces follows the same two laws as those of static fric-
tion. (1) It is approximately independent of the area of con-
tact over wide limits and (2) it is proportional to the normal
force. The force of kinetic friction is also reasonably inde-
pendent of the relative speed with which the surfaces move
over each other.

The ratio of the magnitude of the force of kinetic fric-
tion to the magnitude of the normal force is called the coef-
ficient of kinetic friction. If fk represents the magnitude of
the force of kinetic friction, then

(5-8)

where 
k is the coefficient of kinetic friction.
Both 
s and 
k are dimensionless constants, each being

the ratio of (the magnitudes of) two forces. Usually, for a
given pair of surfaces 
s 	 
k. The actual values of 
s and

k depend on the nature of both the surfaces in contact. In
most cases we can regard them as being constants (for a
given pair of surfaces) over the range of forces and veloci-
ties we commonly encounter. Both 
s and 
k can exceed
unity, although commonly they are less than 1. Table 5-1
shows some representative values of 
s and 
k .

fk � 
kN,

fs � 
sN,

Note that Eqs. 5-7 and 5-8 are relations between the
magnitudes only of the normal and frictional forces. These
forces are always directed perpendicularly to one another.

The Microscopic Basis of Friction
On the atomic scale even the most finely polished surface is
far from flat. Figure 5-13, for example, shows an actual
profile, highly magnified, of a steel surface that would be
considered to be highly polished. One can readily believe
that when two bodies are placed in contact, the actual mi-
croscopic area of contact is much less than the true area of
the surface; in a particular case these areas can easily be in
the ratio of 1:104.

The actual (microscopic) area of contact is proportional
to the normal force, because the contact points deform plas-
tically under the great stresses that develop at these points.
Many contact points actually become “cold-welded” to-
gether. This phenomenon, surface adhesion, occurs because
at the contact points the molecules on opposite sides of the
surface are so close together that they exert strong intermol-
ecular forces on each other.

When one body (a metal, say) is pulled across another,
the frictional resistance is associated with the rupturing of
these thousands of tiny welds, which continually reform as
new chance contacts are made (see Fig. 5-14). Radioactive
tracer experiments have shown that, in the rupturing
process, small fragments of one metallic surface may be
sheared off and adhere to the other surface. If the relative
speed of the two surfaces is great enough, there may be lo-
cal melting at certain contact areas even though the surface
as a whole may feel only moderately warm. The “stick and
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Surfaces 
s 
 k

Wood on wood 0.25–0.5 0.2
Glass on glass 0.9–1.0 0.4
Steel on steel, clean surfaces 0.6 0.6
Steel on steel, lubricated 0.09 0.05
Rubber on dry concrete 1.0 0.8
Waxed wood ski on dry snow 0.04 0.04
Teflon on Teflon 0.04 0.04

aValues are approximate and are intended only as estimates. The actual 
coefficients of friction for any pair of surfaces depend on such conditions
as the cleanliness of the surfaces, the temperature, and the humidity.

Table 5-1 Coefficients of Frictiona

Figure 5-13. A magnified section of a highly polished steel
surface. The vertical scale of the surface irregularities is several
thousand atomic diameters. The section has been cut at an angle
so that the vertical scale is exaggerated with respect to the hori-
zontal scale by a factor of 10.

(b) (a)

Figure 5-14. The mechanism of sliding friction. (a) The upper surface is sliding to the right
over the lower surface in this enlarged view. (b) A detail, showing two spots where cold welding has
occurred. Force is required to break these welds and maintain the motion. If the normal force in-
creases, the surfaces are pushed together so that more welds form and the frictional force increases.



slip” events are responsible for the noises that dry surfaces
make when sliding across one another as, for example, the
squealing chalk on the blackboard.

The coefficient of friction depends on many variables,
such as the nature of the materials, surface finish, surface
films, temperature, and extent of contamination. For exam-
ple, if two carefully cleaned metal surfaces are placed in a
highly evacuated chamber so that surface oxide films do not
form, the coefficient of friction rises to enormous values
and the surfaces actually become firmly “welded” together.
The admission of a small amount of air to the chamber so
that oxide films may form on the opposing surfaces reduces
the coefficient of friction to its “normal” value.

The frictional force that opposes one body rolling over
another is much less than that for sliding motion; this gives
the advantage to the rolling wheel over the sliding sledge.
This reduced friction is due in large part to the fact that, in
rolling, the microscopic contact welds are “peeled” apart
rather than “sheared” apart as in sliding friction. This re-
duces the frictional force by a large factor.

Frictional resistance in dry, sliding friction can be re-
duced considerably by lubrication. This technique was used
in ancient Egypt to move the blocks from which the pyra-
mids were built. A still more effective technique is to intro-
duce a layer of gas between the sliding surfaces; a labora-
tory air track and the gas-supported bearing are two
examples. Friction can be reduced still further by suspend-
ing an object by means of magnetic forces. Magnetically
levitated trains now under development have the potential
for high-speed, nearly frictionless travel.

Sample Problem 5-8. A block is at rest on an inclined
plane making an angle � with the horizontal, as in Fig. 5-15a. As
the angle of incline is raised, it is found that slipping just begins at
an angle of inclination What is the coefficient of static
friction between block and incline?

Solution The forces acting on the block, considered to be a parti-
cle, are shown in Fig. 5-15b. The weight of the block is , the
normal force exerted on the block by the inclined surface is ,
and the force of friction exerted by the inclined surface on the
block is . Note that the resultant force exerted by the inclined
surface on the block, , is no longer perpendicular to the
surface of contact, as was true for frictionless surfaces .
The block is at rest, so that Newton’s second law gives .� F

B
� 0

( f
B

s � 0)
N
B

� f
B

s

f
B

s

N
B

mgB

�s � 15�.

Resolving the weight into its x and y components (see Fig. 5-8), we
can find the components of the net force to be sin �
and If the block is at rest, then and

and Newton’s second law gives

At the angle �s where slipping just begins, fs has its maximum
value of 
sN. Evaluating fs and N from the above equations, we
then have

Hence measurement of the angle of inclination at which slipping
just starts provides a simple experimental method for determining
the coefficient of static friction between two surfaces. Note that
this determination is independent of the weight of the object.

You can use similar arguments to show that the angle of incli-
nation �k required to maintain a constant speed for the block as it
slides down the plane, once it has been started by a gentle tap, is
given by

where �k � �s. With the aid of a ruler to measure the tangent of
the angle of inclination, you can now determine 
s and 
k for a
coin sliding down your textbook.

Sample Problem 5-9. Consider an automobile mov-
ing along a straight horizontal road with a speed v0 . The driver ap-
plies the brakes and brings the car to a halt without skidding. If
the coefficient of static friction between the tires and the road is

s , what is the shortest distance in which the automobile can be
stopped?

Solution The forces acting on the automobile are shown in Fig. 
5-16. The car is assumed to be moving in the positive x direction.
If we assume that fs is a constant force, we have uniformly decel-
erated motion.

Our plan is to use Newton’s laws to find the acceleration of
the automobile, and then to use the equations of kinematics from
Chapter 2 to find the stopping distance. From the free-body dia-
gram of Fig. 5-16b, we obtain the component equations for the net
force, and and thus for Newton’s
second law

where we have put because the car does not move in the
vertical direction. From these equations and the force of static
friction we obtain

If the car starts with velocity v0x and ends with velocity we
can use Eq. 2-26 to find the stopping time

The stopping distance can then
be found from Eq. 2-28 using this value
for t:

.

The greater is the initial speed, the longer is the distance re-
quired to come to a stop; in fact, this distance varies as the square

d � v0xt � 1
2axt 2 � v0 � v0


sg
� � 1

2(�
sg)� v0


sg
�

2

�
v0

2

2
sg

(x � x0 � v0xt � 1
2axt2)

d � x � x 0t � �v0x /ax � v0 /
sg.
(vx � v0x � axt)

vx � 0,

ax � �
fs

m
� �


sN

m
� �


s(mg)

m
� �
sg.

( fs � 
sN )

ay � 0

�fs � max and N � mg � may � 0,

� Fy � N � mg,� Fx � �fs


k � tan �k ,


s �
fs

N
�

mg sin �s

mg cos �s
� tan �s � tan 15� � 0.27.

fs � mg sin � � 0 and N � mg cos � � 0.

ay � 0,
ax � 0� Fy � N � mg cos �.

� Fx � fs � mg
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Figure 5-15. Sample Problem 5-8. (a) A block at rest on an
inclined plane. (b) A free-body diagram of the block.
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of the initial velocity. Also, the greater is the coefficient of static
friction between the surfaces, the less is the distance required to
come to a stop.

We have used the coefficient of static friction in this problem,
rather than the coefficient of kinetic friction, because we assume
there is no sliding between the tires and the road. Furthermore, we
have assumed that the maximum force of static friction

operates because the problem seeks the shortest dis-
tance for stopping. With a smaller static frictional force the dis-
tance for stopping would obviously be greater. The correct brak-
ing technique required here is to keep the car just on the verge of
skidding. (Cars equipped with anti-lock braking systems maintain
this condition automatically). If the surface is smooth and the
brakes are fully applied, sliding may occur. In this case 
k re-
places 
s , and the distance required to stop would increase be-
cause 
k is smaller than 
s .

As a specific example, if mi/h � 27 m/s, and
(a typical value), we obtain

Note that this result is independent of the mass of the car. On rear-
wheel drive cars, with the engine in front, it is a common practice
to “weigh down” the trunk in order to increase safety when dri-
ving on icy roads. How can this practice be consistent with our re-
sult that the stopping distance is independent of the mass of the
car? (Hint: See Exercise 10.)

Sample Problem 5-10. Repeat Sample Problem 5-7,
taking into account a frictional force between block 1 and the
plane. Use the values and 

Solution As in Sample Problem 5-7, we assume that block 1
moves down the plane, and so the frictional force acts up the
plane. Figure 5-17a shows the free-body diagram for m1. Resolv-


k � 0.15.
s � 0.24

d �
v0

2

2
sg
�

(27 m/s)2

2(0.60)(9.8 m/s2)
� 62 m.


s � 0.60
v0 � 60

( fs � 
sN)

ing the forces on m1 into their components, we have
sin � and cos �, and New-

ton’s second law gives

where we have put and as in Sample Problem 
5-7. The net force on block 2 is and with

Newton’s second law gives

Putting cos � and solving the remaining two
equations for a and T, we obtain

(5-9a)

(5-9b)

Note that, in the limit of Eqs. 5-9 reduce to Eqs. 5-6
of Sample Problem 5-7.

Let us now find the numerical values of a and T:

The negative value of a is consistent with the way we set up our
equations; the block moves down the plane, as it did in Sample
Problem 5-7, but with less acceleration than it did in the friction-
less case (2.2 m/s2).

The tension in the string is less than it was in the frictionless
case (31 N). Block 1 accelerates less rapidly down the plane when
there is friction, so it doesn’t pull as strongly on the string at-
tached to block 2.

One additional question that must be answered is whether the
system will move at all. That is, is there enough force down the
plane to exceed the static friction and start the motion? When 
the system is initially at rest, the tension in the string is equal to
the weight of m2 , or (2.6 kg) (9.8 m/s2) � 26 N. The maximum
static friction, which opposes the tendency to move down the
plane, is . The component of the
weight of m1 acting down the plane is m1g sin � � 52 N. Thus


sN � 
sm 1g cos � � 19 N

� 29 N. 

T �
(9.5 kg)(2.6 kg)(9.80 m/s2)

9.5 kg � 2.6 kg
 (1 � sin 34� � 0.15 cos 34�)

� �1.2 m/s2, 

a �
2.6 kg � 9.5 kg (sin 34� � 0.15 cos 34�)

2.6 kg � 9.5 kg
 (9.80 m/s2)


k : 0,

T �
m1m2g

m1 � m2
 (1 � sin � � 
k cos �).

a �
m2 � m 1 (sin � � 
k cos �)

m 1 � m 2
g,

f � 
kN � 
km1g

T � m2g � m2(�a).

a2y � �a
� Fy � T � m2g,

a1y � 0,a1x � a

T � f � m1g sin � � m1a and N � m1g cos � � 0,

� Fy � N � m1g� Fx � T � f � m1g
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Figure 5-16. Sample Problem 5-9. (a) A decelerating auto-
mobile. (b) A free-body diagram of the decelerating automobile,
considered to be a particle. For convenience, all forces are taken to
act at a common point. In reality, the forces and are sums of
the individual forces exerted by the road on each of the four tires.
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Figure 5-17. Sample Problem 5-10. The free-body diagrams
of Fig. 5-11, in the case of friction along the plane.
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there is more than enough weight acting down the plane (52 N) to
overcome the total of the tension and the static frictional force
(26 N � 19 N � 45 N), and the system does indeed move. You
should be able to show that if the static coefficient of friction is
greater than 0.34 then there will be no motion.

5-4 THE DYNAMICS OF
UNIFORM CIRCULAR MOTION

As we discussed in Section 4-5, when an object of mass m
moves in a circle of radius r at a uniform speed v, it experi-
ences a radial or centripetal acceleration of magnitude v2/r.
In this section we consider the circular motion resulting
from several forces acting on the object. Newton’s second
law must hold in this case in vector form:
Since is always in the radial direction, the net force must
also be radial. Its magnitude must be given by

(5-10)

Whatever the nature or origin of the forces that act on the
object in uniform circular motion, the resultant of all the
forces must be (1) in the radial direction, and (2) of magni-
tude mv2/r. Even though the magnitude of the object’s ve-
locity remains constant, there is an acceleration and thus a
net force, because the direction of the velocity is changing.

The following examples illustrate applications of New-
ton’s laws to uniform circular motion.

The Conical Pendulum
Figure 5-18 shows a small body of mass m revolving in a
horizontal circle with constant speed v at the end of a string
of length L. As the body swings around, the string sweeps
over the surface of an imaginary cone. This device is called
a conical pendulum. Let us find the time required for one
complete revolution of the body.

If the string makes an angle � with the vertical, the ra-
dius of the circular path is sin �. The forces acting
on the body of mass m are its weight and the tension 
of the string, as shown in Fig. 5-18b. We can resolve at
any instant into a radial and a vertical component

(5-11)

The radial component is negative if we define the radial di-
rection to be positive outward from the central axis.

Using the coordinate system shown in Fig. 5-18b, we
can write the components of the net force on the body as

sin � and cos � � mg. Since
the body has no vertical acceleration, we can write the z
component of Newton’s second law as

(5-12)

The radial component of Newton’s second law is
The radial acceleration is nega-

tive because it acts radially inward and we have chosen the
ar � �v2/R,� Fr � mar .

T cos � � mg � 0.

� Fz � T� Fr � Tr � �T

Tr � �T sin � and Tz � T cos �.

T
B

T
B

mgB
R � L

��F
B� � ma �

mv2

r
.

aB
� F

B
� maB.

outward radial direction to be positive. For this case New-
ton’s second law gives

(5-13)

Eliminating T between these two equations, we can solve
for the speed of the body:

(5-14)

If we let t represent the time for one complete revolution of
the body, then

or

However, sin �, so that

(5-15)

This equation gives the relation between t, L, and �. Note
that t, called the period of motion, does not depend on m.

If m and � � 25°, what is the period of the mo-
tion? We have

The Rotor
In many amusement parks we find a device often called the
rotor. The rotor is a hollow cylindrical room that can be set
rotating about the central vertical axis of the cylinder. A
person enters the rotor, closes the door, and stands up
against the wall. The rotor gradually increases its rotational

t � 2� √ (1.2 m)(cos 25�)

9.8 m/s2 � 2.1 s.

L � 1.2

t � 2� √ L cos �

g
.

R � L

t �
2�R

v
�

2�R

√Rg tan �
� 2� √ R

g tan �
.

v �
2�R

t

v � √Rg tan �.

�T sin � � mar � m� �v2

R �.

100 Chapter 5 / Applications of Newton’s Laws

Figure 5-18. The conical pendulum. (a) A body of mass m
suspended from a string of length L moves in a circle; the string
describes a right circular cone of semiangle �. (b) A free-body dia-
gram of the body.
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speed from rest until, at a predetermined speed, the floor
below the person is opened downward, revealing a deep pit.
The person does not fall but remains “pinned up” against
the wall of the rotor. What minimum rotational speed is
necessary to prevent falling?

The forces acting on the person are shown in Fig. 5-19.
The person’s weight is the force of static friction be-
tween person and rotor wall is and is the normal
force exerted by the wall on the person (which, as we shall
see, provides the needed centripetal force). As we did in the
previous calculation, we resolve the forces into radial and
vertical components, with the positive radial direction out-
ward from the axis of rotation and the positive z axis up-
ward. The components of the net force on the person are
then and Note that pro-
vides the centripetal force in this case.

The radial acceleration is and the vertical
acceleration is The radial and vertical components
of Newton’s second law then give

Writing and substituting from the
first equation and from the second, we can solve
for v to find

(5-16)

This equation relates the coefficient of friction necessary to
prevent slipping to the tangential speed of an object on the
wall. Note that the result does not depend on the person’s
weight.

v � √ gR


s
.

fs � mg
N � mv2/Rfs � 
sN

�N � mar � m� �v2

R � and fs � mg � maz � 0.

az � 0.
ar � �v2/R

N
B

� Fz � fs � mg.� Fr � �N

N
B

f
B

s ,
mgB,

As a practical matter the coefficient of friction between
the textile material of clothing and a typical rotor wall (can-
vas) is about 0.40. For a typical rotor the radius is 2.0 m, so
that v must be about 7.0 m/s or more. The circumference of
the circular path is 2�R � 12.6 m, and at 7.0 m/s it takes a
time of m/(7.0 m/s) � 1.80 s to complete each
revolution. The rotor must therefore turn at a rate of at least
1 revolution/1.80 s � 0.56 revolution/s or about 33 rpm,
the same rate of rotation as a phonograph turntable.

The Banked Curve
Let the block in Fig. 5-20a represent an automobile or rail-
way car moving at constant speed v on a level roadbed
around a curve having a radius of curvature R. In addition
to two vertical forces—namely, the weight and a nor-
mal force —a horizontal force must act on the car. The
force provides the centripetal force necessary for motion
in a circle. In the case of the automobile this force is sup-
plied by a sidewise frictional force exerted by the road on
the tires; in the case of the railway car the force is supplied
by the rails exerting a sidewise force on the inner rims of
the car’s wheels. Neither of these sidewise forces can safely
be relied on to be large enough at all times, and both cause
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Figure 5-19. The rotor. Forces acting on the person are
shown.

Figure 5-20. (a) A level roadbed. A free-body diagram of the
moving body is shown at left. The centripetal force must be sup-
plied by friction between tires and road. (b) A banked roadbed. No
friction is necessary to round the curve safely.
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unnecessary wear. Hence, the roadbed is banked on curves,
as shown in Fig. 5-20b. In this case, the normal force has
not only a vertical component, as before, but also a hori-
zontal component that supplies the centripetal force neces-
sary for uniform circular motion. Thus no additional side-
wise forces are needed with a roadbed that is properly
banked for vehicles of a particular speed.

The correct angle � of banking in the absence of friction
can be obtained as follows. We begin, as usual, with New-
ton’s second law, and we refer to the free-body diagram
shown in Fig. 5-20b. The radial and vertical components of
the net force on the moving body are sin � and

cos � � mg. As before, the radial acceleration is
and the vertical acceleration is so we

can write the components of Newton’s second law as

and

Solving these two equations for sin � and cos � and divid-
ing the resulting expressions, we obtain

(5-17)

Note that the proper angle of banking depends on the speed
of the car and the curvature of the road. It does not depend
on the mass of the car; for a given banking angle, all cars
will be able to travel safely. For a given curvature, the road
is banked at an angle corresponding to an expected average
speed. Curves are often marked by signs giving the proper
speed for which the road was banked. If vehicles exceed
that speed, the friction between tires and road must supply
the additional centripetal force needed to travel the curve
safely.

Check the banking formula for the limiting cases 
v large, and R small. Also, note that Eq. 5-17, if

solved for v, gives the same result that we derived for the
speed of the bob of a conical pendulum. Compare Figs. 
5-18b and 5-20b, noting their similarities.

5-5 TIME-DEPENDENT FORCES
(Optional)*

In Chapter 2, we analyzed the braking of an automobile by
assuming the acceleration to be constant. In practice, this is
seldom the case. Under many circumstances, especially at
high speed, we usually apply the brakes slowly at first and
then more strongly as the car slows. The braking force
therefore depends on the time during the interval over

R : ,
v � 0,

tan � �
v2

Rg
.

N cos � � mg � maz � 0.

�N sin � � mar � m� �v2

R �

az � 0,ar � �v2/R
� Fz � N

� Fr � �N

N
B

which the car is slowing, and so the acceleration a(t) is a
function of how we apply the brakes.

Even though the force is not constant, we can still use
Newton’s laws to analyze the motion, but we cannot use the
equations of Chapter 2 to find the position and velocity as
functions of the time, because those equations were derived
for constant acceleration. We assume here for simplicity
that the forces and the motion are in one dimension, which
we take to be the x direction. We can find the x component
of the net force Fx(t) in the usual way from a free-body dia-
gram, and then we continue by writing and us-
ing Newton’s second law:

or

(5-18)

Suppose the object begins its motion at with initial
velocity v0x . What is its velocity vx at time t? We integrate
Eq. 5-18 on the left between v0x and vx , and on the right be-
tween 0 and t:

so

(5-19)

Note that this reduces to Eq. 2-26 if Fx is a constant
and so can be taken out of the integral.

Continuing in the same way with we can
find the position as a function of the time

(5-20)

This reduces to Eq. 2-28 when Fx is a constant, in which
case 

When we have a force that depends on the time, we can
use Eqs. 5-19 and 5-20 to find analytical expressions for
vx(t) and x(t). We have already seen in Section 4-4 how this
can be done in a similar way for a force that depends on the
velocity. More often, especially when there is no analytical
expression for the integrals, we find it is necessary or con-
venient to use numerical or computational methods.

Sample Problem 5-11. A car of mass kg is
moving at 105 km/h (about 65 mi/h or 29.2 m/s). The driver be-
gins to apply the brakes so that the magnitude of the braking force
increases linearly with time at the rate of 3360 N/s. (a) How much
time passes before the car comes to rest? (b) How far does the car
travel in the process?

m � 1260

vx(t) � v0x � axt.

x(t) � x 0 � �t

0
vx(t) dt.

vx � dx/dt,
(� max)

vx(t) � v0x �
1

m
�t

0
Fx(t) dt.

vx � v0x �
1

m
�t

0
Fx(t) dt

�vx

v0x

dvx � �t

0

Fx(t)

m
dt.

t � 0

dvx �
Fx(t)

m
dt.

ax(t) �
dvx

dt
�

Fx(t)

m

ax � dvx /dt
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*This section involves integral calculus and can be postponed until the stu-
dent is more familiar with integration methods.



Solution (a) If we choose the direction of the car’s velocity as the
positive x direction, then we can represent the braking force as

where N/s. (The negative sign indicates that
the direction of the braking force is opposite that of the velocity).
Using Eq. 5-19, we then have

To find the time t1 when the car comes to rest, we set this expres-
sion for vx(t) equal to zero and solve for t:

(b) To find how far the car travels in this time, we need an expres-
sion for x(t), for which we must integrate vx(t) according to Eq.
5-20:

Evaluating this expression at (setting x0 to 0), we obtain

Figure 5-21 shows the time dependence of x, vx , and ax . In con-
trast with the case of constant acceleration, vx(t) is not a straight
line.

With this method of braking, most of the change in velocity
occurs near the end of the motion. The change in velocity in the
first second after the brakes are applied is only 1.3 m/s (about 
3 mi/h); in the last second, however, the change is 11.2 m/s (about

x(t1) � 0 � (29.2 m/s)(4.68 s) �
(3360 N/s)(4.68 s)3

6(1260 kg)
� 91.1 m.

t � t1

x(t) � x0 � �t

0
�v0x �

ct2

2m � dt � x0 � v0xt �
ct3

6m
.

t1 � √ 2v0x m

c
� √ 2(29.2 m/s)(1260 kg)

3360 N/s
� 4.68 s.

vx(t) � v0x �
1

m
�t

0
 (�ct) dt � v0x �

ct 2

2m
.

c � 3360Fx � �ct

25 mi/h). (Recall that in the case of constant acceleration, the
change in velocity is the same in equal time intervals.) Can you
think of an advantage to braking in this manner? Are there also
disadvantages?

5-6 NONINERTIAL FRAMES AND
PSEUDOFORCES (Optional)

In our treatment of classical mechanics thus far, we have
assumed that measurements and observations were made
from an inertial reference frame. This is one of the set of
reference frames defined by Newton’s first law—namely,
that set of frames in which a body will not be accelerated

if there are no force-producing bodies in its envi-
ronment The choice of a reference frame is al-
ways ours to make, so that if we choose to select only iner-
tial frames, we do not restrict in any way our ability to
apply classical mechanics to natural phenomena.

Nevertheless, if we find it convenient, we can apply
classical mechanics from the point of view of an observer
in a noninertial frame— that is, a frame attached to a body
that is accelerating as viewed from an inertial frame. The
frames of an accelerating car or a rotating merry-go-round
are examples of noninertial frames.

To apply classical mechanics in noninertial frames we
must introduce additional forces known as pseudoforces
(sometimes called inertial forces). Unlike the forces we
have examined thus far, we cannot associate pseudoforces
with any particular object in the environment of the body
on which they act, and we cannot classify them into any of
the categories discussed in Section 5-1. Moreover, if we
view the body from an inertial frame, the pseudoforces dis-
appear. Pseudoforces are simply devices that permit us to
apply classical mechanics in the normal way to events if we
insist on viewing the events from a noninertial reference
frame.

As an example, consider an observer S� riding in a van
that is moving at constant velocity. The van contains a long
airtrack with a frictionless 0.25-kg glider resting at one end
(Fig. 5-22a). The driver of the van applies the brakes, and
the van begins to decelerate. An observer S on the ground
measures the constant acceleration of the van to be 
�2.8 m/s2. The observer S� riding in the van is therefore in
a noninertial frame of reference when the van begins to de-
celerate. S� observes the glider to move down the track with
an acceleration of �2.8 m/s2 (Fig. 5-22b). How might each
observer use Newton’s second law to account for the mo-
tion of the glider?

For ground observer S, who is in an inertial reference
frame, the analysis is straightforward. The glider, which
had been moving forward at constant velocity before the
van started to brake, simply continues to do so. According
to S, the glider has no acceleration and therefore no hori-
zontal force need be acting on it.

(� F
B

� 0).
(aB � 0)
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Figure 5-21. Sample Problem 5-11. The deduced position
x(t) and velocity vx(t) are shown corresponding to ax(t), which
varies linearly with time. The dashed line marks the instant

at which the car comes to rest.(t � 4.68 s)
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Observer S�, however, sees the glider accelerate and can
find no object in the environment of the glider that exerted
a force on it to provide its observed forward acceleration.
To preserve the applicability of Newton’s second law, S�
must assume that a force (in this case a pseudoforce) acts
on the glider. According to S�, this force must equal

where is the acceleration of the glider
measured by S�. The x component of this pseudoforce is

and its direction is the same as — that is, toward the front
of the van. This force, which is very real from the point of
view of S�, is not apparent to ground-based observer S, who
has no need to introduce it to account for the motion of the
glider.

One indication that pseudoforces are non-Newtonian is
that they violate Newton’s third law. To apply Newton’s
third law, S� must find a reaction force exerted by the glider
on some other body. No such reaction force can be found,
and so Newton’s third law is violated.

Pseudoforces are very real to those that experience
them. Imagine yourself riding in a car that is rounding a
curve to the left. To a ground observer, the car is experienc-
ing a centripetal acceleration and therefore constitutes a
noninertial reference frame. If the car has smooth vinyl
seats, you will find yourself sliding across the seat to the
right. To the ground observer, who is in an inertial frame,
this is quite natural; your body is simply trying to obey
Newton’s first law and move in a straight line, and it is the
car that is sliding to the left under you. From your point of
view in the noninertial reference frame of the car, you must
ascribe your sliding motion to a pseudoforce pulling you to
the right. This type of pseudoforce is called a centrifugal
force, meaning a force directed away from the center.

Riding on a merry-go-round, you are again in an accel-
erated and therefore noninertial reference frame in which
objects will apparently move outward from the axis of rota-
tion under the influence of the centrifugal force. If you hold
a ball in your hand, it seems to you that the net horizontal

aB�

Fx� � max� � (0.25 kg)(2.8 m/s2) � 0.70 N,

aB� (��aB)maB�,
F
B

�

force on the ball is zero, the outward centrifugal force be-
ing balanced by the inward force exerted on the ball by
your hand. To a ground observer, who is in an inertial refer-
ence frame, the ball is moving in a circle, accelerating to-
ward the center under the influence of the centripetal force
you exert on it with your hand. To the ground observer,
there is no centrifugal force because the net force on the
ball is not zero: it is accelerating radially inward.

Pseudoforces can be used as the basis of practical de-
vices. Consider the centrifuge, one of the most useful of
laboratory instruments. As a mixture of substances moves
rapidly in a circle, the more massive substances experience
a larger centrifugal force mv2/r and move farther away from
the axis of rotation. The centrifuge thus uses a pseudoforce
to separate substances by mass, just as the mass spectrome-
ter (Section 3-4) uses an electromagnetic force to separate
atoms by mass.

Another pseudoforce is called a Coriolis force. Suppose
that you roll a ball inward with constant speed along a ra-
dial line painted on the floor of a rotating merry-go-round.
At the instant you release it at the radius r, it has just the
right tangential velocity (the same as yours) to be in circu-
lar motion. As it moves inward it would take a smaller tan-
gential speed to maintain its circular motion at the same
rate as its immediate surroundings. Because it has no way
to lose tangential speed (we assume little friction between
the ball and the floor), it moves a bit ahead of the painted
line representing a uniform rotational speed. That is, in
your rotating noninertial reference frame you would sug-
gest that a sideways pseudoforce—a Coriolis force—
causes the ball to veer steadily away from the line as it rolls
inward. To a ground observer in an inertial frame, there is
no Coriolis force: the ball moves in a straight line at a
speed determined by the components of its velocity at the
instant of release.

Perhaps the most familiar example of the effects of the
Coriolis force is in the motion of the atmosphere around
centers of low or high pressure. Figure 5-23 shows a dia-
gram of a low-pressure center in the northern hemisphere.
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Figure 5-22. (a) Ground-based observer S watches observer S� traveling in a van at constant
velocity. The van is traveling to the right, which we take to be the positive x direction. Both ob-
servers are in inertial reference frames. (b) The van brakes with constant acceleration a according to
observer S. Observer S�, now in a noninertial reference frame, sees the glider move forward on its
airtrack with constant acceleration Observer S� accounts for this motion in terms of a
pseudoforce.

aB� � �aB.

Glider
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a

S(a) S

S'S'

(b)

a = 0



Because the pressure is lower than the surroundings, air
flows radially inward in all directions. As the Earth rotates
(making it a noninertial frame), the effect is similar to that
of the ball on the merry-go-round: air rushing inward from
the south moves a bit ahead of an imaginary line drawn on
the rotating Earth, while air from the north (like a ball
rolled outward on the merry-go-round) lags a bit behind the
line. The total effect is that the air rotates in a counterclock-
wise direction around the low-pressure center. This Coriolis
effect is thus responsible for the circulation of winds in a
cyclone or hurricane. In the southern hemisphere the effects
are reversed.

It is necessary to correct for the Coriolis effect of the ro-
tating Earth in the motion of long-range artillery shells. For
a typical shell of range 10 km, the Coriolis effect may
cause a deflection as large as 20 m. Such corrections are
built into the computer programs used to control the aiming
and firing of long-range weapons. Things can go wrong,
however, as the British Navy discovered in a World War I
battle near the Falkland Islands. Its fire control manuals
were written for the northern hemisphere, and the Falklands
are in the southern hemisphere where the Coriolis correc-
tion would be in the opposite direction. The British shells
were landing about 100 m from their targets, because the
correction for the Coriolis effect was being made in the
wrong direction!

In mechanical problems, then, we have two choices: (1)
select an inertial reference frame and consider only “real”
forces— that is, forces that we can associate with definite

bodies in the environment; or (2) select a noninertial refer-
ence frame and consider not only the “real” forces but suit-
ably defined pseudoforces. Although we usually choose the
first alternative, we sometimes choose the second; both are
completely equivalent and the choice is a matter of conve-
nience. �

5-7 LIMITATIONS OF NEWTON’S
LAWS (Optional)

In the first five chapters, we have described a system for an-
alyzing mechanical behavior with a seemingly vast range of
applications. With little more than the equations of New-
ton’s laws, you can design great skyscrapers and suspension
bridges, or even plan the trajectory of an interplanetary
spacecraft (Fig. 5-24). Newtonian mechanics, which pro-
vided these computational tools, was the first truly revolu-
tionary development in theoretical physics.

Here is an example of our faith in Newton’s laws.
Galaxies and clusters of galaxies are often observed to ro-
tate, and by observation we can deduce the speed of rota-
tion. From this we can calculate the amount of matter that
must be present in the galaxy or cluster for gravity to sup-
ply the centripetal force corresponding to the observed rota-
tion. Yet the amount of matter that we actually observe with
telescopes is far less than we expect. Therefore, it has been
proposed that there is additional “dark matter” that we can-
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Figure 5-23. A low-pressure center on the rotating Earth. As the air flows inward, it appears to rotate counterclockwise to noninertial
observers in the northern hemisphere of the rotating Earth. A hurricane (photo) is such a low-pressure center.
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not see with telescopes but that must be present to provide
the needed gravitational force. There is as yet no convinc-
ing candidate for the type or nature of this dark matter, and
so other explanations have been proposed for the apparent
inconsistency between the amount of matter actually ob-
served in the galaxies and the amount we think is needed to
satisfy Newton’s laws. One proposed explanation is that our
calculations are incorrect because Newton’s laws do not
hold in the conditions that we find on the very large scale—
that is, when the accelerations are very small (below a few
times 10�10 m/s2). In particular, it has been proposed that
for these very small accelerations, the force is proportional
to a2 instead of a.

Figure 5-25 shows the results of an experiment testing
this supposition. If force depended on the acceleration to
some power other than 1, the data would not fall on a
straight line. From this extremely precise experiment, we
conclude that down to accelerations of about 10�10 m/s2,
force is proportional to acceleration and Newton’s second
law holds.

In the 20th century, we have experienced three other
revolutionary developments: Einstein’s special theory of
relativity (1905), his general theory of relativity (1915), and
quantum mechanics (in about 1925). Special relativity
teaches us that we cannot extrapolate the use of Newton’s
laws to particles moving at speeds comparable to the speed
of light. General relativity shows that we cannot use New-
ton’s laws in the vicinity of extremely massive objects.
Quantum mechanics teaches us that we cannot extrapolate
Newton’s laws to objects as small as atoms.

Special relativity, which involves a distinctly non-New-

tonian view of space and time, can be applied under all cir-
cumstances, at both high speeds and low speeds. In the
limit of low speeds, it can be shown that the dynamics of
special relativity reduces directly to Newton’s laws. Simi-
larly, general relativity can be applied to weak as well as
strong gravitational forces, but its equations reduce to New-
ton’s laws for weak forces. Quantum mechanics can be ap-
plied to individual atoms, where a certain randomness of
behavior is predicted, or to ordinary objects containing a
huge number of atoms, in which case the randomness aver-
ages out to give Newton’s laws once again.

Within the past two decades, another apparently revolu-
tionary development has emerged. This new development
concerns mechanical systems whose behavior is described
as chaotic. One of the hallmarks of Newton’s laws is their
ability to predict the future behavior of a system, if we
know the forces that act and the initial motion. For exam-
ple, from the initial position and velocity of a space probe
that experiences known gravitational forces from the Sun
and the planets, we can calculate its exact trajectory. On the
other hand, consider a twig floating in a turbulent stream.
Even though it is acted on at all times by forces governed
by Newtonian mechanics, its path downstream is totally un-
predictable. If two twigs are released side-by-side in the
stream, they may be found very far apart downstream. One
particular theme of chaotic dynamics is that tiny changes in
the initial conditions of a problem can be greatly amplified
and can cause substantial differences in the predicted out-
comes. Chaotic dynamics is often invoked in weather fore-
casting, and it has been said that the fluttering of a butterfly
over Japan could be related to the subsequent development
of a hurricane over the Gulf of Mexico.

Such chaotic motions occur not only in complex sys-
tems like a turbulent stream but also in simple physical sys-
tems as well, such as a pendulum, a slowly dripping faucet,
or an oscillating electrical circuit. In the 1960s it was dis-
covered that the seemingly chaotic behavior of these sys-
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Figure 5-24. The trajectory of the Cassini mission to Saturn,
launched from Earth on October 15, 1997. The ability to calculate
such trajectories with pinpoint accuracy is a triumph of the meth-
ods of classical mechanics. The four planetary flybys are used to
provide “gravity assists” that increase the speed of the spacecraft
(see Section 6-1) and enable it to reach Saturn. To learn more
about this mission, see the Web site at
http://www.jpl.nasa.gov/cassini.

Figure 5-25. Results of an experiment to test whether New-
ton’s second law holds for small accelerations below 10�9 m/s2.
The straight line shows that acceleration is proportional to the ap-
plied force down to 10�10 m/s2, and so Newton’s law remains
valid even at such small accelerations.
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tems conceals a hidden order and regularity, the study of
which has formed the core of a new branch of science,
chaos.* Applications of the laws of chaos have been found
not only in physical systems but in biological systems as
well. Even areas of social science, such as economics and
population dynamics, show chaotic behavior.

Calculations combining the Newtonian mechanics of
particles with chaos theory have shown that the orbit of the
planet Pluto is chaotic on a time scale of tens of millions of
years (a short time compared with the age of the solar sys-
tem, about 4.5 billion years, but a long time compared with

Pluto’s orbital period around the Sun, about 250 years).
Chaos theory has also been used to explain two properties
of the asteroid belt (which lies between the orbits of Mars
and Jupiter) that could not be understood within the frame-
work of conventional Newtonian mechanics: (1) many as-
teroids stray from what should be stable orbits, some of
them becoming meteorites that rain steadily down on Earth,
and (2) within the asteroid belt are several empty gaps
where the number of orbiting asteroids is small or zero. It
has been only within the past decade that high-speed com-
puters have permitted detailed calculations of the dynamics
of such systems to be followed for the time scales neces-
sary to observe this unusual behavior, and as additional cal-
culations are done, new applications of this exciting field
continue to be discovered. �
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*See Chaos—Making a New Science, by James Gleick (Penguin Books,
1987).

MULTIPLE CHOICE

5-1 Force Laws

5-2 Tension and Normal Forces
1. A spring balance is attached on both ends to strings; the strings

hang over frictionless pulleys and are each connected to 20 N
weights as shown in Fig. 5-26. The reading on the scale will
be closest to

(A) 0 N (B) 10 N (C) 20 N (D) 40 N

4. A woman can stand in running shoes or stiletto high heels on
a level surface. Assuming her total mass is the same regard-
less of the shoes she wears, then the normal force on her
shoes by the ground is

(A) greater in the case of the running shoes, because of the
larger area of contact with the ground.

(B) the same for either pair of shoes.
(C) greater for the stiletto heels, because of the smaller

area of contact with the ground.
(D) solely dependent on whether she is standing with her

knees bent.

5. A real rope is hanging by one end from the ceiling. The other
end dangles freely. If the mass of the rope is 100 g, then the
tension is

(A) 0.98 N along the entire length of the rope.
(B) 0.49 N along the entire length of the rope.
(C) 0.98 N at the bottom of the rope, and varies linearly to

zero at the top of the rope.
(D) 0.98 N at the top of the rope, and varies linearly to

zero at the bottom of the rope.

6. A bird of weight W is resting at the center of a stretched wire
of negligible mass. Each half of the wire makes a small angle
with the horizontal. What can be concluded about the tension
T in the wire?

(A) T � W/2 (B) W/2 � T � W (C) T 	 W
(D) More information is needed to answer the question.

5-3 Frictional Forces
7. Which statement is correct about the weight of an object and

the force of kinetic friction on that object?
(A) The weight is always greater than the frictional

force.
(B) The weight is always equal to the frictional force.
(C) The weight is less than the frictional force for suffi-

ciently light objects.
(D) The weight can be more or less than the frictional

force.

Figure 5-26. Multiple-choice question 1.

20 N 20 N

2. Which of the following statements is most correct?
(A) The normal force is the same thing as the weight.
(B) The normal force is different from the weight, but al-

ways has the same magnitude.
(C) The normal force is different from the weight, but the

two form an action– reaction pair according to New-
ton’s third law.

(D) The normal force is different from the weight, but the
two may have the same magnitude in certain cases.

3. A wooden box is sitting on a table. The normal force on the
box from the table is 75 N. A second identical box is placed
on top of the first box. The normal force on the first box by
the table will

(A) decrease. (B) remain at 75 N.
(C) increase to 150 N. (D) increase to 300 N.



8. A 2.0-kg block of wood is on a level surface where 
and A 13.7-N force is being applied to the block
parallel to the surface.

(a) If the block was originally at rest, then

(A) it will remain at rest, and the force of friction will be
about 15.7 N.

(B) it will remain at rest, and the force of friction will be
about 13.7 N.

(C) it will remain at rest, and the force of friction will be
11.8 N.

(D) it will begin to slide with a net force of about 1.9 N
acting on the block.

(b) If the block was originally in motion, and the 13.7-N ap-
plied force is in the direction of motion, then

(A) it will accelerate under a net force of about 1.9 N.
(B) it will move at constant speed.
(C) it will decelerate under a net force of about 1.9 N.
(D) it will decelerate under a net force of 11.8 N.

9. Two similar wooden blocks are tied one behind the other and
pulled across a level surface. Friction is not negligible. The
force required to pull them at constant speed is F. If one
block is stacked upon the other then the new force required to
pull them at constant speed will be approximately

(A) F/2. (B) F. (C) (D) 2F.

10. Automatic braking systems (ABS) on automobiles prevent the
tires from locking by sensing when the tires stop spinning and
then reducing the braking force until they begin to spin again.
Knowing that an automobile equipped
with ABS will

(A) always stop in a shorter distance
(B) stop in shorter distance on dry pavement but not on wet

pavement
(C) stop in about the same distance
(D) always stop in a longer distance

than an automobile that stops by locking the tires.

11. A 1.0-kg block of wood sits on top of an identical block of
wood, which sits on top of a flat level table made of plastic.
The coefficient of static friction between the wood surfaces is

1 , and the coefficient of static friction between the wood and
plastic is 
2 .

(a) A horizontal force F is applied to the top block only, and


s 	 
k 	 
 rolling ,

√2F.


k � 0.60.

s � 0.80 this force is increased until the top block starts to slide. The

bottom block will slide with the top block if and only if

(A) (B)
(C) (D)

(b) Instead a horizontal force F is applied to the bottom block
only, and this force is increased until the bottom block just
starts to slide. Under what conditions will the top block slide
with the bottom block?

(A) If the top block will slide regardless of 
2 .
(B) (C) (D)

5-4 The Dynamics of Uniform Circular Motion
12. A motorcycle moves around a vertical circle with a constant

speed under the influence of the force of gravity the force
of friction between the wheels and the track , and the nor-
mal force between the wheels and the track 

(a) Which of the following quantities has a constant magni-
tude?

(A) (B) (C) (D)

(b) Which of the following quantities, when nonzero, is al-
ways directed toward the center of the circle?

(A) (B) (C) (D)

13. An automobile drives over some hilly terrain. The motion of
the automobile at the top of a hill is instantaneously similar to
circular motion with the center of curvature beneath the road.
The motion of the automobile at the bottom of a dip is instan-
taneously similar to circular motion with the center of curva-
ture above the road. At any time there are three forces on the
car: weight normal and friction of the tires with the
road. The magnitudes of these three forces are given respec-
tively by W, N, and f.

(a) When the car is at the top of a hill, which of the following
gives the magnitude of the centripetal force?

(A) N (B) (C) ( D )

(b) When the car is at the bottom of a dip, which of the fol-
lowing gives the magnitude of the centripetal force?

(A) N (B) (C) ( D )

5-5 Time-Dependent Forces

5-6 Noninertial Frames and Pseudoforces

5-7 Limitations of Newton’s Laws

N � WW � NW � N

N � WW � NW � N

f
B

N
B

,W
B

,

N
B

� f
B

f
B

� W
B

W
B

f
B

N
B

� W
B

� f
B

f
B

� W
B

N
B

� f
B

N
B

N
B

.
f
B

W
B

,

2
2 � 
1
2 � 
1
1
2
2 � 
1 � 
2


1 	 0

2
2 � 
1 .
2 � 
1 .

1
2
2 � 
1 � 
2 .
1 � 1

2
2 .
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QUESTIONS

1. You can pull a wagon with a rope, but you can’t push it with a
rope. Is there such a thing as a “negative” tension?

2. There is a limit beyond which further polishing of a surface
increases rather than decreases frictional resistance. Explain
why.

3. A crate, heavier than you are, rests on a rough floor. The coef-
ficient of static friction between the crate and the floor is the
same as that between the soles of your shoes and the floor.
Can you push the crate across the floor? See Fig. 5-27.

4. In baseball, a base runner can usually get to a base quicker by
running than by sliding. Explain why this is so. Why slide
then?

5. How could a person who is at rest on completely frictionless
ice covering a pond reach shore? Could she do this by walk-

ing, rolling, swinging her arms, or kicking her feet? How
could a person be placed in such a position in the first place?

6. Why do tires grip the road better on level ground than they do
when going uphill or downhill?

Figure 5-27. Question 3.



7. What is the purpose of curved surfaces, called spoilers, placed
on the rear of sports cars? They are designed so that air flow-
ing past exerts a downward force.

8. Two surfaces are in contact but are at rest relative to each
other. Nevertheless, each exerts a force of friction on the
other. Explain.

9. Your car skids across the centerline on an icy highway.
Should you turn the front wheels in the direction of the skid
or in the opposite direction (a) when you want to avoid a col-
lision with an oncoming car and (b) when no other car is near
but you want to regain control of the steering? Assume rear-
wheel drive, then front-wheel drive.

10. Why is it that racing drivers actually speed up when travers-
ing a curve?

11. You are flying a plane at constant altitude and you wish to
make a 90° turn. Why do you bank in order to do so?

12. When a wet dog shakes itself, people standing nearby tend to
get wet. Why does the water fly outward from the dog in this
way?

13. You must have noticed (Einstein did) that when you stir a cup of
tea, the floating tea leaves collect at the center of the cup rather
than at the outer rim. Can you explain this? (Einstein could.)

14. Suppose that you need to measure whether a tabletop in a
train is truly horizontal. If you use a spirit level, can you de-
termine this when the train is moving down or up a grade?
When the train is moving along a curve? (Hint: There are two
horizontal components.)

15. In the conical pendulum, what happens to the period and the
speed when � � 90°? Why is this angle not achievable physi-
cally? Discuss the case for � � 0°.

16. A coin is put on a phonograph turntable. The motor is started
but, before the final speed of rotation is reached, the coin flies
off. Explain why.

17. A car is riding on a country road that resembles a roller coaster
track. If the car travels with uniform speed, compare the force it
exerts on a horizontal section of the road to the force it exerts on
the road at the top of a hill and at the bottom of a hill. Explain.

18. You are driving a station wagon at uniform speed along a
straight highway. A beach-ball rests at the center of the wagon
bed and a helium-filled balloon floats above it, touching the
roof of the wagon. What happens to each if you (a) turn a cor-
ner at constant speed or (b) apply the brakes?

19. How does the Earth’s rotation affect the measurement of the
weight of an object at the equator?

20. Explain why a plumb bob will not hang exactly in the direc-
tion of the Earth’s gravitational attraction (toward the center
of the Earth) at most latitudes.

21. Astronauts in the orbiting space shuttle want to keep a daily
record of their weight. Can you think how they might do it,
considering that they are “weightless”?

22. Explain how the question “What is the linear velocity of a
point on the equator?” requires an assumption about the refer-
ence frame used. Show how the answer changes as you
change reference frames.

23. What is the distinction between inertial reference frames and
those differing only by a translation or rotation of the axes?

24. A passenger in the front seat of a car finds himself sliding to-
ward the door as the driver makes a sudden left turn. Describe
the forces on the passenger and on the car at this instant if the
motion is viewed from a reference frame (a) attached to the
Earth and (b) attached to the car.

25. Do you have to be concerned with the Coriolis effect when
playing tennis or golf? If not, why not?

26. Suppose that you are standing on the balcony of a tall tower,
facing east. You drop an object so that it falls to the ground
below; see Fig. 5-28. Suppose also that you can locate the im-
pact point very precisely. Will the object strike the ground at
a, vertically below the release point, at b to the east, or at c to
the west? The object was released from rest; the Earth rotates
from west to east.
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Figure 5-28. Question 26.
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EXERCISES

5-1 Force Laws

5-2 Tension and Normal Forces
1. A charged sphere of mass 2.8 � 10�4 kg is suspended from a

string. An electric force acts horizontally on the sphere so that
the string makes an angle of 33° with the vertical when at
rest. Find (a) the magnitude of the electric force and (b) the
tension in the string.

2. An elevator weighing 6200 lb is pulled upward by a cable
with an acceleration of 3.8 ft/s2. (a) What is the tension in the
cable? (b) What is the tension when the elevator is accelerat-
ing downward at 3.8 ft/s2 but is still moving upward?

3. A lamp hangs vertically from a cord in a descending elevator.
The elevator has a deceleration of 2.4 m/s2 before coming to a
stop. (a) If the tension in the cord is 89 N, what is the mass of

27. Show by a qualitative argument that, because of the rotation
of the Earth, a wind in the northern hemisphere blowing from
north to south will be deflected to the right. What about a
wind that is blowing from south to north? What is the situa-
tion in the southern hemisphere?



the lamp? (b) What is the tension in the cord when the eleva-
tor ascends with an upward acceleration of 2.4 m/s2?

4. An elevator and its load have a combined mass of 1600 kg.
Find the tension in the supporting cable when the elevator,
originally moving downward at 12.0 m/s, is brought to rest
with constant acceleration in a distance of 42.0 m.

5. A 110-kg man lowers himself to the ground from a height of
12 m by holding on to a rope passed over a frictionless pulley
and attached to a 74-kg sandbag. (a) With what speed does
the man hit the ground? (b) Is there anything he could do to
reduce the speed with which he hits the ground?

6. An 11-kg monkey is climbing a massless rope attached to a
15-kg log over a frictionless tree limb. (a) With what mini-
mum acceleration must the monkey climb up the rope so that
it can raise the 15-kg log off the ground? If, after the log has
been raised off the ground, the monkey stops climbing and
hangs on to the rope, what will now be (b) the monkey’s ac-
celeration and (c) the tension in the rope?

7. Figure 5-29 shows a section of an alpine cable-car system.
The maximum permitted mass of each car with occupants is
2800 kg. The cars, riding on a support cable, are pulled by a
second cable attached to each pylon. What is the difference in
tension between adjacent sections of pull cable if the cars are
accelerated up to 35° incline at 0.81 m/s2?

weight of the rope. With what force must the man pull up on
the rope in order to lift himself and the platform upward at
1.2 ft/s2?

5-3 Frictional Forces
9. The coefficient of static friction between Teflon and scram-

bled eggs is about 0.04. What is the smallest angle from the
horizontal that will cause the eggs to slide across the bottom
of a Teflon-coated skillet?

10. Suppose that only the rear wheels of an automobile can accel-
erate it, and that half the total weight of the automobile is
supported by those wheels. (a) What is the maximum acceler-
ation attainable if the coefficient of static friction between
tires and road is 
s? (b) Take 
s � 0.56 and get a numerical
value for this acceleration.

11. What is the greatest acceleration that can be generated by a
runner if the coefficient of static friction between shoes and
road is 0.95?

12. A baseball player (Fig. 5-31) with mass 79 kg, sliding into a
base, is slowed by a force of friction of 470 N. What is the co-
efficient of kinetic friction between the player and the
ground?
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Figure 5-29. Exercise 7.

Figure 5-30. Exercise 8. Figure 5-32. Exercise 13.

Figure 5-31. Exercise 12.

35°

Pull cable
Support cable

F

75 kg

F

8. The man in Fig. 5-30 weighs 180 lb; the platform and at-
tached frictionless pulley weigh a total of 43 lb. Ignore the

13. A horizontal bar is used to support a 75-kg object between
two walls, as shown in Fig. 5-32. The equal forces F exerted
by the bar against the walls can be varied by adjusting the
length of the bar. Only friction between the ends of the bar
and the walls supports the system. The coefficient of static
friction between bar and walls is 0.41. Find the minimum
value of the forces F for the system to remain at rest.



14. A 53-lb trunk rests on the floor. The coefficient of
static friction between the trunk and the floor is 0.41, while
the coefficient of kinetic friction is 0.32. (a) What is the mini-
mum horizontal force with which a person must push on the
trunk to start it moving? (b) Once moving, what horizontal
force must the person apply to keep the trunk moving with
constant velocity? (c) If, instead, the person continued to push
with the force used to start the motion, what would be the ac-
celeration of the trunk?

15. The coefficient of static friction between the tires of a car and
a dry road is 0.62. The mass of the car is 1500 kg. What max-
imum braking force is obtainable (a) on a level road and (b)
on an 8.6° downgrade?

16. A house is built on the top of a hill with a 42° slope. Subse-
quent slumping of material on the slope surface indicates that
the slope gradient should be reduced. If the coefficient of fric-
tion of soil on soil is 0.55, through what additional angle �
(see Fig. 5-33) should the slope surface be regraded?

(� 240-N) 21. A piece of ice slides from rest down a rough 33.0° incline in
twice the time it takes to slide down a frictionless 33.0° in-
cline of the same length. Find the coefficient of kinetic fric-
tion between the ice and the rough incline.

22. In Fig. 5-34, A is a 4.4-kg block and B is a 2.6-kg block. The
coefficients of static and kinetic friction between A and the
table are 0.18 and 0.15. (a) Determine the minimum mass of
the block C that must be placed on A to keep it from sliding.
(b) Block C is suddenly lifted off A. What is the acceleration
of block A?
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Figure 5-33. Exercise 16.

Figure 5-34. Exercise 22.

Figure 5-35. Exercise 23.

New slope

Original slope

Soil

42°

C

A

B

39°

46 N

17. A 136-kg crate is at rest on the floor. A worker attempts to
push it across the floor by applying a 412-N force horizon-
tally. (a) Take the coefficient of static friction between the
crate and floor to be 0.37 and show that the crate does not
move. (b) A second worker helps by pulling up on the crate.
What minimum vertical force must this worker apply so that
the crate starts to move across the floor? (c) If the second
worker applies a horizontal rather than a vertical force, what
minimum force, in addition to the original 412-N force, must
be exerted to get the crate started?

18. A student wants to determine the coefficients of static friction
and kinetic friction between a box and a plank. She places the
box on the plank and gradually raises one end of the plank.
When the angle of inclination with the horizontal reaches
28.0°, the box starts to slip and slides 2.53 m down the plank
in 3.92 s. Find the coefficients of friction.

19. Frictional heat generated by the moving ski is the chief factor
promoting sliding in skiing. The ski sticks at the start, but
once in motion will melt the snow beneath it. Waxing the ski
makes it water repellent and reduces friction with the film of
water. A magazine reports that a new type of plastic ski is
even more water repellent and that, on a gentle 203-m slope
in the Alps, a skier reduced his time from 61 to 42 s with the
new skis. Assuming a 3.0° slope, compute the coefficient of
kinetic friction for each case.

20. A block slides down an inclined plane of slope angle � with
constant velocity. It is then projected up the same plane with
an initial speed v0 . (a) How far up the incline will it move be-
fore coming to rest? (b) Will it slide down again?

23. A 4.8-kg block on a 39° inclined plane is acted on by a hori-
zontal force of 46 N (see Fig. 5-35). The coefficient of ki-
netic friction between block and plane is 0.33. (a) What is
the acceleration of the block if it is moving up the plane? (b)
With the horizontal force still acting, how far up the plane
will the block go if it has an initial upward speed of 4.3 m/s?
(c) What happens to the block after it reaches the highest
point?

24. A 12-kg block of steel is at rest on a horizontal table. The co-
efficient of static friction between block and table is 0.52. (a)
What is the magnitude of the horizontal force that will just
start the block moving? (b) What is the magnitude of a force
acting upward 62° from the horizontal that will just start the
block moving? (c) If the force acts down at 62° from the hori-
zontal, how large can it be without causing the block to
move?

25. A worker drags a 150-lb crate across a floor by pulling on a
rope inclined 17° above the horizontal. The coefficient of sta-
tic friction is 0.52 and the coefficient of kinetic friction is
0.35. (a) What tension in the rope is required to start the
crate moving? (b) What is the initial acceleration of the
crate?

26. A wire will break under tensions exceeding 1.22 kN. If the
wire, not necessarily horizontal, is used to drag a box across
the floor, what is the greatest weight that can be moved if the
coefficient of static friction is 0.35?



27. Block B in Fig. 5-36 weighs 712 N. The coefficient of static
friction between block B and the table is 0.25. Find the maxi-
mum weight of block A for which block B will remain at rest.

112 Chapter 5 / Applications of Newton’s Laws

Figure 5-36. Exercise 27.

Figure 5-37. Exercise 28.

Figure 5-38. Exercise 29.

Figure 5-39. Exercise 30.

Figure 5-40. Exercise 31.

Figure 5-41. Exercise 36.

41°

A

B

m2

m1

µk = 0.47

27°

B
A

42°

90°

No friction

9.7 kg

42 kg

110 N

5-4 The Dynamics of Uniform Circular Motion
32. During an Olympic bobsled run, a European team takes a turn

of radius 25 ft at a speed of 60 mi/h. What acceleration do the
riders experience (a) in ft/s2 and (b) in units of g?

33. A 2400-lb car traveling at 30 mi/h m/s)
attempts to round an unbanked curve with a radius of 200 ft

m). (a) What force of friction is required to keep the
car on its circular path? (b) What minimum coefficient of sta-
tic friction between the tires and road is required?

34. A circular curve of highway is designed for traffic moving at
60 km/h mi/h). (a) If the radius of the curve is 150 m

ft), what is the correct angle of banking of the road?
(b) If the curve were not banked, what would be the minimum
coefficient of friction between tires and road that would keep
traffic from skidding at this speed?

35. A conical pendulum is formed by attaching a 53-g pebble to a
1.4-m string. The pebble swings around in a circle of radius
25 cm. (a) What is the speed of the pebble? (b) What is its ac-
celeration? (c) What is the tension in the string?

36. A bicyclist (Fig. 5-41) travels in a circle of radius 25 m at a
constant speed of 8.7 m/s. The combined mass of the bicycle
and rider is 85 kg. Calculate the force—magnitude and angle
with the vertical—exerted by the road on the bicycle.

(� 490
(� 37

(� 61.0

(� 13.4(� 10.7-kN)

28. Block m1 in Fig. 5-37 has a mass of 4.20 kg and block m2 has
a mass of 2.30 kg. The coefficient of kinetic friction between
m2 and the horizontal plane is 0.47. The inclined plane is fric-
tionless. Find (a) the acceleration of the blocks and (b) the
tension in the string.

29. In Fig. 5-38, object B weighs 94.0 lb and object A weighs
29.0 lb. Between object B and the plane the coefficient of sta-
tic friction is 0.56 and the coefficient of kinetic friction is
0.25. (a) Find the acceleration of the system if B is initially at
rest. (b) Find the acceleration if B is moving up the plane. (c)
What is the acceleration if B is moving down the plane? The
plane is inclined by 42.0°.

30. A crate slides down an inclined right-angled trough as in Fig.
5-39. The coefficient of kinetic friction between the crate and
the material composing the trough is 
k . Find the accelera-
tion of the crate.

31. A 42-kg slab rests on a frictionless floor. A 9.7-kg block rests
on top of the slab, as in Fig. 5-40. The coefficient of static
friction between the block and the slab is 0.53, while the co-
efficient of kinetic friction is 0.38. The 9.7-kg block is acted
on by a horizontal force of 110 N. What are the resulting ac-
celerations of (a) the block and (b) the slab?



37. In the Bohr model of the hydrogen atom, the electron re-
volves in a circular orbit around the nucleus. If the radius is
5.3 � 10�11 m and the electron makes 6.6 � 1015 rev/s, find
(a) the speed of the electron, (b) the acceleration of the elec-
tron, and (c) the force acting on the electron. (This force is the
result of the attraction between the positively charged nucleus
and the negatively charged electron.)

38. A child places a picnic basket on the outer rim of a merry-go-
round that has a radius of 4.6 m and revolves once every 24 s.
How large must the coefficient of static friction be for the
basket to stay on the merry-go-round?

39. A disk of mass m on a frictionless table is attached to a hang-
ing cylinder of mass M by a cord through a hole in the table
(see Fig. 5-42). Find the speed with which the disk must
move in a circle of radius r for the cylinder to stay at rest.

izontal; see Fig. 5-43. Find the radius of the circle in which the
plane is flying. Assume that the centripetal force is provided
entirely by the lift force perpendicular to the wing surface.
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Figure 5-42. Exercise 39.

Figure 5-43. Exercise 44.

r

m

M

38.2°

40. A driver’s manual states that a driver traveling at 48 km/h and
desiring to stop as quickly as possible travels 10 m before the
foot reaches the brake. The car travels an additional 21 m be-
fore coming to rest. (a) What coefficient of friction is as-
sumed in these calculations? (b) What is the minimum radius
for turning a corner at 48 km/h without skidding?

41. A banked circular highway curve is designed for traffic moving
at 95 km/h. The radius of the curve is 210 m. Traffic is moving
along the highway at 52 km/h on a stormy day. (a) What is the
minimum coefficient of friction between tires and road that will
allow cars to negotiate the turn without sliding? (b) With this
value of the coefficient of friction, what is the greatest speed at
which the curve can be negotiated without sliding?

42. A 150-lb student on a steadily rotating Ferris wheel is sitting
on a scale that reads 125 lb at the highest point. (a) What is
the scale reading at the lowest point? (b) What would be the
scale reading at the highest point if the speed of the Ferris
wheel were doubled?

43. A small object is placed 13.0 cm from the center of a phono-
graph turntable. It is observed to remain on the table when it ro-
tates at 33 rev/min but slides off when it rotates at 
45.0 rev/min. Between what limits must the coefficient of static
friction between the object and the surface of the turntable lie?

44. An airplane is flying in a horizontal circle at a speed of 
482 km/h. The wings of the plane are tilted at 38.2° to the hor-

1
3

45. A frigate bird is soaring in a horizontal circular path. Its bank
angle is estimated to be 25° and it takes 13 s for the bird to
complete one circle. (a) How fast is the bird flying? (b) What
is the radius of the circle? (See “The Amateur Scientist” by
Jearl Walker, Scientific American, March 1985, p. 122.)

46. A model airplane of mass 0.75 kg is flying at constant speed
in a horizontal circle at one end of a 33-m cord and at a height
of 18 m. The other end of the cord is tethered to the ground.
The airplane makes 4.4 rev/min and the lift is perpendicular
to the unbanked wings. (a) What is the acceleration of the
plane? (b) What is the tension in the cord? (c) What is the lift
produced by the plane’s wings?

47. Assume that the standard kilogram would weigh exactly 
9.80 N at sea level on the equator if the Earth did not rotate.
Then take into account the fact that the Earth does rotate, so
that this object moves in a circle of radius 6370 km (the
Earth’s radius) in one day. (a) Determine the centripetal force
needed to keep the standard kilogram moving in its circular
path. (b) Find the force exerted by the standard kilogram on a
spring balance from which it is suspended at the equator (its
apparent weight).

5-5 Time-Dependent Forces
48. The position of a particle of mass 2.17 kg traveling in a

straight line is given by

Find the (a) velocity, (b) acceleration, and (c) force on the
particle at time s.

49. A particle of mass m is subjected to a net force given by
that is, F(t) equals at and de-

creases linearly to zero in time T. The particle passes the ori-
gin with velocity Show that at the instant 
that F(t) vanishes, the speed v and distance x traveled are
given by and 
where is the initial acceleration. Compare these
results with Eqs. 2-26 and 2-28.

5-6 Noninertial Frames and Pseudoforces

5-7 Limitations of Newton’s Laws

a0 � F0 /m
x(T) � v0T � a0T 2/3,v(T) � v0 � a0T/2, 

t � Tv0î.x � 0

t � 0F0F
B

(t) � F0(1 � t/T )î;
F
B

(t)

t � 7.18

x � (0.179 m/s4)t4 � (2.08 m/s2)t2 � 17.1 m.



PROBLEMS

1. A block of mass m1 on a frictionless inclined plane making an
angle �1 with the horizontal is connected by a cord over a
small frictionless massless pulley to a second block of mass
m2 on a frictionless plane at an angle �2 (see Fig. 5-44).
(a) Show that the acceleration of each block is

and that the tension in the cord is

(b) Evaluate the acceleration and tension for kg
and kg when . What direc-
tion does m1 move along the plane? (c) Using the values of m1,
�1 , and �2 given above, for what values of m2 does m1 acceler-
ate up the plane? Accelerate down the plane? Not accelerate?

�1 � 28� and �2 � 42�m2 � 4.86
m1 � 3.70

T �
m1m2 g

m1 � m2
 (sin �1 � sin �2).

a �
m1 sin �1 � m2 sin �2

m1 � m2
g

each mass in the direction at 90° to is given by

in which x is the perpendicular distance of one of the particles
from the line of action of Discuss the situation when
x � L.

F
B

.

ax �
F

2m

x

(L2 � x2)1/2

F
B
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Figure 5-44. Problem 1.

Figure 5-45. Problem 2.

Figure 5-46. Problem 3.

Figure 5-47. Problem 4.

Figure 5-48. Problem 5.

1 2

m1 m2

m1

m2

F

F

m m

2L

F

F

22.0°

2. Someone exerts a force F directly up on the axle of the pulley
shown in Fig. 5-45. Consider the pulley and string to be mass-
less and the bearing frictionless. Two objects, m1 of mass
1.2 kg and m2 of mass 1.9 kg, are attached as shown to the
opposite ends of the string, which passes over the pulley. The
object m2 is in contact with the floor. (a) What is the largest
value the force may have so that m2 will remain at rest on
the floor? (b) What is the tension in the string if the upward
force F is 110 N? (c) With the tension determined in part (b),
what is the acceleration of m1 ?

F
B

3. Two particles, each of mass m, are connected by a light string
of length 2L, as shown in Fig. 5-46. A steady force is ap-
plied at the midpoint of the string at a right angle to
the initial position of the string. Show that the acceleration of

(x � 0)
F
B

5. A 7.96-kg block rests on a plane inclined at 22.0° to the hori-
zontal, as shown in Fig. 5-48. The coefficient of static friction
is 0.25, while the coefficient of kinetic friction is 0.15. (a)
What is the minimum force F, parallel to the plane, that will
prevent the block from slipping down the plane? (b) What is
the minimum force F that will start the block moving up the
plane? (c) What force F is required to move the block up the
plane at constant velocity?

6. A worker wishes to pile sand onto a circular area in his yard.
The radius of the circle is R. No sand is to spill onto the sur-
rounding area; see Fig. 5-49. Show that the greatest volume
of sand that can be stored in this manner is �
sR3/3, where 
s

is the coefficient of static friction of sand on sand. (The vol-
ume of a cone is Ah/3, where A is the base area and h is the
height.)

4. A horizontal force F of 12 lb pushes a block weighing 5.0 lb
against a vertical wall (Fig. 5-47). The coefficient of static
friction between the wall and the block is 0.60 and the coeffi-
cient of kinetic friction is 0.40. Assume the block is not mov-
ing initially. (a) Will the block start moving? (b) What is the
force exerted on the block by the wall?



9. The two blocks, kg and kg, shown in Fig.
5-52 are free to move. The coefficient of static friction be-
tween the blocks is but the surface beneath M is
frictionless. What is the minimum horizontal force F required
to hold m against M?


s � 0.38,

M � 88m � 16
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Figure 5-49. Problem 6.

Figure 5-50. Problem 7.

Figure 5-51. Problem 8.

Figure 5-52. Problem 9.

Figure 5-53. Problem 10.

Figure 5-54. Problem 11.
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7. The handle of a floor mop of mass m makes an angle � with
the vertical direction; see Fig. 5-50. Let 
k be the coefficient
of kinetic friction between mop and floor and 
s the coeffi-
cient of static friction between mop and floor. Neglect the
mass of the handle. (a) Find the magnitude of the force F di-
rected along the handle required to slide the mop with uni-
form velocity across the floor. (b) Show that if � is smaller
than a certain angle �0 the mop cannot be made to slide across
the floor no matter how great a force is directed along the
handle. What is the angle �0 ?

8. Figure 5-51 shows the cross section of a road cut into the side
of a mountain. The solid line AA� represents a weak bedding
plane along which sliding is possible. The block B directly
above the highway is separated from uphill rock by a large
crack (called a joint), so that only the force of friction be-
tween the block and the likely surface of failure prevent slid-
ing. The mass of the block is 1.8 � 107 kg, the dip angle of
the failure plane is 24°, and the coefficient of static friction
between block and plane is 0.63. (a) Show that the block will
not slide. (b) Water seeps into the joint, exerting a hydrostatic
force F parallel to the incline on the block. What minimum
value of F will trigger a slide?

10. Two objects, with masses and ,
attached by a massless rod parallel to the incline on which
both slide, as shown in Fig. 5-53, travel down the plane with
m1 trailing m2 . The angle of the incline is � � 29.5°. The co-
efficient of kinetic friction between m1 and the incline is 
1 �
0.226; between m2 and the incline the corresponding coeffi-
cient is 
2 � 0.127. Compute (a) the common acceleration of
the two objects and (b) the tension in the rod. (c) What are the
answers to (a) and (b) if m2 trails m1 ?

m2 � 3.22 kgm1 � 1.65 kg

11. A massless rope is tossed over a wooden dowel of radius r in
order to lift a heavy object of weight W off of the floor, as
shown in Fig. 5-54. The coefficient of sliding friction between
the rope and the dowel is 
. Show that the minimum down-
ward pull on the rope necessary to lift the object is

(Hint: This problem requires techniques from integral calculus.)

Fdown � We�
.



12. A 4.40-kg block is put on top of a 5.50-kg block. In order to
cause the top block to slip on the bottom one, held fixed, a
horizontal force of 12.0 N must be applied to the top block.
The assembly of blocks is now placed on a horizontal, fric-
tionless table; see Fig. 5-55. Find (a) the maximum horizon-
tal force F that can be applied to the lower block so that
the blocks will move together, (b) the resulting acceleration
of the blocks, and (c) the coefficient of static friction between
the blocks.

(a) Where is the stone on its path when the string breaks? (b)
What is the speed of the stone as the string breaks?

17. A 1.34-kg ball is attached to a rigid vertical rod by means of
two massless strings each 1.70 m long. The strings are at-
tached to the rod at points 1.70 m apart. The system is rotat-
ing about the axis of the rod, both strings being taut and form-
ing an equilateral triangle with the rod, as shown in Fig. 5-57.
The tension in the upper string is 35.0 N. (a) Find the tension
in the lower string. (b) Calculate the net force on the ball at
the instant shown in the figure. (c) What is the speed of the
ball?
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Figure 5-56. Problem 14.

Figure 5-57. Problem 17.

Figure 5-58. Problem 18.
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Figure 5-55. Problem 12.
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13. You are driving a car at a speed of 85 km/h when you notice a
barrier across the road 62 m ahead. (a) What is the minimum
coefficient of static friction between tires and road that will
allow you to stop without striking the barrier? (b) Suppose
that you are driving at 85 km/h on a large empty parking lot.
What is the minimum coefficient of static friction that would
allow you to turn the car in a 62-m radius circle and, in this
way, avoid collision with a wall 62 m ahead?

14. A car moves at a constant speed on a straight but hilly road.
One section has a crest and dip of the same 250-m radius;
see Fig. 5-56. (a) As the car passes over the crest, the normal
force on the car is one-half the 16-kN weight of the car.
What will be the normal force on the car as it passes through
the bottom of the dip? (b) What is the greatest speed at
which the car can move without leaving the road at the top of
the hill? (c) Moving at the speed found in (b), what will be
the normal force on the car as it moves through the bottom of
the dip?

15. A small coin is placed on a flat, horizontal turntable. The
turntable is observed to make exactly three revolutions in
3.3 s. (a) What is the speed of the coin when it rides without
slipping at a distance of 5.2 cm from the center of the
turntable? (b) What is the acceleration (magnitude and direc-
tion) of the coin in part (a)? (c) What is the force of friction
acting on the coin in part (a) if the coin has a mass of 1.7 g?
(d) What is the coefficient of static friction between the coin
and the turntable if the coin is observed to slide off the
turntable when it is more than 12 cm from the center of the
turntable?

16. A certain string can withstand a maximum tension of 9.2 lb
without breaking. A child ties a 0.82-lb stone to one end and,
holding the other end, whirls the stone in a vertical circle of ra-
dius 2.9 ft, slowly increasing the speed until the string breaks.

18. A very small cube of mass m is placed on the inside of a fun-
nel (see Fig. 5-58) rotating about a vertical axis at a constant
rate of � revolutions per second. The wall of the funnel
makes an angle � with the horizontal. The coefficient of static
friction between cube and funnel is 
s and the center of the
cube is at a distance r from the axis of rotation. Find the (a)
largest and (b) smallest values of � for which the cube will
not move with respect to the funnel.

19. Because of the rotation of the Earth, a plumb bob may not
hang exactly along the direction of the Earth’s gravitational
force on the plumb bob but may deviate slightly from that di-



rection. (a) Show that the deflection � in radians at a point at
latitude L is given by

where R is the radius of the Earth and T is the period of the
Earth’s rotation. (b) At what latitude is the deflection a maxi-

� � � 2� 2R

gT 2 � sin 2L,

mum? How much is this deflection? (c) What is the deflection
at the poles? At the equator?

20. A particle of mass m sits at rest at At time a
force given by is applied in the �x direction; F0

and T are constants. When the force is removed. At this
instant when the force is removed, (a) what is the speed of the
particle and (b) where is it?

t � T
F � F0e�t/T

t � 0x � 0.
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COMPUTER PROBLEMS

1. An automobile is moving at a constant speed while pulling a
block of wood of mass kg with an elastic cord. The
force exerted on the block of wood by the cord depends on the
length of the cord, and is given by where F is
measured in newtons when l is measured in meters. This force,
however, is 0 if m. The coefficient of static friction be-
tween the block and ground is while the coefficient
of kinetic friction is Set up a computer program to
numerically evaluate the motion of the block under the follow-
ing scenarios: (a) Assume the block is originally at rest and
the automobile is originally 10 m distant and moving away
from the block with a constant speed of 5 m/s. (b) Assume the
block is originally at rest and the automobile is originally 10 m


k � 0.50.

s � 0.60,

l � 10

F � 400(l � 10)

m � 200
distant and moving away from the block with a constant speed
of 20 m/s.

2. Starting from rest a person pushes a 95-kg crate across a rough
floor with a force given by where F is in new-
tons and t is in seconds. The force decreases exponentially be-
cause the person tires. As long as the crate is moving a constant
frictional force of 80 N opposes the motion. (a) How long after
starting does the crate stop? (b) How far does it go? (c) How
accurate are your results? (Try using the Euler method with an
initial time interval of �t � 0.01 s. Repeat the process, but use
a time interval of �t � 0.001 s. Compare the results to get an
estimate of your accuracy.)

F � 200e�0.15t
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MOMENTUM

Newton’s laws are useful for solving a wide range

of problems in dynamics. However, there is one class of problems in which, even though Newton’s laws still

apply as we have defined them, we may have insufficient knowledge of the forces to permit us to analyze the

motion. These problems involve collisions between one object and another.

In this chapter we will learn how to analyze collisions between two objects. In doing so, we will find

that we need a new dynamic variable, called linear momentum. We will see that the law of conservation of

linear momentum, one of the fundamental conservation laws of physics, can be used to study the collisions

of objects from the scale of subatomic particles to the scale of galaxies.

6-1 COLLISIONS

In a collision, two objects exert forces on each other for an
identifiable time interval, so that we can separate the mo-
tion into three parts: before, during, and after the collision.
Before and after the collision, we assume that the objects
are far enough apart that they do not exert any forces on
each other. During the collision, the objects exert forces on
each other; these forces are equal in magnitude and oppo-
site in direction, according to Newton’s third law. We as-
sume that these forces are much larger than any forces ex-
erted on the two objects by other objects in their
environment. The motion of the objects (or at least one of
them) changes rather abruptly during the collision, so that
we can make a relatively clear separation of the situation
before the collision from the situation after the collision.

When a bat strikes a baseball, for example, the time be-
tween the beginning and the end of the collision can be de-
termined fairly precisely. The bat is in contact with the ball
for an interval that is quite short compared with the time
during which we are watching the ball. During the collision
the bat exerts a large force on the ball (Fig. 6-1). This force
varies with time in a complex way that we can measure
only with difficulty. Both the ball and the bat are deformed
during the collision. Forces that act for a time that is short

compared with the time of observation of the system are
called impulsive forces.

When an alpha particle (4He nucleus) collides with an-
other nucleus (Fig. 6-2), the force exerted on each by the
other may be the repulsive electrostatic force associated with
the charges on the particles. The particles may not actually
come into direct contact with each other, but we still may
speak of this interaction as a collision because a relatively

Figure 6-1. A high-speed photograph of a bat striking a base-
ball. Note the deformation of the ball, indicating the large impul-
sive force exerted by the bat.
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strong force, acting for a time that is short compared with
the time that the alpha particle is under observation, has a
substantial effect on the motion of the alpha particle.

We can even speak about a collision between two galax-
ies (Fig. 6-3), if we are prepared to observe them over a
time scale of the order of millions or billions of years.
(However, a more feasible alternative is to shorten this long
time span by computer modeling!)

Collisions between elementary particles provide the
principal source of information about their internal struc-
ture. When two particles collide at high energy, often the
products of the collision are very different from the original
particles (Fig. 6-4). Sometimes these collisions produce
hundreds of product particles. By studying the trajectories
of the outgoing particles and applying fundamental laws,
we can reconstruct the original event.

On a different scale, those who study traffic accidents
also try to reconstruct collisions. From the paths and impact
patterns of the colliding vehicles (Fig. 6-5), it is often pos-
sible to deduce such important details as the speeds and di-
rections of motion of the two vehicles before the collision.

Another kind of collision is one that takes place be-
tween a space probe and a planet, called the “slingshot ef-
fect,” in which the speed of the space probe can be in-
creased in a “close encounter” with a (moving) planet. The
probe does not actually touch the planet, but it does come
strongly under its gravitational influence for a time that is
very short compared to the duration of the space probe’s

journey. Thus we are justified in calling such encounters
“collisions.” For example, the Venus and Earth encounters
of the Cassini mission (see Fig. 5-24) increased the space-
craft’s speed by the equivalent of 75 tons of launch rocket
fuel! Without this gravity assist, the Cassini spacecraft
could not reach Saturn. (See Problem 14.)

In principle it would be possible to analyze each of
these collisions using Newton’s second law. Given the ini-
tial motion of each object and the force that acts between
them, we could use the methods of Chapter 5 to find the ve-
locity and position of each colliding object as a function of
the time. However, there are two reasons why this is not
possible for the collisions shown in Figs. 6-1 to 6-5: (1) For
some of the collisions, we don’t know the exact form of the
expression for the force between the objects. (2) The collid-
ing objects are composed of many particles, and it is hope-
lessly complicated to keep track of the application of New-
ton’s laws for the force between each particle of one
colliding object and each particle of the other.

Here is the basic problem: We have two objects with dif-
ferent initial motions that are originally so far apart that nei-
ther exerts a measurable force on the other. Eventually they
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Figure 6-2. An alpha particle collides with a helium nucleus
in a cloud chamber. Most of the incident particles (coming from
the left) pass through without colliding.

Figure 6-3. Two galaxies colliding.

Figure 6-4. (a) The massive detector UA1 used at the pro-
ton–proton collider at CERN, the particle physics research facil-
ity near Geneva, Switzerland. (b) A computer reconstruction of
the paths of the particles produced in one proton–proton collision.
Such reconstructions were used in 1983 to confirm the existence
of the very short-lived particles called W and Z, which verified a
theory that treats the electromagnetic force and the weak nuclear
force as different aspects of a single more basic force.

(a)

(b)



approach one another, so that each exerts a force on the other
and alters its motion. This force occurs for a time that is rela-
tively short compared with the entire motion of the objects.
Finally, they separate again with new motions and no longer
interact. We observe the motion before the collision and the
motion after the collision, but during the brief collision we
do not observe or measure what is happening.

If we know the initial motions, can we find the final mo-
tions even though we do not know the force that acts to
change the motions? Surprisingly, the answer is “yes!” In
the next section, we define a new dynamic variable that en-
ables us to analyze such collisions.

6-2 LINEAR MOMENTUM

To analyze collisions, we need a new dynamic variable, the
linear momentum of a body. (Later we will introduce a sim-
ilar variable for rotational motion, called the angular mo-
mentum. For the time being, we will refer to linear momen-
tum simply as “momentum.”) The momentum of a body
is defined as the product of its mass and its velocity:

(6-1)

As the product of a vector and a scalar, momentum must also
be a vector. Equation 6-1 indicates that the direction of is
the same as the direction of Because depends on the
momentum (like the velocity) depends on the reference frame
of the observer, and we must always specify this frame.

Newton, in his famous Principia, expressed the second
law of motion in terms of momentum (which he called
“quantity of motion”). Expressed in modern terminology
Newton’s second law reads:

vB,pBvB.
pB

pB � mvB.

pB

The rate of change of momentum of a body is equal to
the resultant force acting on the body and is in the di-
rection of that force.

In symbolic form this becomes

(6-2)

Here represents the resultant force acting on the particle.
For a single particle of constant mass, this form of the

second law is equivalent to the form that we
have used up to now. That is, if m is constant, then

The relations and for single parti-
cles are completely equivalent in classical mechanics.

The equivalence of and de-
pends, as you can see from the above equation, on the mass
being a constant so that it passes through the derivative:

We shall assume that this is the case
for the problems we discuss in this chapter. Section 7-6 cov-
ers applications of Newton’s laws to systems in which the
mass changes, such as a rocket that exhausts burning gases.

6-3 IMPULSE AND MOMENTUM

In this section we consider the relationship between the force
that acts on a body during a collision and the change in the
momentum of that body. During a collision, the force varies
with time. For example, Fig. 6-6 shows how the magnitude
of the force might change with time during a collision. The
force is exerted only during the collision, which begins at
time ti and ends at time tf . The force is zero before and after
the collision.

From Newton’s second law in the form of Eq. 6-2
we can write the change in momentum d pB(� F

B
� d pB/dt),

d(mvB)/dt � m(d vB/dt).

� F
B

� d pB/dt� F
B

� maB

� F
B

� d pB/dt� F
B

� maB

� F
B

�
dpB

dt
�

d

dt
 (mvB) � m

dvB

dt
� maB.

� F
B

� maB

� F
B

� F
B

�
dpB

dt
.
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Figure 6-5. A collision between two automobiles. Momen-
tum conservation is used by accident reconstruction experts to cal-
culate the velocities before the collision.

Figure 6-6. An impulsive force F(t) varies in an arbitrary
way with time during a collision that lasts from ti to tf . The area
under the F(t) curve is the impulse J, and the rectangle bounded
by the average force Fav has an equal area.

J

Fav

F(t)

t

∆t

ti tf

F

O



of a particle in a time interval dt during which a net force
acts on it as

To find the total change in momentum during the entire col-
lision, we integrate over the time of collision, starting at
time ti (when the momentum is and ending at time tf

(when the momentum is 

(6-3)

The left side of Eq. 6-3 is the change in momentum,
The right side defines a new quantity

called the impulse. For any arbitrary force the impulse 
is defined as

(6-4)

The impulse depends on the strength of the force and on its
duration. The impulse is a vector and, as Eq. 6-3 shows, the
impulse has the same units and dimensions as momentum.

The right side of Eq. 6-3 is the impulse of the net force,
We can therefore write Eq. 6-3 as

(6-5)

Equation 6-5 is the mathematical statement of the impulse-
momentum theorem:

The impulse of the net force acting on a particle during
a given time interval is equal to the change in momen-
tum of the particle during that interval.

As a vector relationship, Eq. 6-5 contains within it the three
component equations:

(6-6)

Although in this chapter we use Eq. 6-5 only in situa-
tions involving impulsive forces (that is, those of short du-
ration compared with the time of observation), no such lim-
itation is built into that equation. Equation 6-5 is just as
general as Newton’s second law, from which it was derived.
We could, for example, use Eq. 6-5 to find the momentum
acquired by a body falling in the Earth’s gravity.

We defined the impulse in terms of a single force, but
the impulse-momentum theorem deals with the change in
momentum due to the impulse of the net force— that is, the
combined effect of all the forces that act on the particle. In
the case of a collision involving two particles, there is often
no distinction because each particle is acted upon by only
one force, which is due to the other particle. In this case,
the change in momentum of one particle is equal to the im-
pulse of the force exerted by the other particle.

The impulsive force whose magnitude is represented in
Fig. 6-6 is assumed to have a constant direction. The mag-

Jnet,z � � pz � pfz � piz .

Jnet,y � �py � pfy � piy ,

Jnet, x � �px � pf x � pi x ,

J
B

net � �pB � pBf � pBi .

J
B

net � � �F
B

dt.

J
B

� �tf

ti

F
B

dt.

J
B

F
B

,
�pB � pBf � pBi .

�pBf

pBi

d pB � �tf

t i

� F
B

dt.

pBf):
pBi)

dpB � � F
B

dt.

� F
B

nitude of the impulse of this force is represented by the area
under the F(t) curve. We can represent that same area by
the rectangle in Fig. 6-6 of width �t and height Fav , where
Fav is the magnitude of the average force that acts during
the interval �t. Thus

(6-7)

In a collision such as that of the ball and bat of Fig. 6-1, it
is difficult to measure F(t) directly, but we can estimate �t
(perhaps a few milliseconds) and obtain a reasonable value
for Fav based on the impulse computed according to Eq. 6-6
from the change in momentum of the ball (see Sample
Problem 6-1).

We have defined a collision as an interaction that occurs
in a time �t that is negligible compared to the time during
which we are observing the system. We can also character-
ize a collision as an event in which the external forces that
may act on the system during the time of the collision are
negligible compared to the impulsive collision forces.
While a bat strikes a baseball, a golf club strikes a golf ball,
or one billiard ball strikes another, external forces act on
the system. Gravity or friction may exert forces on these
bodies, for example; these external forces may not be the
same on each colliding body nor are they necessarily can-
celed by other external forces. Even so, it is quite safe to
neglect these external forces during the collision. As a re-
sult, the change in momentum of a particle arising from an
external force during a collision is negligible compared to
the change in momentum of that particle arising from the
impulsive collisional force (Fig. 6-7).

For example, when a bat strikes a baseball, the collision
lasts only a few milliseconds. Because the change in mo-
mentum of the ball is large and the time of collision is
small, it follows from

(6-8)

that the average impulsive force is relatively large.
Compared to this force, the external force of gravity is neg-

F
B

av

�pB � F
B

av �t

J � Fav �t.
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Figure 6-7. The impulsive force Fimp that acts during a colli-
sion is generally much stronger than any external force Fext that
may also act.
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ti tf
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ligible. During the collision we can safely ignore this exter-
nal force in determining the change in motion of the ball;
the shorter the duration of the collision is, the more likely
this is to be true.

Sample Problem 6-1. A baseball (which has an official
weight of about 5 oz or a mass of 0.14 kg) is moving horizontally
at a speed of 93 mi/h (about 42 m/s) when it is struck by the bat
(see Fig. 6-1). It leaves the bat in a direction at an an angle � �
35° above its incident path and with a speed of 50 m/s. (a) Find
the impulse of the force exerted on the ball. (b) Assuming the col-
lision lasts for 1.5 ms (� 0.0015 s), what is the average force? (c)
Find the change in the momentum of the bat.

Solution (a) Figure 6-8a shows the initial momentum vector 
and the final momentum vector of the baseball. The compo-
nents of the final momentum are given by

In this coordinate system, the initial momentum has only an x
component, whose (negative) value is

The impulse can now be found using Eq. 6-6:

In other terms, the impulse has magnitude

and acts in a direction determined by

above the horizontal. Figure 6-8b shows the impulse vector and
verifies graphically that, as the definition of Eq. 6-6 requires,

J
B

� pBf � pBi � pBf � (� pBi).

J
B

� � tan�1(Jy /Jx) � tan�1[(4.0 kg 	m/s)/(11.6 kg 	m/s)] � 19°

� 12.3 kg 	m/s 

J � √J 2
x � J 2

y � √(11.6 kg 	m/s)2 � (4.0 kg 	m/s)2

Jy � pfy � piy � 4.0 kg 	m/s � 0 � 4.0 kg 	m/s. 

Jx � pfx � pix � 5.7 kg 	m/s � (�5.9 kg 	m/s) � 11.6 kg 	m/s,

pix � mvi � (0.14 kg)(�42 m/s) � �5.9 kg 	m/s.

pfy � mvf sin � � (0.14 kg)(50 m /s)(sin 35°) � 4.0 kg 	m /s. 

pfx � mvf cos � � (0.14 kg)(50 m/s)(cos 35°) � 5.7 kg 	m/s,

pBf

pBi

(b) Using Eq. 6-7, we obtain

which is nearly 1 ton. This force acts in the same direction as —
that is, 19° above the horizontal. Note that this is the average
force; the maximum force is considerably greater, as Fig. 6-6
shows. Also, note that Fav (� 8200 N) 

 mg (� 1.4 N). Thus
we are quite safe in assuming that the impulsive force greatly ex-
ceeds the external force (gravity, in this case) and therefore is very
nearly equal to the net force that acts during the collision.
(c) From Newton’s third law, the force exerted on the bat by the
ball is equal and opposite to the force exerted on the ball by the
bat. Therefore, according to Eq. 6-8, the change in momentum of
the bat is equal and opposite to that of the ball. Thus, for the bat,

Is this a large change or a small one? Try to estimate the momen-
tum of the bat in motion to answer this question.

Sample Problem 6-2. A cart of mass m1 � 0.24 kg
moves on a linear track without friction with an initial velocity of
0.17 m/s. It collides with another cart of mass m2 � 0.68 kg that
is initially at rest. The first cart carries a force probe that registers
the magnitude of the force exerted by one cart on the other during
the collision. The output of the force probe is shown in Fig. 6-9.
Find the velocity of each cart after the collision.

Solution Our strategy in this problem is to find the impulse from
the force graph. The impulse gives the change in momentum,
which allows us to find the final momentum of each cart. The im-
pulse is the area under the graph of F(t) in Fig. 6-9, which
can be determined as the area of a triangle:

Since the graph gives the magnitude of the force, this integral
gives the magnitude of the impulse. We take the direction of mo-
tion of the first cart as the positive x direction. Then the x compo-
nent force exerted on cart 1 by cart 2 is negative, and so the corre-
sponding component of is negative. Since Jx � �px , for the firstJ

B

� 0.055 N 	s � 0.055 kg 	m/s. 

J � �F dt � 1
2(0.014 s � 0.003 s)(10 N)

�F dt

�py � �4.0 kg 	m/s. 

�px � �11.6 kg 	m/s,

J
B

Fav � J/�t � (12.3 kg 	m/s)/0.0015 s � 8200 N,
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Figure 6-8. Sample Problem 6-1. (a) The initial and final
momenta of the baseball. (b) The difference is equal to
the impulse J
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Figure 6-9. Sample Problem 6-2.
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cart we have and so its final momentum
and velocity are

Cart 1 moves in the negative x direction after the collision.
The force on cart 2 is, by Newton’s third law, equal and oppo-

site to the force on cart 1, so it is in the positive x direction. 
Because the forces are equal in magnitude, the impulses are 
equal in magnitude but opposite in direction. So J2x � �p2x �
� 0.055 kg 	 m/s, and the final momentum and velocity of cart 2 are

Cart 2 moves in the positive x direction after the collision.

6-4 CONSERVATION OF
MOMENTUM

In this section we consider the analysis of collisions be-
tween two objects, each of which may be moving. In con-
trast to Sample Problem 6-2, the objects may be moving in
any direction, so we must use vectors to describe the mo-
tion.

Figure 6-10a illustrates the general problem. A body
with mass m1 moves initially with velocity and momen-
tum . It collides with body 2, which is moving
initially with velocity and momentum We
focus our attention on the motions of the two bodies, which
we define as our system. We assume that the system con-
sisting of the two bodies is isolated from its environment,
so that no forces act on either body during the collision ex-

pB2i � m 2vB2i .vB2i

pB1i � m1vB1i

vB1i

v2fx �
p2fx

m 2
�

�0.055 kg 	m/s

0.68 kg
� �0.081 m/s � �8.1 cm/s.

p2fx � p2ix � �p2x � 0 � 0.055 kg 	m/s � �0.055 kg 	m/s

v1fx �
p1fx

m 1
�

�0.014 kg 	m/s

0.24 kg
� �0.058 m/s � �5.8 cm/s.

� �0.014 kg 	m/s 

p1fx � p1i x � �p1x � (0.24 kg)(0.17 m/s) � 0.055 kg 	m/s

�p1x � �0.055 kg 	m/s cept the impulsive force that each body exerts on the other.
After the collision (Fig. 6-10b), m1 moves with velocity 
and momentum and m2 with velocity and
momentum 

At any particular time, the total momentum of the sys-
tem consisting of the two bodies is

(6-9)

which we can evaluate before, during, or after the collision.
Taking the time derivative of Eq. 6-9, we obtain

(6-10)

where we have used Eq. 6-2 to replace for each body
with the net force acting on that body. Before the collision,
no forces act on the bodies, so and , and
therefore . Similarly, after the collision

because again no forces act on the bodies. Dur-
ing the collision, the only force acting on body 1 is ,
which is due to body 2. Similarly, is the only force act-
ing on body 2 during the collision. and form an
action– reaction pair, so and .
Thus during the collision, too. So we get the
same result when we evaluate Eq. 6-10 before, during, and
after the collision: at all times,

(6-11)

If the time derivative of a quantity is zero, then that quan-
tity does not change with time and must be a constant:

(6-12)

That is, the total momentum of m1 and m2 before the colli-
sion must be the same in magnitude and direction as the to-
tal momentum of m1 and m2 after the collision. Even
though and may both change as a result of the colli-
sion, their vector sum stays the same (as in Fig. 6-10).

Another way of expressing this result is

(6-13)

where is the total initial momentum of the
system before the collision and is the total
final momentum after the collision.

Equations 6-11, 6-12, and 6-13 are equivalent mathe-
matical statements of the law of conservation of linear mo-
mentum for an isolated system consisting of two bodies:

When the net external force acting on a system is zero,
the total linear momentum of the system remains con-
stant.

This is a general result, valid for any type of interaction be-
tween the bodies. It is not even necessary that the bodies
behave like particles for this law to be valid (as in the colli-
sion of Fig. 6-5). Although we obtained this result for a
two-body system, the law of conservation of momentum is
perfectly general and applies to any collection or system of

P
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f � pB1f � pB2f

P
B

i � pB1i � pB2i

P
B

i � P
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f ,

pB2pB1

P
B

� constant.

dP
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dt
� 0.
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Figure 6-10. (a) Two objects and their momenta before they
collide. (b) The objects and their momenta after they collide. Note
that the total momentum vectors and are the same before
and after the collision.
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bodies in which the only forces that act are those that the
bodies in the system exert on each other.

Momentum is a vector quantity so for momentum to be
conserved all three components must be conserved inde-
pendently. For example, Eq. 6-12 gives

Px � constant, Py � constant, Pz � constant.
(6-14)

The total x component of the momentum stays the same be-
fore and after the collision, as do the y and z components.

Because we derived the law of conservation of momen-
tum using Newton’s laws, the law is valid in any inertial
frame of reference. Observers in different inertial frames
watching the same collision may disagree on the values
they measure for the initial and final momenta, but each
will agree that the initial and final momenta are equal. If
momentum is conserved in one inertial frame, it is con-
served in every inertial frame.

Conservation laws have an important role in our analy-
sis and understanding of physical processes. They allow us
to compare the behavior of a system “before” and “after,”
without having any detailed knowledge of the processes
that happen “in between.” For example, the law of conser-
vation of linear momentum makes no assumptions about
the type of force that the two bodies exert on one another;
the total linear momentum before the collision will equal
the total momentum after the collision, no matter what type
of force acts on the colliding objects.

Later in this text we shall encounter other conservation
laws, including those for energy, angular momentum, and
electric charge. These laws are of great practical and theo-
retical importance. There is a deep theoretical connection
between conserved quantities and symmetries of nature.
For instance, the law of conservation of linear momentum
is connected to the spatial symmetry of nature, which re-
quires that an experiment done at one location should yield
the identical result as the same experiment done at another
location. Later we will discuss another conservation law,
the conservation of energy, which is connected to temporal
(time) symmetry: the result of an experiment done today
should agree with the result of the same experiment done
yesterday. Because of these connections, we believe that
these two conservation laws are universally valid— if the
nature of space and time is the same everywhere in the uni-
verse, then the same conservation laws should apply every-
where and at all times.

Sample Problem 6-3. Fred (mF � 75 kg) and Ginger
(mG � 55 kg) are ice skating side by side at a common velocity of
3.2 m/s (Fig. 6-11a) when they push off from one another in a di-
rection perpendicular to their original velocity. After they break
contact, Ginger is skating in a direction at an angle of 32° from
her original direction (Fig. 6-11b). In what direction is Fred now
skating?

Solution We take Fred and Ginger together to be our system.
Fred and Ginger exert forces on each other when they push apart,

but if we neglect the effect of any external forces (such as friction
with the ice), their total momentum before they push apart must
be the same as their total momentum after they push apart. The x
components of their original momenta are (taking their original
motion to be in the positive x direction):

After they push off, Ginger’s momentum acquires a y component
so that her total momentum makes an angle of 32° with the posi-
tive x direction:

Before they push apart, the y component of their total momentum
is zero. For momentum to be conserved, the total y component
must remain zero after they separate. Therefore, the y component
of Fred’s momentum must be � 110 kg	m/s, and the direction of
Fred’s motion is determined from

or

Note that the x component of the momentum of either Fred or
Ginger is unchanged by the force of their pushing away from each
other; this force is exerted in the y direction, and the impulse-
momentum theorem (Eq. 6-6) tells us that a force on either of
them in the y direction cannot change the x component of their
momentum.

Sample Problem 6-4. A man of mass 65 kg is running
along a pier at a speed of 4.9 m/s (Fig. 6-12). He jumps from the
pier into a rowboat of mass 88 kg that is drifting without friction
in the same direction at a speed of 1.2 m/s. When the man is
seated in the rowboat, what is its final velocity?

Solution As the man enters the boat, he and the boat exert forces
on each other that cause them to acquire the same final speed (the
man slows down and the boat speeds up). If there are no external
forces acting on the system of man � boat, the total momentum
of the man and the boat before he jumps must equal the total mo-
mentum after he is seated in the boat. We choose the positive x

� � �25°. 

tan � �
pFy

pFx

�
�110 kg 	m/s

240 kg 	m/s
� �0.458

pGy � pGx tan 32° � �110 kg 	m/s.

pFx � mFvF � (75 kg)(3.2 m/s) � 240 kg 	m/s.

pGx � mGvG � (55 kg)(3.2 m/s) � 176 kg 	m/s
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Figure 6-11. Sample Problem 6-3. (a) Two skaters push off
from one another in a direction perpendicular to their original mo-
tion. (b) The momenta of the skaters after they push off.



axis in the direction of the man’s original velocity, and because all
motion is in the x direction we need consider only the x compo-
nents of all velocities and momenta. Before he jumps, the man has
momentum pmx � mmvmx and the boat has momentum pbx �
mbvbx . The total initial momentum is

After he jumps and is seated in the boat, they move together with
the same velocity vfx . Their combined final momentum is

With Pix � Pfx , we obtain

6-5 TWO-BODY COLLISIONS

In this section we examine different types of two-body col-
lisions using momentum conservation to relate the motion
of the bodies before and after the collision.

Figure 6-13a shows a general two-body collision. Be-
fore the collision, m1 moves with initial velocity and m2

with initial velocity After the collision, the final veloci-
ties are and respectively. According to conservation
of momentum, the total momentum of m1 and m2 before the
collision equals their total momentum after the collision:

(6-15)

Another way of writing Eq. 6-15 is

(6-16)

or
(6-17)

The changes in momentum of the two objects have equal
magnitudes and opposite signs, a necessary consequence of
the law of conservation of momentum. This result also fol-
lows directly from Newton’s third law: according to the im-
pulse-momentum theorem (Eq. 6-5), the change in momen-
tum of either body equals the impulse of the net force that
acts on that body. Equation 6-17 can thus be written as

where means the impulse of the force on
body 1 due to body 2 and means the impulse of theJ

B
2

J
B

1J
B

1 � � J
B

2

�pB1 � ��pB2 .

m1(vB1f � vB1i) � �m2(vB2f � vB2i)

m1vB1i � m2vB2i � m1vB1f � m2vB2f .

vB2fvB1f

vB2i .
vB1i

vfx �
Pi x

mm � m b
�

424 kg 	m/s

65 kg � 88 kg
� 2.8 m/s.

Pfx � mmvfx � m bvfx � (mm � m b)vfx .

� (65 kg)(4.9 m/s) � (88 kg)(1.2 m/s) � 424 kg 	m/s.

Pix � pmx � pbx � mmvmx � m bvbx

force on body 2 due to body 1. This equality follows di-
rectly from the definition of the impulse (Eq. 6-4) with

as required by Newton’s third law.
In some collisions, the bodies stick together (Fig.

6-13b) and move with a common final velocity. With
Eq. 6-15 becomes

(6-18)

Equations 6-15 and 6-18 are vector equations, which im-
plies that conservation of momentum must be valid for each
of the components, as suggested by Eq. 6-14. Thus

m1v1ix � m2v2i x � m1v1fx � m2v2fx

and similarly for the y and z components. If all motion takes
place in a plane (the xy plane) and if we know the initial ve-
locities of m1 and m2 , then Eq. 6-15 gives two relationships
among the four unknowns (the x and y components of and

If we also know one of the final velocities, we can find
the other; or if we know the directions of the two final veloci-
ties, we can find their magnitudes. Equation 6-18, on the
other hand, has only two unknowns (the x and y components
of , so the two component equations contained in Eq. 6-18
are therefore sufficient to solve for these two unknowns.

In many applications, m2 is initially at rest 
This simplifies the calculation somewhat. Since momentum
conservation is valid in any inertial frame, we can always
find a frame of reference in which m2 is at rest and apply
momentum conservation in that frame, returning to the
original frame of reference if we wish to evaluate the final
velocities in that frame.

Often we have a “head-on” collision in which all of the
motion occurs only in one direction, which we take to be

(vB2i � 0).

vBf)

vB2f).
vB1f

m1vB1i � m 2vB2i � (m1 � m2)vBf .

vB1f � vB2f � vBf ,

F
B

12 � � F
B

21 ,
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Figure 6-12. Sample Problem 6-4. (a) A man runs with ve-
locity and jumps into a boat moving in the same direction with
velocity (b) The man and boat are together moving with ve-
locity vBf .

vBb .
vBm

Figure 6-13. The initial and final velocities in various two-
body collisions.
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the x direction of our coordinate system (Fig. 6-13c). Con-
servation of momentum in this case can be written

(6-19)

If three of the velocities are known, the fourth can be found
from Eq. 6-19. If m1 and m2 stick together after the colli-
sion and move with a common final velocity vfx (Fig. 6-
13d ), Eq. 6-19 becomes

(6-20)

The x components of the velocities in Eqs. 6-19 and 6-20
can be positive or negative, depending on how we define
the positive direction of the x axis.

Sample Problem 6-5. A glider of mass m1 � 1.25 kg
moves with a velocity of 3.62 m/s on a frictionless, level air track
and collides with a second glider of mass m2 � 2.30 kg that is ini-
tially at rest. After the collision, the first glider is found to be mov-
ing at 1.07 m/s in a direction opposite to that of its initial motion.
What is the velocity of m2 after the collision?

Solution Equation 6-19 gives the general momentum conserva-
tion result in one dimension. We choose the positive x direction to
be that of the initial motion of m1 , so that and

With v2ix � 0, we can solve Eq. 6-19 for the
unknown v2fx and obtain

We can check this result by finding the change in momentum for
each of the gliders:

As expected,

Sample Problem 6-6. Suppose the two gliders moving
initially as in Sample Problem 6-5 stick together after the colli-
sion. What is the final velocity of the combination?

Solution In this case we can use Eq. 6-20 with v2ix � 0:

Following the same method as in the previous Sample Problem,
you should show that �p1x � � 2.93 kg 	 m/s and �p2x � � 2.93
kg 	 m/s, thereby satisfying conservation of momentum

.

Sample Problem 6-7. A spaceship of total mass m is
coasting at a speed of 8.45 km/s (measured with respect to a par-
ticular inertial reference frame) in a region of space of negligible
gravity. The ship consists of two craft of masses m/4 and 3m/4

(�p1x � ��p2 x)

vfx �
m 1v1ix

m 1 � m 2
�

(1.25 kg)(3.62 m/s)

1.25 kg � 2.30 kg
� 1.27 m/s.

�p1x � ��p2 x .

� �5.86 kg 	m/s.
�p2x � m 2(v2fx � v2ix) � (2.30 kg)(2.55 m/s � 0) 

� �5.86 kg 	m/s,
�p1x � m 1(v1fx � v1i x) � (1.25 kg)(�1.07 m/s � 3.62 m/s)

�
1.25 kg

2.30 kg
 [3.62 m/s � (�1.07 m/s)] � 2.55 m/s.

v2fx �
m 1

m 2
 (v1ix � v1fx)

v1fx � �1.07 m/s.
v1ix � �3.62 m/s

m1v1i x � m 2v2ix � (m1 � m2)vf x .

m1v1ix � m 2v2i x � m1v1fx � m 2v2fx .

that are clamped together with a spring between them (Fig. 6-14).
Upon a signal from the ship’s commander, the bolts holding the
two craft together are released, and the spring drives them apart
such that the smaller craft moves forward (in the direction of the
ship’s original motion) at a speed of 11.63 km/s. What is the final
speed of the larger craft?

Solution This problem is the reverse of the previous one— in-
stead of the two bodies colliding and sticking together, we have
two bodies initially stuck together that come apart. The force that
drives them apart is an internal force in the two-body system, so
the law of conservation of momentum can be applied. We choose
the positive x direction to be that of the original motion of the
spaceship (and also that of the final velocity of the smaller craft).
Let us turn Eq. 6-20 around, so that the velocity of the initial com-
bined system is vix and the final velocities of the two pieces are
v1fx and v2fx . Then momentum conservation gives

(6-21)

We are given vix � � 8.45 km/s and v1fx � � 11.63 km/s, and we
wish to find v2fx :

Note that we do not need to know the actual mass of the ship for
this calculation, only the relative masses of the two pieces. Is this
true for all two-body collisions? Review Eqs. 6-19 and 6-20 to de-
cide whether this is true in general.

It is instructive to analyze this problem from the perspective of
another spaceship that is moving parallel to the first at the same
velocity (vx � 8.45 km/s). Relative to this ship, the smaller craft
after its release moves with a velocity of v�1fx � v1fx � vx �
11.63 km/s � 8.45 km/s � 3.18 km/s in the forward direction
(the same direction as the ship’s velocity). The larger craft moves
with a velocity of v�2fx � v2fx � vx � 7.39 km/s � 8.45 km/s �
� 1.06 km/s. In this frame of reference, the larger craft moves
backward with a speed of 1.06 km/s. According to this observer,
the initial momentum of the first spaceship (before the separation)
is zero, because the relative velocity of the first ship is zero. After
the separation, the total final momentum of the two craft is zero:

as you can show. According to this
observer, the initial and final momenta are both zero, and thus mo-
mentum is conserved.

If momentum is conserved in one inertial reference frame,
then it is conserved in every inertial reference frame. Often it is
convenient to solve a problem in one reference frame and then
transform the results to another. In the remainder of this section
we discuss how the second reference frame used in this problem,
in which the total momentum is zero, can often yield insight into
the analysis of collisions.

P�fx � m 1v�1fx � m 2v�2fx � 0,

�
(m)(8.45 km/s) � (m/4)(11.63 km/s)

3m/4
� �7.39 km/s.

v2fx �
(m 1 � m 2)vix � m 1v1fx

m 2

(m 1 � m 2)vix � m 1v1fx � m 2v2fx .

6-5 Two-Body Collisions 127

vvix x

3m/4 m/4

m2 m1

Figure 6-14. Sample Problem 6-7.



Sample Problem 6-8. A puck is sliding without friction
on the ice at a speed of 2.48 m/s. It collides with a second puck of
mass 1.5 times that of the first and moving initially with a velocity
of 1.86 m/s in a direction 40° away from the direction of the first
puck (Fig. 6-15). After the collision, the first puck moves at a ve-
locity of 1.59 m/s in a direction at an angle of 50° from its initial
direction (as shown in Fig. 6-15). Find the speed and direction of
the second puck after the collision.

Solution In this problem we must use the law of conservation of
momentum in its two-dimensional vector form. We define the x
axis as the direction of the initial motion of the first puck. Let the
second puck move with velocity at an angle � with the x axis.
Then the x component of the conservation of momentum equation
(Eq. 6-15) gives m1v1ix � m2v2ix � m1v1fx � m2v2fx , or (with m1 �
m and m2 � 1.5m)

which reduces to

and the y component is m1v1iy � m2v2iy � m1v1fy � m2v2fy , so

which reduces to

Solving the two reduced equations for the two unknowns, we find

One-Dimensional Collisions in the
Center-of-Mass Reference Frame
Earlier in this section we analyzed a one-dimensional colli-
sion between two bodies, viewed from an arbitrary inertial
reference frame. Often we choose that frame to be fixed in
the laboratory in which the collision is observed, so it is
called the laboratory reference frame or lab frame. There
is, however, another special reference frame in which the

v2f � 2.43 m /s, � � 9.0°.

v2f sin � � 0.38 m /s.

� m(1.59 m /s) sin 50° � 1.5mv2f sin �,

m(0) � 1.5m(1.86 m /s) sin 40°

v2f cos � � 2.40 m /s,

� m(1.59 m/s) cos 50° � 1.5mv2f cos �,
m(2.48 m/s) � 1.5m(1.86 m/s) cos 40°

vB2f
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collision displays a particular symmetry and in which the
analysis can often be carried out with relative ease. This
frame, which is widely adopted by physicists for analyzing
collisions of atoms and subatomic particles, is called the
center-of-mass reference frame or cm frame. (The reason
for this choice of name will be explained in the next chap-
ter.) In Sample Problem 6-7, the second method of analysis
was carried out in the cm frame, in which the spaceship ap-
peared to be at rest before the separation.

The (one-dimensional) collision in the lab frame is shown
in Fig. 6-16a. We now analyze that collision in the cm frame.
All velocities are in the x direction, so for convenience we
drop the x subscript from the velocities and momenta; how-
ever, it must be remembered that these are x components of
vectors and so their signs must be chosen consistently rela-
tive to the direction we defined as the positive x direction. We
use Eq. 4-32 in one dimension, and we let S represent the lab
frame and S� represent the cm frame. The velocity vS�S (the
velocity of the cm frame relative to the lab frame) is repre-
sented simply as v. According to an observer in the cm
frame, the initial velocities of the two colliding objects are

where the primes represent quantities measured in the cm
(S�) frame.

The total initial momentum of the two bodies in the cm
frame is then

. (6-22)

We now define the cm frame to be the frame in which the
initial momentum of the two-body system is zero. To find
the particular value of v that will bring this about, we set

in Eq. 6-22 and solve for v, obtaining

. (6-23)

If we travel at this velocity and observe the collision, the
motion of the two bodies before the collision would appear
as in Fig. 6-16b. Even though their masses may be differ-
ent, the momenta of the two bodies are equal and opposite,
so that their total is zero.

Because momentum is conserved, the total momentum af-
ter the collision must also be zero in the cm
frame, so after the collision and must also be equalp�2fp�1f

(P�f � p�1f � p�2f)

v �
m1v1i � m2v2i

m1 � m2

P�i � 0

P�i � m1v�1i � m2v�2i � m1(v1i � v) � m2(v2i � v)

m1 : v�1i � v1i � v and m2 : v�2i � v2i � v,

m1

m1

m2

m2

v2i

v2f

v1f

v1i

x

y

Initial

Final40°

50°

Figure 6-15. Sample Problem 6-8.

Figure 6-16. The momenta of two bodies before their colli-
sion in (a) the original frame of reference and (b) the center-of-
mass frame of reference.

x

x

(a)

(b)

p1i p2i

p1i p2i
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and opposite. The final momentum vectors may have any
length, as long as they are equal to one another in magnitude.

Line 1 of Fig. 6-17, which is identical to Fig. 6-16b,
shows the initial momenta of the two bodies in the cm
frame. The outcome of the collision depends on the proper-
ties of the colliding bodies and on the nature of the forces
they exert on each other; lines 2–5 of Fig. 6-17 show sev-
eral different possibilities for the final momenta and 
in the cm frame. The total final momentum is zero in this
frame, so that Regardless of the type of colli-
sion, this symmetry is revealed in the cm frame.

In the case shown in line 2 of Fig. 6-17, the bodies simply
bounce off one another, with their momenta unchanged in
magnitude and reversed in direction. This type of collision is
known as an elastic collision. Rigid solid objects, such as bil-
liard balls or hockey pucks, usually experience collisions that
can be regarded as elastic. In inelastic collisions (line 3), the
bodies rebound with smaller momenta in the cm frame. This
is the case for nonrigid objects, such as the baseball in Fig. 6-
1. If the bodies stick together after the collision (line 4), the
combination will be at rest in the cm frame; we call this a
completely inelastic collision. The collision of two putty balls
is an example. Finally (line 5), the bodies might rebound
with momenta larger than their initial values. This might oc-
cur, for example, if a coiled spring or an explosive charge
were released between the bodies at the instant of collision.

Elastic Collisions. We have defined an elastic collision as
one in which, in the cm frame, the velocity of each body
changes in direction but not in magnitude. Thus for m1 ,

in the cm frame, and similarly for m2 . Now we
use these results to derive expressions for the final veloci-
ties of the two elastically colliding bodies in the lab frame.

For m1 , the velocities in the two frames are related by
and where v is the relative ve-

locity between the frames (Eq. 6-23). Solving the latter of
these two equations for the velocity in the lab frame, we
obtain Substituting the condition for elastic
collisions ( then gives Finally,
using the relationship between and v1i , we obtain

� �v1i � 2 
m1v1i � m2v2i

m1 � m2
 ,

v1f � � (v1i � v) � v � �v1i � 2v

v�1i

v1f � �v�1i � v.v�1f � �v�1i)
v1f � v�1f � v.

v�1f � v1f � v,v�1i � v1i � v

v�1f � �v�1i

p�1f � �p�2f .

p�2fp�1f

where the latter result comes from using Eq. 6-23. After
some rearrangement, we get

. (6-24)

To find v2f , the final velocity of m2 , we could repeat the
analysis that led to Eq. 6-24, interchanging the subscripts
“1” and “2” everywhere they appear. In fact, we can simply
make those changes to Eq. 6-24, which gives

. (6-25)

Equations 6-24 and 6-25 are general results for one-dimen-
sional elastic collisions and allow us to calculate the final
velocities in any inertial reference frame in terms of the ini-
tial velocities in that frame. Here are some special cases of
interest:

1. Equal masses. When the colliding particles have
equal masses (m1 � m2), Eqs. 6-24 and 6-25 become simply

(6-26)

That is, the particles exchange velocities: the final velocity
of one particle is equal to the initial velocity of the other.

2. Target particle at rest. Another case of interest is that
in which particle m2 is initially at rest. Then v2i � 0 and

. (6-27)

Combining this special case with the previous one (that is, a
collision between equal mass particles in which one is ini-
tially at rest), we see that the first particle is “stopped cold”
and the second one “takes off” with the velocity the first
one originally had. It is often possible to observe this effect
in collisions of nonrotating billiard balls.

3. Massive target. If then Eqs. 6-24 and
6-25 reduce to

(6-28)

When the massive particle is moving slowly or at rest, then

(6-29)

That is, when a light projectile collides with a very much
more massive one at rest, the velocity of the light particle is
approximately reversed, and the massive particle remains

v1f � �v1i and v2f � 0.

v1f � �v1i � 2v2i and v2f � v2i .

m 2 

 m 1 ,

v1f �
m1 � m2

m1 � m2
v1i and v2f �

2m1

m1 � m2
v1i

v1f � v2i and v2f � v1i .

v2f �
2m1

m1 � m2
v1i �

m2 � m1

m1 � m2
v2i

v1f �
m1 � m2

m1 � m2
v1i �

2m2

m1 � m2
v2i
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Figure 6-17. The momenta of two colliding
objects in the center-of-mass frame for various
types of collisions. Line 1 shows the initial mo-
menta in this frame, and lines 2–5 show some
possible final momenta.

(1)

(2)

(3)

(4)

(5)

Initial

Elastic

Inelastic
Final

Completely inelastic

Explosive

p1i p2i

p1f p2f

m1
m2' '

''



approximately at rest. For example, a ball dropped from a
height h rebounds from the Earth after the collision with re-
versed velocity and, if the collision were perfectly elastic and
there were no air resistance, it would reach the same height
h. Similarly, an electron rebounds from a (relatively massive)
atom in a head-on collision with its motion reversed, while
the target atom is essentially unaffected by the collision.

4. Massive projectile. When m1 

 m2, Eqs. 6-24 and
6-25 become

(6-30)

If the light target particle is initially at rest (or moving much
slower than m1), then after the collision the target particle
moves at twice the speed of m1 . The motion of m1 is nearly
unaffected by the collision with the much lighter target.

In alpha-particle scattering (Fig. 6-2), the incident alpha
particle (whose mass is about 7000 times the electron mass)
is essentially unaffected by collisions with the electrons of
the target atoms (as indicated by the many straight-line
paths in Fig. 6-2). The alpha particle is deflected only in the
rare encounters with the massive nucleus of a target atom.

Equations 6-26 to 6-30 hold only for elastic collisions.
For partially inelastic or explosive collisions, it is not possi-
ble to obtain a set of general equations like 6-24 or 6-25 for
the final velocities unless we have more information about
the momentum of each particle that is added or lost in the
center-of-mass frame. In Chapter 11 we will see how consid-
erations based on energy also allow us to analyze these dif-
ferent types of collisions. In partially inelastic or explosive
collisions, the gain or loss of momentum (or energy) by one
of the colliding bodies can be used to deduce properties re-
lated to the interaction between the bodies. This is a common
technique used in nuclear physics, in which information
about the properties of nuclei can be deduced by observing
the momentum of the outgoing particles in nuclear collisions.

Sample Problem 6-9. An alpha particle (a nucleus of
an atom of helium, m � 4.0 u) is accelerated to a velocity of

v1f � v1i and v2f � 2v1i � v2i .

1.52 � 107 m/s and collides head-on with an oxygen nucleus
(m � 16.0 u) at rest. After the collision, the oxygen nucleus
moves with a velocity of 6.08 � 106 m/s along the original direc-
tion of motion of the alpha particle. (a) What is the velocity of the
alpha particle after the collision? (b) Which type of collision listed
in Fig. 6-17 best describes this process?

Solution (a) Conservation of momentum allows us to find the ve-
locity of the alpha particle. Equation 6-19 expresses conservation
of momentum for general one-dimensional collisions. We take the
positive x direction to be that of the initial velocity of the alpha
particle. Letting particle 1 be the alpha particle and particle 2 be
the oxygen, we can write Eq. 6-19 with v2ix � 0 as

The alpha particle rebounds in the negative x direction.
Note that the mass units cancel in this equation, so we are free

to use any convenient unit to express the masses of the particles.
(b) The relative velocity between the lab and cm frames is given
by Eq. 6-23:

The initial momentum of the alpha particle in the cm frame is then
� (4.0 u)(1.52 � 107 m/s �

0.304 � 107 m/s) � � 4.86 � 107 u 	 m/s. The final momentum
of the alpha particle is �
(4.0 u)(� 9.12 � 106 m/s � 0.304 � 107 m/s) � � 4.86 �
107 u 	 m/s. Thus , and the alpha particle only re-
verses the direction of its momentum with its magnitude un-
changed. You can show that the momentum of the oxygen nucleus
is also simply reversed in the collision. The reversal of the mo-
mentum of both particles, with their magnitudes remaining the
same, is the characteristic of an elastic collision.

p� ix � �p�fx

p�fx � mv�fx � m(vfx � vx)

p� i x � mv� i x � m(v i x � vx)

� �0.304 � 107 m/s.

vx �
mv i x � mOvOi x

m � mO
�

(4.0 u)(1.52 � 107 m /s) � 0

4.0 u � 16.0 u

� �9.12 � 106 m/s.

�
(4.0 u)(1.52 � 107 m/s) � (16.0 u)(6.08 � 106 m/s)

4.0 u

vfx �
mv ix � mOvOfx

m
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MULTIPLE CHOICE

6-1 Collisions

6-2 Linear Momentum
1. Which of the following objects has the largest momentum?

(A) A bullet fired from a rifle
(B) A football quarterback running at top speed
(C) A horse walking at about 2 miles/hour
(D) An elephant standing still

2. A 2-kg ball moving straight down strikes the floor at 8 m/s. It
rebounds upward at 6 m/s. What is the magnitude of the
change in momentum of the ball?

(A) 2 kg 	 m/s (B) 4 kg 	 m/s
(C) 14 kg 	 m/s (D) 28 kg 	 m/s

3. An object is moving in a circle at constant speed v. The mag-
nitude of the rate of change of momentum of the object

(A) is zero. (B) is proportional to v.
(C) is proportional to v2. (D) is proportional to v3.

4. If the net force acting on a body is constant, what can we con-
clude about its momentum?

(A) The magnitude and/or the direction of may change.
(B) The magnitude of remains fixed, but its direction

may change.
(C) The direction of remains fixed, but its magnitude

may change.
(D) remains fixed in both magnitude and direction.pB

pB

pB
pB



6-3 Impulse and Momentum
5. An object is moving in a circle at constant speed v. From time

ti to time tf the object moves halfway around the circle. The
magnitude of the impulse due to the net force on the object
during this time interval

(A) is zero. (B) is proportional to v.
(C) is proportional to v2. (D) is proportional to v3.

6. If is the impulse of a particular force, what is 
(A) The momentum (B) The change in momentum
(C) The force (D) The change in the force

7. A variable force acts on an object from ti � 0 to tf . The im-
pulse of the force is zero. One can conclude that

(A) and 
(B) but possibly .
(C) possibly but .
(D) possibly and possibly .

8. A small car traveling along a road at high speed loses control.
The driver has a choice—collide with a solid concrete wall or
with an oncoming fully loaded 10-ton truck, also moving at
high speed. Which choice results in the more serious colli-
sion? Assume in both cases that the small car is at rest after
the collision.

(A) The collision with the truck
(B) The collision with the concrete wall
(C) The collisions would be equally serious, since the same

impulse is imported to the car in either case.
(D) More information is needed to assess the collisions.

9. Riot police often use rubber bullets instead of lead bullets.
Assume that neither bullet penetrates the skin, both have the
same mass, time of contact, and initial speed. The difference
is that the lead bullets “stick” while the rubber bullets bounce
off. Which “hurts” more?

(A) The lead bullet
(B) The rubber bullet
(C) The bullets hurt the same amount.
(D) It depends on where you get hit.

�pB � 0�rB � 0
�pB � 0�rB � 0
�pB � 0�rB � 0

�pB � 0.�rB � 0

dJ
B

/dt?J
B

6-4 Conservation of Momentum
10. Can the law of momentum conservation ever be violated?

(A) No
(B) Yes, if there are more than two particles
(C) Yes, when the forces between the particles are varying

in time
(D) Yes, if the two particles stick together after a collision

11. A basketball player jumps up to “shoot” a basket. Is momen-
tum conserved?

(A) Yes, but only if you choose the correct system
(B) Yes, but only in the horizontal direction
(C) No, because the velocity of the basketball player

changes with time
(D) It is a bad question, because momentum conservation

is for objects moving at constant speed, and the bas-
ketball player is accelerating.

6-5 Two-Body Collisions
12. Consider a one-dimensional collision that involves a body of

mass m1 originally moving in the positive x direction with
speed v0 colliding with a second body of mass m2 originally
at rest. The collision could be completely inelastic, with the
two bodies sticking together, completely elastic, or some-
where in between. After the collision, m1 moves with velocity
v1 while m2 moves with velocity v2 .

(a) If m1 
 m2 , then

(A) � v0 � v1 � 0 (B) 0 � v1 � v0

(C) 0 � v1 � 2v0 (D) v0 � v1 � 2v0

(b) and

(A) � v0 � v2 � 0. (B) 0 � v2 � v0 .
(C) v0/2 � v2 � 2v0 . (D) v0 � v2 � 2v0 .

(c) If m1 � m2 then

(A) � v0 � v1 � 0 (B) � v0 � v1 � v0/2
(C) 0 � v1 � v0/2 (D) 0 � v1 � v0

(d ) and

(A) � v0 � v2 � 0. (B) � v0 � v2 � v0/2.
(C) 0 � v2 � v0/2. (D) 0 � v2 � v0 .
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QUESTIONS

1. Justify the following statement. “The law of conservation of
linear momentum, as applied to a single particle, is equivalent
to Newton’s first law of motion.”

2. A particle with mass m � 0 (a neutrino, possibly) carries mo-
mentum. How can this be in view of Eq. 6-1, in which we see
that the momentum is directly proportional to the mass?

3. Although the acceleration of a baseball after it has been hit
does not depend on who hit it, something about the baseball’s
flight must depend on the batter. What is it?

4. Explain how an airbag in an automobile may help to protect a
passenger from serious injury in case of a collision.

5. It is said that, during a 30-mi/h collision, a 10-lb child can ex-
ert a 300-lb force against a parent’s grip. How can such a
large force come about?

6. Can the impulse of a force be zero, even if the force is not
zero? Explain why or why not.

7. Figure 6 -18 shows a popular carnival device, in which the
contestant tries to see how high a weighted marker can be
raised by hitting a target with a sledge hammer. What physi-

Figure 6-18.
Question 7.



cal quantity does the device measure? Is it the average force,
the maximum force, the work done, the impulse, the energy
transferred, the momentum transferred, or something else?
Discuss your answer.

8. An hourglass is being weighed on a sensitive balance, first
when sand is dropping in a steady stream from the upper 
to the lower part, and then again after the upper part is
empty. Are the two weights the same or not? Explain your
answer.

9. Give a plausible explanation for the breaking of wooden boards
or bricks by a karate punch. (See “Karate Strikes,” by Jearl D.
Walker, American Journal of Physics, October 1975, p. 845.)

10. Explain how conservation of momentum applies to a handball
bouncing off a wall.

11. A football player, momentarily at rest on the field, catches a
football as he is tackled by a running player on the other team.
This is certainly a collision (inelastic!) and momentum must be
conserved. In the reference frame of the football field, there is
momentum before the collision but there seems to be none after
the collision. Is linear momentum really conserved? If so, ex-
plain how. If not, explain why.

12. You are driving along a highway at 50 mi/h, followed by an-
other car moving at the same speed. You slow to 40 mi/h but
the other driver does not and there is a collision. What are the
initial velocities of the colliding cars as seen from the refer-
ence frame of (a) yourself, (b) the other driver, and (c) a state
trooper, who is in a patrol car parked by the roadside? (d ) A
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EXERCISES

6-1 Collisions

6-2 Linear Momentum
1. How fast must an 816-kg Volkswagen travel to have the same

momentum as (a) a 2650-kg Cadillac going 16.0 km/h? (b) a
9080-kg truck also going 16.0 km/hr?

2. A 2000-kg truck traveling north at 40.0 km/h turns east and
accelerates to 50.0 km/h. What is the magnitude and direction
of the change of the truck’s momentum?

3. A 4.88-kg object with a speed of 31.4 m/s strikes a steel plate
at an angle of 42.0° and rebounds at the same speed and angle
(Fig. 6-19). What is the change (magnitude and direction) of
the linear momentum of the object?

Figure 6-19. Exercise 3.

42°

m

42°

6-3 Impulse and Momentum
4. The bumper of a new car is being tested. The 2300-kg vehi-

cle, moving at 15 m/s, is allowed to collide with a bridge
abutment, being brought to rest in a time of 0.54 s. Find the
average force that acted on the car during impact.

5. A ball of mass m and speed v strikes a wall perpendicularly
and rebounds with undiminished speed. (a) If the time of col-
lision is �t, what is the average force exerted by the ball on
the wall? (b) Evaluate this average force numerically for a
rubber ball with mass 140 g moving at 7.8 m/s; the duration
of the collision is 3.9 ms.

6. A golfer hits a golf ball, imparting to it an initial velocity of
magnitude 52.2 m/s directed 30° above the horizontal. As-
suming that the mass of the ball is 46.0 g and the club and
ball are in contact for 1.20 ms, find (a) the impulse imparted
to the ball, (b) the impulse imparted to the club, and (c) the
average force exerted on the ball by the club.

7. A 150-g (weight � 5.30 oz) baseball pitched at a speed of
41.6 m/s (� 136 ft/s) is hit straight back to the pitcher at a
speed of 61.5 m/s (� 202 ft/s). The bat is in contact with the
ball for 4.70 ms. Find the average force exerted by the bat on
the ball.

judge asks whether you bumped into the other driver or the
other driver bumped into you. As a physicist, how would you
answer?

13. C. R. Daish has written that, for professional golfers, the ini-
tial speed of the ball off the clubhead is about 140 mi/h. He
also says: (a) “If the Empire State Building could be swung at
the ball at the same speed as the clubhead, the initial ball ve-
locity would only be increased by about 2%” and (b) “once
the golfer has started his or her downswing, camera clicking,
sneezing, and so on can have no effect on the motion of the
ball.” Can you give qualitative arguments to support these two
statements?

14. Two identical cubical blocks, moving in the same direction
with a common speed v, strike a third such block initially at
rest on a horizontal frictionless surface. What is the motion
of the blocks after the collision? Does it matter whether or
not the two initially moving blocks were in contact? Does it
matter whether these two blocks were glued together? As-
sume that the collisions are (a) completely inelastic or (b)
elastic.

15. In a two-body collision in the center-of-mass reference frame
the momenta of the particles are equal and opposite to one an-
other both before and after the collision. Is the line of relative
motion necessarily the same after collision as before? Under
what conditions would the magnitudes of the velocities of the
bodies increase? decrease? remain the same as a result of the
collision?



8. A force that averages 984 N is applied to a 420-g steel ball
moving at 13.8 m/s by a collision lasting 27.0 ms. If the force
is in a direction opposite to the initial velocity of the ball, find
the final speed of the ball.

9. Figure 6-20 shows an approximate representation of force
versus time during the collision of a 58-g tennis ball with a
wall. The initial velocity of the ball is 32 m/s perpendicular to
the wall; it rebounds with the same speed, also perpendicular
to the wall. What is the value of Fmax , the maximum contact
force during the collision?

(a) What is the time duration of the chop (assuming a con-
stant force)? (b) What average force is applied?

13. A 2500-kg unmanned space probe is moving in a straight line
at a constant speed of 300 m/s. A rocket engine on the space
probe executes a burn in which a thrust of 3000 N acts for
65.0 s. What is the change in momentum (magnitude only) of
the probe if the thrust is backward, forward, or sideways? As-
sume that the mass of the ejected fuel is negligible compared
to the mass of the space probe.

14. A pellet gun fires ten 2.14-g pellets per second with a speed
of 483 m/s. The pellets are stopped by a rigid wall. (a) Find
the momentum of each pellet. (b) Calculate the average force
exerted by the stream of pellets on the wall. (c) If each pellet
is in contact with the wall for 1.25 ms, what is the average
force exerted on the wall by each pellet while in contact?
Why is this so different from (b)?

15. After launch from Earth orbit, a robot spacecraft of mass
5400 kg is coasting at constant speed halfway through its six-
month flight to Mars when a NASA engineer discovers that,
instead of heading for a 100-km-high orbit above the Martian
surface, it is headed on a collision course directly toward the
center of the planet. To correct the course, the engineer orders
a short burst from the spacecraft’s thrusters transverse to the
direction of its motion. The thrust engines provide a constant
force of 1200 N. For how long a time must the thrusters fire
to achieve the correct course? Take needed data from Appen-
dix C, and assume the distance between Earth and Mars to re-
main constant at its smallest possible value.

6-4 Conservation of Momentum
16. A 195-lb man standing on a surface of negligible friction

kicks forward a 0.158-lb stone lying at his feet so that it ac-
quires a speed of 12.7 ft/s. What velocity does the man ac-
quire as a result?

17. A 75.2-kg man is riding on a 38.6-kg cart traveling at a speed
of 2.33 m/s. He jumps off in such a way as to land on the
ground with zero horizontal speed. Find the resulting change
in the speed of the cart.

18. A railroad flatcar of weight W can roll without friction along
a straight horizontal track. Initially, a man of weight w is
standing on the car, which is moving to the right with speed
v0 . What is the change in velocity of the car if the man runs to
the left (Fig. 6-22) so that his speed relative to the car is vrel

just before he jumps off at the left end?
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Figure 6-20. Exercise 9.

Figure 6-21. Exercise 11.

Figure 6-22. Exercise 18.
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10. Two parts of a spacecraft are separated by detonating the ex-
plosive bolts that hold them together. The masses of the parts
are 1200 kg and 1800 kg; the magnitude of the impulse deliv-
ered to each part is 300 N 	 s. What is the relative speed of
separation of the two parts?

11. A croquet ball with a mass 0.50 kg is struck by a mallet, re-
ceiving the impulse shown in the graph (Fig. 6-21). What is
the ball’s velocity just after the force has become zero?

12. A karate expert breaks a pine board, 2.2 cm thick, with a hand
chop. Strobe photography shows that the hand, whose mass
may be taken as 540 g, strikes the top of the board with a
speed of 9.5 m/s and comes to rest 2.8 cm below this level.

6-5 Two-Body Collisions
19. A space vehicle is traveling at 3860 km/h with respect to the

Earth when the exhausted rocket motor is disengaged and sent
backward with a speed of 125 km/h with respect to the com-
mand module. The mass of the motor is four times the mass
of the module. What is the speed of the command module af-
ter the separation?



20. The blocks in Fig. 6-23 slide without friction. What is the ve-
locity of the 1.6-kg block after the collision?vB

27. A barge with mass 1.50 � 105 kg is proceeding downriver at
6.20 m/s in heavy fog when it collides broadside with a barge
heading directly across the river; see Fig. 6-25. The second
barge has mass 2.78 � 105 kg and was moving at 4.30 m/s.
Immediately after impact, the second barge finds its course
deflected by 18.0° in the downriver direction and its speed in-
creased to 5.10 m/s. The river current was practially zero at
the time of the accident. What is the speed and direction of
motion of the first barge immediately after the collision?
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Figure 6-23. Exercises 20 and 21.

Figure 6-24. Exercise 22.

Figure 6-25. Exercise 27.

1.6 kg

5.5 m/s

2.4 kg

Before collision

2.5 m/s

1.6 kg 2.4 kg

After collision

4.9 m/sv

18°

21. Refer to Fig. 6-23. Suppose the initial velocity of the 2.4-kg
block is reversed; it is headed directly toward the 1.6-kg
block. What would be the velocity of the 1.6-kg block after
the collision?

22. Meteor Crater in Arizona (see Fig. 6-24) is thought to have been
formed by the impact of a meteorite with the Earth some 20,000
years ago. The mass of the meteorite is estimated to be 5 � 1010

kg and its speed to have been 7.2 km/s. What speed would such
a meteorite impart to the Earth in a head-on collision?

vB

23. A 5.18-g bullet moving at 672 m/s strikes a 715-g wooden
block at rest on a frictionless surface. The bullet emerges with
its speed reduced to 428 m/s. Find the resulting speed of the
block.

24. An alpha particle collides with an oxygen nucleus, initially at
rest. The alpha particle is scattered at an angle of 64.0° above
its initial direction of motion and oxygen nucleus recoils at an
angle of 51.0° below this initial direction. The final speed of
the oxygen nucleus is 1.20 � 105 m/s. What is the final speed
of the alpha particle? (The mass of an alpha particle is 4.00 u
and the mass of an oxygen nucleus is 16.0 u.)

25. Two objects, A and B, collide. A has mass 2.0 kg, and B has
mass 3.0 kg. The velocities before the collision are �

and .
After the collision, . What is
the final velocity of B?

26. A radioactive nucleus, initially at rest, decays by emitting an
electron and a neutrino at right angles to one another. The
momentum of the electron is 1.2 � 10�22 kg 	 m/s and that of
the neutrino is 6.4 � 10�23 kg 	 m/s. Find the direction and
magnitude of the momentum of the recoiling nucleus.

vBfA � (�6.0 m/s)î � (30 m/s)ĵ
vBiB � (�10 m/s)î � (5.0 m/s)ĵ(15 m/s)î � (30 m/s)ĵ

vBiA

28. A hovering fly is approached by an enraged elephant charging
at 2.1 m/s. Assuming that the collision is elastic, at what
speed does the fly rebound? Note that the projectile (the ele-
phant) is much more massive than the target (the fly).

29. Two titanium spheres approach each other head-on with the
same speed and collide elastically. After the collision, one of
the spheres, whose mass is 300 g, remains at rest. What is the
mass of the other sphere?

30. A cart with mass 342 g moving on a frictionless linear air-
track at an initial speed of 1.24 m/s strikes a second cart of
unknown mass at rest. The collision between the carts is elas-
tic. After the collision, the first cart continues in its original
direction at 0.636 m/s. (a) What is the mass of the second
cart? (b) What is its speed after impact?

31. An object of 2.0-kg mass makes an elastic collision with an-
other object at rest and continues to move in the original di-
rection but with one-fourth of its original speed. What is the
mass of the struck object?

32. A railroad freight car weighing 31.8 tons and traveling at
5.20 ft/s overtakes one weighing 24.2 tons and traveling at
2.90 ft/s in the same direction. (a) Find the speeds of the cars
after collision if the cars couple together. (b) If instead, as is
very unlikely, the collision is elastic, find the speeds of the
cars after collision.

33. After a totally inelastic collision, two objects of the same
mass and initial speed are found to move away together at
half their initial speed. Find the angle between the initial ve-
locities of the objects.

34. A proton (atomic mass 1.01 u) with a speed of 518 m/s col-
lides elastically with another proton at rest. The original pro-
ton is scattered 64.0° from its initial direction. (a) What is the
direction of the velocity of the target proton after the colli-
sion? (b) What are the speeds of the two protons after the col-
lision?

35. In the laboratory, a particle of mass 3.16 kg moving at
15.6 m/s to the left collides head-on with a particle of mass
2.84 kg moving at 12.2 m/s to the right. Find the velocity of the
center of mass of the system of two particles after the collision.



PROBLEMS

1. A stream of water impinges on a stationary “dished” turbine
blade, as shown in Fig. 6-26. The speed of the water is u, both
before and after it strikes the curved surface of the blade, and
the mass of water striking the blade per unit time is constant
at the value �. Find the force exerted by the water on the
blade.
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Figure 6-26. Problem 1.

Figure 6-27. Problem 3.

Figure 6-28. Problem 4.

Figure 6-29. Problem 6.
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2. A 1420-kg car moving at 5.28 m/s is initially traveling north.
After completing a 90° right-hand turn in 4.60 s, the inattentive
operator drives into a tree, which stops the car in 350 ms. What
is the magnitude of the impulse delivered to the car (a) during
the turn and (b) during the collision? What average force acts
on the car (c) during the turn and (d) during the collision?

3. A 325-g ball with a speed v of 6.22 m/s strikes a wall at an
angle � of 33.0° and then rebounds with the same speed and
angle (Fig. 6-27). It is in contact with the wall for 10.4 ms.
(a) What impulse was experienced by the ball? (b) What was
the average force exerted by the ball on the wall?

4. It is well known that bullets and other missiles fired at Super-
man simply bounce off his chest as in Fig. 6-28. Suppose that
a gangster sprays Superman’s chest with 3.0-g bullets at the
rate of 100 bullets/min, the speed of each bullet being
500 m/s. Suppose too that the bullets rebound straight back
with no loss in speed. Find the average force exerted by the
stream of bullets on Superman’s chest.

5. During a violent thunderstorm, hail the size of marbles (diam-
eter � 1.0 cm) falls at a speed of 25 m/s. There are estimated
to be 120 hailstones per cubic meter of air. Ignore the bounce
of the hail on impact. (a) What is the mass of each hailstone?
(b) What force is exerted by hail on a 10 m � 20 m flat roof
during the storm? Assume that, as for ice, 1.0 cm3 of hail has
a mass of 0.92 g.

6. A very flexible uniform chain of mass M and length L is sus-
pended from one end so that it hangs vertically, the lower end
just touching the surface of a table. The upper end is suddenly
released so that the chain falls onto the table and coils up in a
small heap, each link coming to rest the instant it strikes the
table; see Fig. 6-29. Find the force exerted by the table on the
chain at any instant, in terms of the weight of chain already
on the table at that moment.

7. A box is put on a scale that is adjusted to read zero when the
box is empty. A stream of marbles is then poured into the box
from a height h above its bottom at a rate of R (marbles per
second). Each marble has a mass m. The collisions are com-
pletely inelastic; assume that the marbles stick to the box
without bouncing when they hit. Find the scale reading of
weight at time t after the marbles begin to fill the box. Deter-
mine a numerical answer when R � 115 s�1, h � 9.62 m,
m � 4.60 g, and t � 6.50 s.

8. A 1930-kg railroad flatcar, which can move on the tracks with
virtually no friction, is sitting motionless next to a station
platform. A 108-kg football player is running along the plat-



form parallel to the tracks at 9.74 m/s. He jumps onto the
back of the flatcar. (a) What is the speed of the flatcar after he
is aboard and at rest on the flatcar? (b) Now he starts to walk,
at 0.520 m/s relative to the flatcar, to the front of the car.
What is the speed of the flatcar as he walks?

9. A 2.9-ton weight falling through a distance of 6.5 ft drives a
0.50-ton pile 1.5 in. into the ground. (a) Assuming that the
weight–pile collision is completely inelastic, find the average
force of resistance exerted by the ground. (b) Assuming the
force of resistance by the ground remains constant at the
value found in (a), how far into the ground would the pile be
driven if the collision were elastic? (c) Which is more effec-
tive in this case—elastic or inelastic collisions?

10. Two 22.7-kg ice sleds are placed a short distance apart, one
directly behind the other, as shown in Fig. 6-30. A 3.63-kg
cat, standing on one sled, jumps across to the other and im-
mediately back to the first. Both jumps are made at a speed of
3.05 m/s relative to the sled the cat is standing on when the
jump is made. Find the final speeds of the two sleds.
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Figure 6-30. Problem 10.

Figure 6-31. Problem 14.

Figure 6-32. Problem 16.

Figure 6-33. Problem 17.

M

m

m m M

v0

v0

1

2

3

11. Two vehicles A and B are traveling west and south, respec-
tively, toward the same intersection where they collide and
lock together. Before the collision, A (weight 2720 lb) is
moving with a speed of 38.5 mi/h and B (weight 3640 lb) has
a speed of 58.0 mi/h. Find the magnitude and direction of the
velocity of the (interlocked) vehicles immediately after the
collision.

12. Two balls A and B, having different but unknown masses, col-
lide. A is initially at rest and B has a speed v. After collision,
B has a speed v/2 and moves at right angles to its original mo-
tion. (a) Find the direction in which ball A moves after the
collision. (b) Can you determine the speed of A from the in-
formation given? Explain.

13. In a game of pool, the cue ball strikes another ball initially at
rest. After the collision, the cue ball moves at 3.50 m/s along
a line making an angle of 65.0° with its original direction of
motion. The second ball acquires a speed of 6.75 m/s. Using
momentum conservation, find (a) the angle between the direc-
tion of motion of the second ball and the original direction of
motion of the cue ball and (b) the original speed of the cue
ball.

14. Spacecraft Voyager 2 (mass m and speed v relative to the Sun)
approaches the planet Jupiter (mass M and speed V relative to
the Sun) as shown in Fig. 6-31. The spacecraft rounds the

planet and departs in the opposite direction. What is its speed,
relative to the Sun, after this “slingshot” encounter? Assume
that v � 12 km/s and V � 13 km/s (the orbital speed of
Jupiter), and that this is an elastic collision. The mass of
Jupiter is very much greater than the mass of the spacecraft,
M 

 m. (See “The Slingshot Effect: Explanation and Analo-
gies,” by Albert A. Bartlett and Charles W. Hord, The Physics
Teacher, November 1985, p. 466.)

15. The head of a golf club moving at 45.0 m/s strikes a golf ball
(mass � 46.0 g) resting on a tee. The effective mass of the
clubhead is 220 g. (a) With what speed does the ball leave the
tee? (b) With what speed would it leave the tee if you doubled
the mass of the clubhead? If you tripled it? What conclusions
can you draw about the use of heavy clubs? Assume that the
collisions are perfectly elastic and that the golfer can bring the
heavier clubs up to the same speed at impact. See Question 13.

16. The two spheres on the right of Fig. 6-32 are slightly sepa-
rated and initially at rest; the left sphere is incident with speed
v0 . Assuming head-on elastic collisions, (a) if M � m, show
that there are two collisions and find all final velocities; (b) if
M 
 m, show that there are three collisions and find all final
velocities.

17. A ball with an initial speed of 10.0 m/s collides elastically
with two identical balls whose centers are on a line perpen-
dicular to the initial velocity and that are initally in contact
with each other (Fig. 6-33). The first ball is aimed directly at
the contact point and all the balls are frictionless. Find the ve-
locities of all three balls after the collision. (Hint: With fric-
tion absent, each impulse is directed along the line of centers
of the balls, normal to the colliding surfaces.)

18. Show that, in the case of an elastic collision of a particle of
mass m1 with a particle of mass m2 , initially at rest, (a) the
maximum angle �m through which m1 can be deflected by the
collision is given by cos2 �m � 1 � (m2/m1)2, so that 
0 � �m � �/2 when m1 
 m2 ; (b) �1 � �2 � �/2, when 
m1 � m2 ; (c) �1 can take on all values between 0 and � when
m1 � m2 .

19. A 3.54-g bullet is fired horizontally at two blocks resting on a
frictionless tabletop, as shown in Fig. 6-34a. The bullet passes
through the first block, with mass 1.22 kg, and embeds itself
in the second, with mass 1.78 kg. Speeds of 0.630 m/s and
1.48 m/s, respectively, are thereby imparted to the blocks, as
shown in Fig. 6-34b. Neglecting the mass removed from the



first block by the bullet, find (a) the speed of the bullet imme-
diately after emerging from the first block and (b) the original
speed of the bullet.

mass 3.5 kg. The two blocks together slide a distance of 
0.57 m across a horizontal plane before coming to rest. What
is the coefficient of friction of the horizontal surface?

21. Two cars A and B slide on an icy road as they attempt to stop
at a traffic light. The mass of A is 1100 kg and the mass of B
is 1400 kg. The coefficient of kinetic friction between the
locked wheels of both cars and the road is 0.130. Car A suc-
ceeds in coming to rest at the light, but car B cannot stop and
rear-ends car A. After the collision, A comes to rest 8.20 m
ahead of the impact point and B 6.10 m ahead: see Fig. 6-36.
Both drivers had their brakes locked throughout the incident.
(a) From the distances each car moved after the collision, find
the speed of each car immediately after impact. (b) Use con-
servation of momentum to find the speed at which car B
struck car A. On what grounds can the use of momentum con-
servation be criticized here?
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Figure 6-34. Problem 19.

Figure 6-35. Problem 20. Figure 6-36. Problem 21.

Figure 6-37. Computer problem 1.
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COMPUTER PROBLEM

1. An interesting toy called the Astro Blaster (See Fig. 6-37)
consists of four plastic balls on a stick. When the stick is
dropped vertically the bottom ball bounces off the ground and
then collides with the ball above. The second ball then col-
lides with the third ball, which collides with the fourth ball.
The speed of the top ball after the last collision is consider-
ably larger than the speed at which the first ball hits the
ground. Assuming all collisions are elastic, find the ratio of
the masses of the four balls that will result in the largest final
speed of the fourth ball, given that the lightest ball has 1/64
the mass of the heavest ball. (Note: This problem should be
solved numerically, but it can also be solved analytically.)

20. A 2.0-kg block is released from rest at the top of a 22° fric-
tionless inclined plane of height 0.65 m (Fig. 6-35). At the
bottom of the plane it collides with and sticks to a block of





139

7-1 THE MOTION OF A
COMPLEX OBJECT

Figure 7-1 shows the motion of a baton being tossed between
two jugglers. At first glance, the motion looks very compli-
cated, and it may not be obvious how to apply Newton’s laws
to analyze the motion. The baton is certainly not behaving
like a particle (all parts of it do not move in the same way),
and it is not apparent that any part of the baton is traveling
the parabolic path that we expect for particle-like projectiles.

Our formulation of Newton’s laws was based on particle
behavior. Sometimes we are able to treat complex objects
like particles if all parts of the object move in the same
way. Since this is not true for the motion of the baton in
Fig. 7-1, we must find a new way to analyze its motion.

It is clear that the baton is undergoing two kinds of mo-
tion simultaneously: the translational motion associated
with a projectile and the rotational motion of a rigid body
(which will be treated starting with the next chapter). These
combined motions may appear complicated; however, if we
fix our attention on a special point associated with the ob-
ject, the analysis becomes simple once again. We can  con-

sider the motion of the baton to be a combination of a para-
bolic trajectory of that point (as if there were no rotational
motion) plus a rotation about that point (as if there were no
translational motion). That special point is called the center
of mass. Figure 7-2 shows a time-exposure photograph of
the motion of a baton with an indicator light marking the

Figure 7-1. The complex motion of a baton as it is tossed be-
tween two jugglers.

CHAPTER 7CHAPTER 7
SYSTEMS OF PARTICLES

So far we have treated objects as if they were point

particles, having mass but no size. This is really not such a serious restriction, because all points of an ob-

ject in simple translational motion move in identical fashion, and it makes no difference whether we treat

the object as a particle or as an extended body. For many objects in motion, however, this restriction is not

valid. When an object rotates as it moves, for instance, or when its parts vibrate relative to one another, it

would not be valid to treat the entire object as a single particle. Even in these more complicated cases,

there is one point of the object whose motion under the influence of external forces can be analyzed as that

of a simple particle. This point is called the center of mass. In this chapter we describe how to find the cen-

ter of mass of an object, and we show that Newton’s laws can be used to describe the motion of the center

of mass of a complex system.



center of mass. This point moves in a simple parabolic tra-
jectory, but no such simple description can be applied to the
motion of other points of the baton.

Recall that in Section 6-5 we introduced the center of
mass concept and found it useful in analyzing collisions be-
tween particles, but in that section we did not explain how
to locate the center of mass of a system of particles. In this
chapter we discuss how to find the center of mass of a solid
object and how to use it to reduce a complex motion to a
simpler one.

7-2 TWO-PARTICLE SYSTEMS

Let us try to simplify the problem discussed in the previous
section. We consider the baton to consist of two particles,
located at the ends A and B, connected by a thin rigid rod of
fixed length and negligible mass. The mass of the particle at
B is twice the mass of the particle at A.

We further simplify by sliding the baton on a friction-
less horizontal surface instead of throwing it upward. This
in effect eliminates gravity from the analysis.

In using Newton’s laws to study the motion of a single
object that we treated as a particle, we separated the prob-
lem into two parts: the particle and its environment. For a
more complex object, such as our two-particle baton, it is
usually more convenient to separate the problem into a sys-
tem and its environment. The system can consist of any
number of objects; we can define the system in any way
that simplifies the problem, as long as we are consistent in
the analysis and carefully account for all interactions be-
tween the system and its environment. These interactions
are called external forces. Interactions between objects that
are totally within the system are called internal forces. In
the case of the baton, we define the system to consist of the
two particles and the connecting rod; gravity and the nor-
mal force would then be classified as external forces, and
the tension force exerted by the connecting rod on either of
the particles would be an internal force.

We give the rod a push along the frictionless horizontal
surface and examine its motion. Figure 7-3 shows a series
of “snapshots” of the motions of the particles at A and B
and the center of mass at C. Clearly each of the particles at
A and B is accelerated, and so (according to Newton’s sec-
ond law) must be subject to a net force. However, point C
shows no acceleration—its velocity is constant in both
magnitude and direction. No other point associated with the
baton moves in this simple way.

It is also interesting to view the motion of the baton
from a frame of reference that is moving with the same ve-
locity as point C. (As we shall see, this is the same as the
center-of-mass reference frame we discussed in Section 
6-5.) In this reference frame, point C would appear to be at
rest. Figure 7-4 shows the resulting motion, with the posi-
tions of the baton drawn at the instants marked 1, 2, 3, and
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A CB

Figure 7-2. Time-exposure photograph of tossed baton with
the motion of three points (A, B, C) indicated by lights. Points A
and B show complex motions, but point C (the center of mass) fol-
lows a simple parabolic path. See “Center-of-Mass Baton” by
Manfred Bucher et al., The Physics Teacher, February 1991, p. 74.
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Figure 7-3. The motion of two particles attached to a connecting rod. The dots represent “snapshots” show-
ing the locations of points A, B, and C at successive intervals of time. Point C on the rod follows a straight-line
path and its successive positions are equally spaced, showing that it moves at constant velocity.



4 in Fig. 7-3. The motion is a simple rotation with each par-
ticle having a constant rotational speed.

By focusing our attention on the center of mass C, we
have been able to separate the complex motion of the sys-
tem into two simple motions—the center of mass moves
with constant velocity, and the system rotates with constant
rotational speed about C. In the next chapter we shall con-
sider the rotational motion; here we concentrate on the lin-
ear motion of the center of mass.

To find the location of the center of mass, we set up a
coordinate system in the horizontal plane, as shown in Fig.
7-5. We let m1 represent the mass of the particle at A and m2

represent the particle at B. The vectors and locate m1

and m2 at a particular instant of time, relative to the origin
we have chosen for the coordinate system. The center of
mass is then located at that time by the vector 

(7-1)

or

(7-2)

The center of mass is a fixed point in any solid object
whose location is determined by the way the mass of the
object is distributed.

xcm �
m1x1 � m2x2

m1 � m2
 and ycm �

m1y1 � m2y2

m1 � m2
.

rBcm �
m1 rB1 � m2 rB2

m1 � m2

rBcm :

rB2rB1

At a later time (as shown in Fig. 7-5), the system has
moved to a new location and the center of mass has simi-
larly changed location. To see why the motion of the center
of mass is special, let us find its velocity and acceleration:

(7-3)

or

(7-4)

and

(7-5)

or

(7-6)

From Eq. 7-6 we can see why the motion of the center
of mass of our system is so simple. Figure 7-6 shows free-
body diagrams for the two particles and for the rod (as-
sumed massless). For both particles, the vertical component
of the acceleration is zero; thus the vertical component of
the net force is zero, and the magnitudes of the normal
force and weight are equal. The net force on m1 is then 
(the force on m1 due to the connecting rod), and Newton’s
second law gives Similarly for m2 ,

By Newton’s third law, the force on m1 due to
the connecting rod is equal and opposite to the force on the
connecting rod by m1 , or similarly,

Combining these results, the numerator of Eq.
7-6 becomes 

Finally, because we assumed that the con-
necting rod is massless, the net force on it must be zero

because see Fig. 7-6b.
With the numerator of Eq. 7-6 becomes

We therefore have and so the center of mass
moves with constant velocity.

In this discussion, we have so far assumed that no net
external force acts on the system and are internalF
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Figure 7-4. If we view the motion of Fig. 7-3 from a frame
of reference moving along with point C, the rod appears to rotate
about point C and the two particles move in circles of different
radii.

Figure 7-5. A coordinate system for locating the center of
mass of our system at a particular time. At a later time, the center
of mass is at rB �cm .

Figure 7-6. Free-body diagrams for (a) m1 , (b) the connect-
ing rod, and (c) m2 .
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forces, exerted by one part of the system on another part).
Suppose now that there is an external force on each parti-
cle, perhaps a frictional force due to the surface. The net
force on each particle is then the vector sum of the external
force plus the internal force due to the rod:

(7-7)

When we analyze Eq. 7-6 we then obtain

(7-8)

Once again, and defining the net external
force to be Eq. 7-8 reduces to

Using Eq. 7-6 we then obtain

(7-9)

This looks very much like Newton’s second law, but it is
applied to something that does not exist: a particle of mass

located at the center of mass.
Summarizing our conclusions for the two-particle sys-

tem, we have seen that we can simplify our analysis if we
decompose the complex motions into a motion of the center
of mass of the system and another motion about the center
of mass. If no net external force acts on the system, then the
center of mass moves with constant velocity. If there is a
net external force, then the motion of the center of mass can
be found by assuming that the net external force acts on a
particle located at the center of mass and having a mass
equal to the total mass of the system. In the next section,
we develop more general expressions that lead to the same
conclusions for even more complex systems.

Sample Problem 7-1. (a) Suppose the baton of Fig. 7-3
is at rest along the x axis with the more massive particle 
at coordinate x and the less massive particle m1 (� m) at coordinate

(where L is the length of the rod connecting the particles), as
shown in Fig. 7-7a. Find the center of mass. (b) Suppose now that
x � L

m2 (� 2m)
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m2 is at the origin and the rod makes an angle of 45° between the x
and y axes (Fig. 7-7b). Find the location of the center of mass.

Solution (a) With and Eq. 7-2 gives The
x coordinate of the center of mass is also found from Eq. 7-2:

The center of mass is located along the rod a distance L/3 from the
larger particle.
(b) In this case and and so
we have

Once again, the center of mass is along the connecting rod and 
of its length from the larger particle.

7-3 MANY-PARTICLE SYSTEMS

In this section we generalize the results of the previous sec-
tion to systems in three dimensions that contain more than
two particles.

We consider a system consisting of N particles of
masses m1 , m2 , . . . , mN . The total mass is

(7-10)

Each particle in the system can be represented by its mass
mn (where 2, . . . , N), its location at the coordi-
nate (whose components are xn , yn , and zn), its velocity

(whose components are vnx , vny , and vnz), and its acceler-
ation The net force on particle mn is which in
general differs from one particle to another. This force may
arise partly from the other particles and partly from
an external agent.

The center of mass of the system can be defined by a
logical extension of Eq. 7-1:

or

(7-11)

In terms of components, the vector relationship of Eq. 7-11
can be written as

(7-12a)

(7-12b) �
1

M � mnyn , 

ycm �
1

M
 (m1y1 � m2y2 � ��� � mNyN)

�
1

M � mnxn , 

xcm �
1

M
 (m1x1 � m2 x2 � ��� � mNxN)

rBcm �
1

M � mn rBn .

rBcm �
m1 rB1 � m2 rB2 � ��� � mN rBN

m1 � m2 � ��� � mN

N � 1

� F
B

n ,aBn .
vBn

rBn

n � 1,

M � m1 � m2 � ��� � mN � � mn .

1
3

ycm �
(m)(L/√2) � (2m)(0)

m � 2m
�

L

3√2
.

xcm �
(m)(L/√2 ) � (2m)(0)

m � 2m
�

L

3√2
,

y2 � 0,x2 � 0,y1 � L/√2,x1 � L/√2,

xcm �
(m)(x � L) � (2m)(x)

m � 2m
� x �

L

3
.

ycm � 0.y2 � 0,y1 � 0
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Figure 7-7. Sample Problem 7-1.



(7-12c)

Taking the derivative of Eq. 7-11, we find the velocity of
the center of mass:

or

(7-13)

Differentiating once again, we find the acceleration of the
center of mass:

(7-14)

We can rewrite Eq. 7-14 as

or

(7-15)

where the last result follows from applying Newton’s sec-
ond law, to each individual particle. The to-
tal force acting on a system of particles is thus equal to the
total mass of the system times the acceleration of the center
of mass. Equation 7-15 is just Newton’s second law for the
system of N particles treated as a single particle of mass M
located at the center of mass, moving with velocity and
experiencing acceleration 

It is helpful to simplify Eq. 7-15 even a bit more. We can
separate the force acting on each particle in the system into in-
ternal forces, which arise from the interactions with other par-
ticles that are part of the system, and external forces, which
originate with the environment of the system under considera-
tion. Any given particle mn may experience force exerted on it
by particle mk , which we write as This particular force is
one among the many that make up the total force on
mn . Similarly, the total force on particle mk includes a term

� F
B

n ,
F
B

nk .

aBcm .
vBcm

� F
B

n � mnaBn ,

M aBcm � � F
B

1 � � F
B

2 � ��� � � F
B

N ,

M aBcm � m1aB1 � m2aB2 � ��� � mNaBN

�
1

M � mnaBn . 

aBcm �
d vBcm

dt
�

1

M
 (m1aB1 � m2aB2 � ��� � mNaBN)

�
1

M � mnvBn . 

vBcm �
1

M
 (m1vB1 � m2vB2 � ��� � mNvBN)

�
1

M �m1
d rB1

dt
� m2

d rB2

dt
� ��� � mN

d rBN

dt �
vBcm �

d rBcm

dt

�
1

M � mnzn . 

zcm �
1

M
 (m1z1 � m2z2 � ��� � mNzN)

due to the interaction with particle mn . By Newton’s third
law, and thus these two particular forces cancel
when we carry out the sum of all the forces in Eq. 7-15. In
fact, all such internal forces are part of action– reaction pairs
and cancel. (In Chapter 3 we cautioned that the action and re-
action forces must apply to different particles and thus do not
oppose one another on a given particle. We are not violating
that caution here, because we are applying the action to one
particle and the reaction to another. The distinction here is that
we are adding to get the net force on the two particles, in
which case the action and reaction components, which still
apply to different particles, do indeed cancel.)

All that remains in Eq. 7-15 is the total of all the exter-
nal forces, and Eq. 7-15 reduces to

(7-16)

which can be written in terms of its components as

and
(7-17)

We can summarize this important result as follows:

The overall translational motion of a system of particles
can be analyzed using Newton’s laws as if all the mass
were concentrated at the center of mass and the total
external force were applied at that point.

A corollary follows immediately in the case 

If the net external force on a system of particles is zero,
then the center of mass of the system moves with con-
stant velocity.

These are general results that apply equally well to collec-
tions of individual particles as they do to particles joined to-
gether by internal forces, as in a solid object. The object itself
may be executing any sort of complicated motion, but the
center of mass moves according to Eq. 7-16. Consider, for ex-
ample, the motion of the baton of Fig. 7-1. As it travels, it also
rotates. Its center of mass, however, follows a simple para-
bolic path. As far as the external force (gravity) is concerned,
the system behaves as if it were a particle of mass M located
at the center of mass. A complicated problem is therefore re-
duced to two relatively simple problems— the parabolic path
of the center of mass and a rotation about the center of mass.

For another example, consider the Earth–Moon system
moving under the Sun’s gravity (the external force). Figure
7-8 shows that the center of mass of the system follows a

� F
B

ext � 0:

� Fext,z � Macm,z .

� Fext,x � Macm,x , � Fext,y � Macm,y ,

� F
B

ext � M aBcm,

F
B

nk � �F
B

kn ,
F
B

kn
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Figure 7-8. The center of mass of the
Earth–Moon system follows a nearly cir-
cular orbit about the Sun, while the Earth
and Moon rotate about their common cen-
ter of mass, just like the baton of Fig. 7-3.
This effect, which causes a slight “wob-
ble” in the orbit of the Earth, is greatly ex-
aggerated in the figure. The center of mass
of the Earth–Moon system actually lies
within the Earth, so the Earth always over-
laps the orbital path of the center of mass.

Moon

Earth

Sun

Path of
center of mass

Earth's
path



stable orbit around the Sun; this is the path that would be
followed by a particle of mass The Earth
and Moon also rotate about their center of mass, resulting
in a slight oscillation of the Earth about the path of the sta-
ble orbit. Using the data in Appendix C, you should be able
to show that the center of mass of the Earth–Moon system
lies within the Earth (see Exercise 1).

Figure 7-9 shows the motion of a projectile that breaks
apart into three fragments. In effect, an explosion releases
the three separate pieces, but since the explosion produces
only internal forces it does not affect the motion of the cen-
ter of mass. The center of mass continues to follow the par-
abolic path as if the explosion had not occurred, until one
or more of the fragments experiences an external force,
such as from atmospheric drag or impact with the ground.

Sample Problem 7-2. Figure 7-10a shows a system of
three initially resting particles of masses 

and kg. The particles are each acted on by
different net external forces, which have magnitudes N,

N, and N. The directions of the forces are
shown in the figure. Where is the center of mass of this system,
and what is the acceleration of the center of mass?

Solution The position of the center of mass is marked by a dot in
the figure. As Fig. 7-10b suggests, we treat this point as if it held a
real particle, assigning to it a mass M equal to the system mass of

kg and assuming that all external forces
are applied at that point. We find the center of mass from Eqs. 7-
12a and 7-12b:

The x component of the net external force acting on the center
of mass is (see Fig. 7-10b)

� (4.1 kg)(�2 cm)] � 1.3 cm. 

�
1

16.4 kg
 [(4.1 kg)(3 cm) � (8.2 kg)(2 cm) 

ycm �
1

M
 (m1y1 � m2y2 � m3y3) 

� (4.1 kg)(1 cm)] � 1.8 cm, 

�
1

16.4 kg
 [(4.1 kg)(�2 cm) � (8.2 kg)(4 cm)

xcm �
1

M
 (m1 x1 � m2 x2 � m3 x3) 

m1 � m2 � m3 � 16.4

F3 � 14F2 � 12
F1 � 6

m3 � 4.1m2 � 8.2 kg,
m1 � 4.1 kg,

mEarth � mMoon .

and the y component is

The net external force thus has a magnitude of

and makes an angle with the x axis given by

This is also the direction of the acceleration vector. From Eq. 7-
16, the magnitude of the acceleration of the center of mass is
given by

If the external forces are constant, then the acceleration of the cen-
ter of mass is constant, even if the internal forces (and thus the ac-
celerations of the individual particles) change with time.

Sample Problem 7-3. A projectile of mass 9.6 kg is
launched from the ground with initial velocity of 12.4 m/s at an an-
gle of 54° above the horizontal (Fig. 7-11). At some time after its
launch, an explosion splits the projectile into two pieces. One piece,
of mass 6.5 kg, is observed at 1.42 s after the launch at a height of
5.9 m and a horizontal distance of 13.6 m from the launch point.
Find the location of the second fragment at that same time.

� aBcm � �
Fext

M
�

18.6 N

16.4 kg
� 1.1 m/s2.

� � tan�1 � Fext,y

� Fext,x
� tan�1 8.5 N

16.5 N
� 27	.

� � F
B

ext � � √(Fext,x)2 � (Fext,y)2 � √(16.5 N)2 � (8.5 N)2 � 18.6 N

� 0 � (12 N)(sin 45	) � 0 � 8.5 N.
� Fext,y � F1y � F2y � F3y

� �6 N � (12 N)(cos 45	) � 14 N � 16.5 N,
� Fext,x � F1x � F2x � F3x
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Center
of mass

Figure 7-9. A projectile follows a parabolic path (solid line).
An explosion breaks the projectile into three fragments, which
travel so that their center of mass follows the original parabolic
path.
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Figure 7-10. Sample Problem 7-2. (a) Three particles,
placed at rest at the positions shown, are acted on by the forces
shown. The center of mass of the system is marked. (b) The trans-
lational motion of the entire system can be represented by the mo-
tion of a particle with the total mass M located at the center of
mass and acted on by the three external forces. The resultant force
and the acceleration of the center of mass are shown. (The x and y
axes are marked in centimeters.)



Solution According to Eq. 7-16, the motion of the two fragments can
be analyzed in terms of the motion of the combined system. There-
fore, at s after the launch, the center of mass of the two
fragments must be at the same location where the original projectile
would have been if it had not exploded. Let us first find that location.
The location of the original projectile at s can be found us-
ing Eqs. 4-10 with cos �0 � (12.4 m/s)cos 54° � 7.3 m/s
and sin �0 � (12.4 m/s)sin 54° � 10.0 m/s. With the origin
of the coordinate system at the original launch point, we have

Because the motion of the center of mass of the system of the two
fragments is the same as the motion of the original combined sys-
tem would have been, the center of mass of the fragments at

s must be at We are given
the location of one fragment, m1 , at that time: m,

m. We can find the location of the other fragment, of
mass kg, by solving Eqs.
7-12a and 7-12b for x2 and y2 :

Figure 7-11 shows the location of the fragment m2 .
If we know the velocity of one fragment, we can use similar

methods to find the velocity of the other (see Exercise 12).
In our analysis, we have assumed that gravity is the only exter-

nal force that acts on the system, which allows us to represent the
motion of the center of mass of the two fragments as the parabolic
path of a projectile in the Earth’s gravity. If one fragment struck the
ground, there would be an additional force in the problem (the
force of the ground on one fragment), and the center of mass
would follow a different path. To use this method in that case, it
would be necessary to know the force exerted by the ground.

� 0.9 m.�
(9.6 kg)(4.3 m) � (6.5 kg)(5.9 m)

3.1 kg

y2 �
Mycm � m1y1

m2

�
(9.6 kg)(10.4 m) � (6.5 kg)(13.6 m)

3.1 kg
� 3.7 m,

x2 �
Mxcm � m1x1

m2

m2 � M � m1 � 9.6 kg � 6.5 kg � 3.1
y1 � 5.9

x1 � 13.6
ycm � 4.3 m.xcm � 10.4 m,t � 1.42

� 4.3 m
y � v0y t � 1

2gt2 � (10.0 m/s)(1.42 s) � 1
2(9.80 m/s2)(1.42 s)2

x � v0xt � (7.3 m/s)(1.42 s) � 10.4 m, 

v0y � v0

v0x � v0

t � 1.42

t � 1.42

7-4 CENTER OF MASS OF SOLID
OBJECTS

It is far too tedious to find the center of mass of a solid ob-
ject by using Eqs. 7-12 and summing over every atom in
the system. Instead we divide the object into tiny elements
of mass 
mn . As these elements become infinitesimally
small, the sums of Eqs. 7-12 transform into integrals:

(7-18a)

(7-18b)

(7-18c)

In vector form (compare Eq. 7-11) these equations can be
written

(7-19)

In many cases it is possible to use arguments based on geom-
etry or symmetry to simplify the calculation of the center of
mass of solid objects. If an object has spherical symmetry,
the center of mass must lie at the geometrical center of the
sphere. (It is not necessary that its density be uniform; a
baseball, for example, has spherical symmetry even though it
is composed of layers of different materials. Its center of
mass is at its geometric center. When we refer to spherical
symmetry, we mean that the density may vary with r but it
must have the same variation in every direction.) If a solid
has cylindrical symmetry (that is, if its mass is distributed
symmetrically about an axis), then the center of mass must
lie on the axis. If its mass is distributed symmetrically about
a plane, then the center of mass must be in the plane.

Often we encounter solid, irregular objects that can be
divided into several parts. We can find the center of mass of
each part, and then by treating each part as a particle lo-
cated at its own center of mass we can find the center of
mass of the combination.

As an example, consider the triangular plate shown in
Fig. 7-12. We divide the plate into a large number of thin
strips parallel to the base of the triangle, as in Fig. 7-12a. The

rBcm �
1

M
� rB dm.

zcm �
1

M
 lim

m : 0

� zn 
mn �
1

M
� z dm.

ycm �
1

M
 lim

m : 0

� yn 
mn �
1

M
� y dm,

xcm �
1

M
 lim

m : 0

� xn 
mn �
1

M
� x dm,
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Figure 7-11. Sample Problem 7-3. The dashed line shows
the parabolic trajectory of the center of mass of the two fragments.
The locations of the center of mass and the two fragments are
shown at s.t � 1.42
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Figure 7-12. In (a), (b), and (c), the triangle is divided into thin
strips, parallel to each of the three sides. The center of mass must lie
along the symmetrical dividing lines shown. (d) The dot, the only
point common to all three lines, is the position of the center of mass.

cm
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center of mass of each strip must lie at its geometrical center,
and therefore the center of mass of the plate must lie some-
where along the line connecting the centers of the strips. (Re-
place each strip with a point mass located at the center of
mass of the strip. The row of point masses forms in effect a
one-dimensional object whose center of mass must surely lie
along its length). Repeating this procedure for strips drawn
parallel to the other two sides (Fig. 7-12b and 7-12c), we ob-
tain two additional lines, each of which must also include the
center of mass of the plate. Superimposing all three lines, as
in Fig. 7-12d, we find they have only one point in common,
which must therefore be the center of mass.

Sample Problem 7-4. Figure 7-13a shows a circular
metal plate of radius 2R from which a disk of radius R has been
removed. Let us call it object X. Its center of mass is shown as a
dot on the x axis. Find the location of this point.

Solution Object X has symmetry about the x axis; that is, the por-
tion above the x axis is the mirror image of the portion below the x

axis. Because of this symmetry, the center of mass must lie along
the x axis. Furthermore, because there is more of object X to the
right of the y axis than to the left, the center of mass must lie to
the right of the y axis. It is thus very reasonable that point X repre-
sents the center of mass of object X.

Figure 7-13b shows object X, its hole filled with a disk of the
same material of radius R, which we call object D. Let us label as
object C the large uniform composite disk so formed. From sym-
metry, the center of mass of object C is at the origin of the coordi-
nate system, as shown.

In finding the center of mass of a composite object, we can as-
sume that the masses of its components are concentrated at their
individual centers of mass. Thus object C can be treated as equiva-
lent to two particles, representing objects X and D. Figure 7-13c
shows the positions of the centers of mass of these three objects.

The position of the center of mass of object C is given from
Eq. 7-12a as

in which xD and xX are the positions of the centers of mass of ob-
jects D and X, respectively. Noting that and solving for xX,
we obtain

The ratio mD/mX must be the same as the ratio of the areas of
objects D and X (assuming the plate is of uniform density and
thickness). That is,

With we obtain

Sample Problem 7-5. A thin strip of material is bent
into the shape of a semicircle of radius R (Fig. 7-14). Find its cen-
ter of mass.

Solution This case has symmetry about the y axis (that is, for every
particle to the left of the y axis there is a particle in a similar loca-

xX � 1
3R.

xD � �R,

�
�R2

� (2R)2 � �R2 �
1

3
. 

mD

mX

�
area of D

area of X
�

area of D

area of C � area of D

xX � �� mD

mX
� xD .

xC � 0

xC �
mDxD � mX xX

mD � mX

,
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Figure 7-13. Sample Problem 7-4. (a) Object X is a metal
disk of radius 2R with a hole of radius R cut in it. (b) Object D is a
metal disk that fills the hole in object X; its center of mass is at

Object C is the composite disk made up of objects X
and D; its center of mass is at the origin. (c) The centers of mass
of the three objects.

xD � �R.
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(b)

(c)
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Figure 7-14. Sample Problem 7-5. (a) A thin strip of metal
bent into the shape of a semicircle. (b) An element of the strip of
mass dm located at the angular coordinate �.
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tion to the right of the y axis). The center of mass must therefore lie
on the y axis; that is, However, there is no symmetry about
the x axis, so we must use Eq. 7-18b to find ycm . Using an angular
coordinate simplifies the integration to be performed. Consider the
small element of mass dm shown in Fig. 7-14b. It subtends an angle
d�, and since the total mass M of the strip subtends an angle � (a
full circle would subtend an angle 2�), the mass dm must be the
same fraction of M as d� is of �. That is, or

The element dm is located at the coordinate y �
R sin �. In this case we can write Eq. 7-18b as

The center of mass is roughly two-thirds of a radius along the y
axis. Note that, as this case illustrates, the center of mass does not
need to be within the volume or the material of an object.

Sample Problem 7-6. A ball of mass m and radius R is
placed inside a spherical shell of the same mass m and inner ra-

�
R

�
��

0
 sin � d� �

2R

�
� 0.637R.

ycm �
1

M
� y dm �

1

M
��

0
 (R sin �) 

M

�
d�

dm � (M/�)d�.
dm/M � d� /�,

xcm � 0.
dius 2R. The combination is at rest on a table top as shown in Fig.
7-15a. The ball is released, rolls back and forth inside, and finally
comes to rest at the bottom, as in Fig. 7-15c. What will be the dis-
placement d of the shell during this process?

Solution The only external forces acting on the ball–shell system
are the downward force of gravity and the normal force exerted ver-
tically upward by the table. Neither force has a horizontal compo-
nent so that � Fext,x � 0. From Eq. 7-16 the acceleration component
acm,x of the center of mass must also be zero. Thus the horizontal po-
sition of the center of mass of the system must remain fixed, and the
shell must move in such a way as to make sure that this happens.

We can represent both ball and shell by single particles of
mass m, located at their respective centers. Figure 7-15b shows the
system before the ball is released and Fig. 7-15d after the ball has
come to rest at the bottom of the shell. We choose our origin to
coincide with the initial position of the center of the shell. Figure
7-15b shows that, with respect to this origin, the center of mass of
the ball– shell system is located a distance to the left, halfway
between the two particles. Figure 7-15d shows that the displace-
ment of the shell is given by

The shell must move to the left through this distance as the ball
comes to rest.

The ball is brought to rest by the frictional force that acts be-
tween it and the shell. Why does this frictional force not affect the
final location of the center of mass?

7-5 CONSERVATION OF
MOMENTUM IN A SYSTEM OF
PARTICLES

Suppose we have a system containing N particles. The par-
ticles have masses 2, . . . , N) and move with
velocities and momenta The total momen-
tum of the system is then

(7-20)

which, according to Eq. 7-13, can be written as

(7-21)

Here is the total mass of the
system. Equation 7-21 gives us a different but equivalent
definition of the total momentum of a system of particles:

The total momentum of a system of particles is equal to
the product of the total mass of a system and the veloc-
ity of its center of mass.

Assuming a constant mass M, the derivative of the momen-
tum is

(7-22)
d P
B

dt
� M

d vBcm

dt
� M aBcm ,

M � m1 � m2 � ��� � mN

P
B

� M vBcm .

� �
N

n�1
mnvBn � m1vB1 � m2v

B
2 � ��� � mNvBN ,

P
B

� �
N

n�1
pBn � pB1 � pB2 � ��� � pBN

P
B

pBn � mnvBn .vBn

mn (n � 1,

d � 1
2R.

1
2R
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Figure 7-15. Sample Problem 7-6. (a) A ball of radius R is
released from this initial position and is free to roll inside a spheri-
cal shell of radius 2R. (b) The centers of mass of the ball, the
shell, and their combination. (c) The final state after the ball has
come to rest. The shell has moved so that the horizontal coordi-
nate of the center of mass of the system remains in place. (d) The
centers of mass of the ball, the shell, and their combination.
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using Eq. 7-14. Comparison of Eq. 7-22 with Eq. 7-16,
allows us to write Newton’s second law

for a system of particles as

(7-23)

Equation 7-23 states that, in a system of particles, the net
external force equals the rate of change of the linear mo-
mentum of the system. This equation is the generalization
of the single-particle expression Eq. 6-2, to a
system of many particles. Equation 7-23 reduces to Eq. 6-2
for the special case of a single particle, since only external
forces can act on a one-particle system.

The law of conservation of linear momentum, which we
derived in Section 6-4 for a system of two particles, also
applies to a system of many particles, as we can see imme-
diately from Eq. 7-23: If the net external force acting on a
system is zero, then and so the total linear mo-
mentum of the system remains constant.

If we view the system from a frame of reference that is
moving with the center of mass, then in this frame the ve-
locity of a particle in the system is

(7-24)

In this center-of-mass reference frame, the total momentum
is, using Eq. 7-13,

(7-25)

so the center-of-mass reference frame is also the frame in
which the total momentum is zero. This justifies our choice
in Section 6-5 of the center-of-mass velocity (compare Eq.
6-23 with Eq. 7-4) for the reference frame from which to
view the two-particle collision—only in this reference
frame is the total momentum of the colliding particles zero
both before and after the collision.

So far we are considering only systems in which the to-
tal mass M remains constant. Special care must be taken
when applying Eq. 7-23 to systems in which the mass can
change. The use of Eq. 7-23 in analyzing variable-mass
systems is discussed in Section 7-6.

Sample Problem 7-7. A stream of bullets whose mass
m is each 3.8 g is fired horizontally with a speed v of 1100 m/s
into a large wooden block of mass that is initially at
rest on a horizontal table; see Fig. 7-16. If the block is free to slide
without friction across the table, what speed will it acquire after it
has absorbed eight bullets?

Solution For the moment we consider only the horizontal direc-
tion, which we define as the x axis, with positive to the right in
Fig. 7-16. The x component of Eq. 7-23 is dPx /dt. The
net external force on the block has a nonzero horizontal compo-

� Fext,x �

M (� 12 kg)

� M vBcm � vBcm M � 0, 

� M vBcm � vBcm �
N

n�1
mn

P
B

� � �
N

n�1
mnvB�n � �

N

n�1
mnvBn � �

N

n�1
mnvBcm

vB�n � vBn � vBcm .

vB�n

P
B

d P
B

/dt � 0

� F
B

� d pB/dt,

� F
B

ext �
d P
B

dt
.

� F
B

ext � M aBcm ,

nent (due to the bullets), and the net external force on a bullet has
a horizontal component (due to the block). However, if we choose
our system to include both block and bullets, the forces between
them are internal forces. No net horizontal external force acts on
this system, and so the x component of the momentum must re-
main constant. We have identified the boundary of this system in
Fig. 7-16. The initial (horizontal) momentum, measured while the
bullets are still in flight and the block is at rest, is

in which mv is the momentum of an individual bullet and 
The final horizontal momentum, measured when all the bullets are
in the block and the block is sliding over the table with horizontal
velocity V, is

Conservation of momentum requires that

or

Solving for V yields

In the vertical direction, the external forces are the weight of
the bullets, the weight of the block, and the normal force on the
block. While the bullets are in flight, they acquire a small vertical
momentum component as a result of the action of gravity. When
the bullets strike the block, the block must exert on each bullet a
force with both horizontal and vertical components. Along with
the vertical force on the bullet, which is necessary to change its
vertical momentum to zero, there must (according to Newton’s
third law) be a corresponding increase in the normal force exerted
on the block by the horizontal surface. This increase is not only
from the weight of the imbedded bullet; it has an additional contri-
bution arising from the rate of change of the vertical momentum
of the bullet. When all the bullets have come to rest relative to the
block, the normal force will equal the combined weights of block
and imbedded bullets.

For simplicity in solving this problem, we have assumed that
the bullets are fired so rapidly that all eight are in flight before the
first bullet strikes the block. Can you solve this problem without
making this assumption?

Suppose the system boundary is enlarged so that it includes
the gun, which is fixed to the Earth. Does the horizontal momen-
tum of this system change before and after the firing? Is there a
horizontal external force?

� 2.8 m/s. 

V �
Nm

M � Nm
v �

(8)(3.8 � 10�3 kg)

12 kg � (8)(3.8 � 10�3 kg)
 (1100 m/s)

N(mv) � (M � Nm)V.

Pix � Pfx

Pfx � (M � Nm)V.

N � 8.

Pix � N(mv),
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System boundary

No friction

Gun m
M

xv

Figure 7-16. Sample Problem 7-7. A gun fires a stream of
bullets toward a block of wood. We analyze the system that we de-
fine to be the block plus the bullets in flight.



Sample Problem 7-8. As Fig. 7-17 shows, a cannon
whose mass M is 1300 kg fires a 72-kg ball in a horizontal direc-
tion with a speed v of 55 m/s relative to the cannon. The cannon is
mounted so that it can recoil freely. (a) What is the velocity V of
the recoiling cannon with respect to the Earth? (b) What is the ini-
tial velocity vE of the ball with respect to the Earth?

Solution (a) The coordinate system is set up with the positive x
axis to the right in Fig. 7-17. Our inertial reference frame is fixed
with respect to the Earth.

We choose the cannon plus the ball as our system. By doing
so, the forces associated with the firing of the cannon are internal
to the system, and we do not have to deal with them. The external
forces acting on the system have no horizontal components. Thus
the horizontal component of the total linear momentum of the sys-
tem must remain unchanged as the cannon is fired.

In terms of vectors, that is, the velocity of the ball
with respect to the Earth equals the velocity of the ball with respect
to the cannon plus the velocity of the cannon with respect to the
Earth. In the horizontal direction, we have where, as
shown in the figure, we expect that the x component of is negative.

In the reference frame of the Earth, the horizontal component
of the initial momentum Pix is zero. After the cannon has fired, the
final momentum of the system with respect to the Earth is that of
the cannon ball plus the recoiling cannon:

With we must have and so

Solving for Vx gives

The negative sign tells us that the cannon recoils to the left in Fig.
7-17, as we expect it should.
(b) With respect to the Earth, the horizontal component of the ve-
locity of the ball is

Because of the recoil, the ball is moving a little slower with re-
spect to the Earth than it otherwise would. Note the importance in
this problem of choosing the system (cannon � ball) wisely and
being absolutely clear about the reference frame (Earth or recoil-
ing cannon) to which the various measurements are referred.

� 55 m/s � (�2.9 m/s) � 52 m/s.
vEx � vx � Vx

Vx � �
mvx

M � m
� �

(72 kg)(55 m/s)

1300 kg � 72 kg
� �2.9 m/s.

MVx � m(vx � Vx) � 0.

Pix � Pfx�Fext,x � 0,

Pfx � MVx � mvE x � MVx � m(vx � Vx).

V
B

vEx � vx � Vx

vBE � vB � V
B

;

7-6 SYSTEMS OF VARIABLE
MASS* (Optional)

Imagine that the cart holding the cannon of Fig. 7-17 also
holds a large stack of cannonballs. As the cannon is repeat-
edly fired, the cart (which we assume to move without fric-
tion) recoils to the left, and with each recoil its speed in-
creases. With the system boundary drawn as in Fig. 7-17,
we know that the total horizontal momentum must be zero
and that there is no net horizontal force on the system. If,
however, we consider a system including only the cannon
plus cart, then the previous statement is no longer true. The
momentum of the cannon increases each time it is fired,
and it is appropriate for us to use the familiar language of
Newtonian physics to account for the change in momentum
through the action of a suitable force. In this case, the force
that accelerates the cannon is a reaction force: the cannon,
by virtue of its exploding charge, pushes on the cannonballs
to eject them, and the reaction force (the cannonballs push-
ing back on the cannon) moves the cannon to the left.

As the cannon is repeatedly fired, the total mass on the
cart decreases by the quantity of cannonballs that have been
ejected. The methods of Sample Problem 7-8 cannot easily
be used to solve this problem, because the mass M of the
recoiling object is different every time the cannon fires.

We refer to the system S consisting of cannon plus cart
(including the unfired cannon balls) in this example as a
“variable-mass” system. Of course, the larger system S�
consisting of cannon plus all fired cannonballs is a con-
stant-mass system and a constant-momentum system (in
the absence of external force). The smaller system S, how-
ever, does not have constant mass. Moreover, the ejected
cannonballs carry momentum, and there is a net outflow of
momentum from S that is responsible for its acceleration.

The above example gives a reasonably good mental im-
age of how a rocket works. Fuel is burned and ejected at
high speed; the combustion products correspond to the can-
nonballs. The rocket (less the consumed fuel) experiences
an acceleration that depends on the rate at which fuel is
consumed and the speed with which it is ejected.

The goal in analyzing systems similar to the rocket is
not to consider the kinematics of the entire system S�. In-
stead, we focus our attention on one particular subsystem S,
and we ask how S moves as the mass within the entire sys-
tem S� is redistributed so that the mass within subsystem S
changes. The total mass within S� remains constant, but the
particular subsystem S we consider can change its state of
motion as it gains or loses mass (and momentum).

Figure 7-18 shows a schematic view of a generalized
system. At time t, the subsystem S has a mass M and moves
with velocity in the particular inertial frame of reference
from which we are observing. At a time the mass oft � t,

vB
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Figure 7-17. Sample Problem 7-8. A cannon of mass M fires
a ball of mass m. The velocities of the ball and the recoiling can-
non are shown in a reference frame fixed with respect to the Earth.
Velocities are taken as positive to the right.

mM

x

System boundary

V vE

* See “Force, Momentum Change, and Motion,” by Martin S. Tiersten,
American Journal of Physics, January 1969, p. 82, for an excellent general
reference on systems of fixed and variable mass.



S has changed by an amount M (a negative quantity, in the
case of ejected mass) to while the mass of the re-
mainder of the full system S� has changed by a correspond-
ing amount �M. The system S now moves with a velocity

and the ejected matter moves with velocity 
both measured from our frame of reference.

To make the situation as general as possible, we also al-
low for an external force that may act on the entire system.
In the case of a rocket, this is not the force that propels the
rocket (which is an internal force for the system S�), but in-
stead is the force due to some external agent, perhaps grav-
ity or atmospheric drag. The total momentum of the entire
system S� is and Newton’s second law can be written

(7-26)

In the time interval t, the change in momentum is

(7-27)

where the final momentum of the system S� at time
and the initial momentum of S� at time t, are

given by
(7-28a)

(7-28b)

The change in momentum of S� is thus

(7-29)

Rewriting the derivative in Eq. 7-26 as a limit and substitut-
ing this expression for we obtainP

B
,

� (M � M )(vB � vB) � (�M)uB � M vB.
P

B
� P

B
f � P

B
i

P
B

f � (M � M )(vB � vB) � (�M)uB.

P
B

i � M vB,

P
B

i ,t � t,
P
B

f ,

P
B

� P
B

f � P
B

i ,

P
B

� F
B

ext �
d P
B

dt
.

P
B

,

uB,vB � vB,

M � M,

(7-30)

Note that, in taking the limit, the last term in the square brack-
ets vanishes, because as In Eq. 7-30, M is
the mass of the subsystem S at time t, and is its acceler-
ation as it gains or loses mass at velocity (in our frame of
reference) and at a rate If the mass of
the subsystem increases; if its mass decreases.

We can write Eq. 7-30 in a more instructive form as

(7-31)

where is the velocity of the gained or lost
matter relative to the subsystem S. For example, if subsys-
tem S is a rocket, is the velocity of the ejected gases
relative to the rocket. This is a reasonable quantity to intro-
duce, because the speed of the ejected gases is a fundamen-
tal design characteristic of a rocket engine and should not
be expressed in a form that depends on any frame of refer-
ence other than the rocket itself.

Equation 7-31 shows that the acceleration of the
subsystem S (the rocket, for example) is in part determined
by the net external force and in part by the momentum
transferred by the mass that is gained or lost. Note that

points to the left in Fig. 7-18; since dM/dt is
negative for a rocket, the second term in Eq. 7-31 is repre-
sented by a vector that points to the right and so is responsi-
ble for accelerating the subsystem in that direction. This
term is called the thrust of the rocket and can be interpreted
as the force exerted on the rocket by the ejected gas. The
thrust of a rocket can be increased by increasing either the
speed of the ejected gas or the rate at which it is ejected.

If mass is ejected at a constant rate and at a constant speed
relative to S, the thrust is constant but the acceleration is not
constant, because M is decreasing. If dM/dt � 0, so that the
mass of the subsystem does not change, Eq. 7-31 reduces to
our familiar form of Newton’s second law,

The analogy between a rocket and a recoiling gun is ap-
parent from Fig. 7-19. In each case momentum is con-
served for the entire system, consisting of the ejected mass
(bullets or fuel) plus the object that ejects the mass. When
we focus our attention on the gun or the rocket within the
larger system, we see that its mass changes and that there is
a force that drives it, a recoil in the case of the gun and a
thrust in the case of the rocket. If we view the system from
a reference frame at the center of mass, then as time passes
there is more ejected mass, and it has traveled further to the

� F
B

ext � M aB .

vBrel � uB � vB

d vB/dt

vBrel

vBrel � uB � vB

M
dvB

dt
� � F

B
ext � vBrel

dM

dt
,

dM/dt � 0,
dM/dt � 0,� dM/dt �.

uB
d vB/dt

t : 0.vB : 0

� M
d vB
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System S' boundary

Time t

Time t + ∆t 

Subsystem S boundary

(a)

(b)
x

x

M + ∆M

v + ∆v

– ∆M

M

S'

S

v

u

Figure 7-18. (a) A system S� at time t consists of a mass M
moving with velocity (b) At a time t later, the original mass
M has ejected some mass �M. The remaining mass 
which we call the subsystem S, now moves with velocity
vB � vB.

M � M,
vB.



left in Fig. 7-19, meaning that the object must travel to the
right to keep the center of mass fixed.

Sample Problem 7-9. A spaceship with a total mass
of 13,600 kg is moving relative to a certain inertial reference
frame with a speed of 960 m/s in a region of space of negligible
gravity. It fires its rocket engines to give an acceleration parallel
to the initial velocity. The rockets eject gas at a constant rate of
146 kg/s with a constant speed (relative to the spaceship) of
1520 m/s, and they are fired until 9100 kg of fuel has been
burned and ejected. (a) What is the thrust produced by the rock-
ets? (b) What is the velocity of the spaceship after the rockets
have fired?

Solution (a) The thrust is given by the last term of Eq. 7-31. Its
magnitude is

(b) Choosing the positive x direction to be that of the spaceship’s
initial velocity, we can write Eq. 7-31 (with as

Because the gas is ejected relative to the rocket in a direction op-
posite to its velocity (which we have chosen as our positive x di-
rection), vrel,x is negative. Since dM/dt is also negative, the right
side of this equation is positive, and the spaceship’s velocity in-
creases. Rewriting the equation as (dM/M), we can in-
tegrate on the left from the initial velocity of 960 m/s to the final
velocity we seek to determine. On the right we integrate from the
initial mass (13,600 kg) to the final mass (13,600 kg � 9100 kg �
4500 kg)

which we can evaluate as

(7-32)vfx � vix � vrel,x ln 
Mf

Mi
.

�vf x

vix

dvx � vrel,x �Mf

Mi

dM

M
,

dvx � vrel,x

M
dvx

dt
� vrel,x

dM

dt
.

� F
B

ext � 0)

F � �vrel
dM

dt � � (1520 m/s)(146 kg/s) � 2.22 � 105 N.

Solving for vfx we find

Sample Problem 7-10. Sand drops from a stationary
hopper at a rate of 0.134 kg/s onto a conveyor belt moving with a
speed of 0.96 m/s, as shown in Fig. 7-20. What net force must be
applied to the conveyor belt to keep it moving at constant speed?

Solution We choose the direction of motion of the belt as our
positive x direction, and we fix our coordinate system in the labo-
ratory that locates our inertial reference frame (and in which the
hopper is at rest). The system S� includes the belt and all of the
sand in the hopper. The subsystem S represents the belt and only
the sand that has dropped onto it. The mass of S is increasing
(dM/dt � 0) as more sand drops onto the belt.

We can apply Eq. 7-31 to this situation, with (be-
cause the belt moves with constant velocity) and also with ux � 0

dvx /dt � 0

vfx � 960 m/s � (�1520 m/s) ln 
4500 kg

13,600 kg
� 2640 m/s.
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System S' 
boundarySubsystem S

boundary

System S' 
boundarySubsystem S

boundary

vu

Frecoil = (v – u)mn

(v – u)(– dM
dtFthrust =

u v )

(a)

(b)

Figure 7-19. (a) A machine gun fires a stream of bullets at a rate of n per unit time. The total
momentum of the system S� remains constant, but the subsystem S experiences a recoil force that
changes its momentum. Its change in momentum in a time dt is exactly equal to the opposite mo-
mentum mn carried by the bullets. (b) A rocket ejects a stream of combustion products. The
total momentum of the system S� remains constant, but the subsystem S experiences a thrust that
changes its momentum. Its change in momentum in a time dt is exactly equal to the opposite mo-
mentum carried by the ejected gas.uB dM

uB dt

Figure 7-20. Sample Problem 7-10. Sand drops from a hop-
per at a rate dM/dt onto a conveyor belt moving with constant ve-
locity in the reference frame of the laboratory. The hopper is at
rest in the reference frame of the laboratory.

vB
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dt v

Subsystem S boundary

System S' boundary
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MULTIPLE CHOICE

7-1 The Motion of a Complex Object

7-2 Two-Particle Systems
1. Two frictionless pucks are connected by a rubber band. One

of the pucks is projected across an air table, the rubber band
tightens, and the second puck follows— in an apparently ran-
dom way— the first puck. The center of mass of this two-
particle system is located

(A) at a fixed distance from one of the pucks.
(B) usually, but not always, between the two pucks.
(C) at a distance from one of the pucks that is a fixed ratio

to the distance between the two pucks.
(D) sometimes closer to one puck, and sometimes closer to

the other.

2. Two objects are moving on a surface. The center of mass ex-
ists only if

(A) the two objects are physically connected.
(B) the surface is level.
(C) the surface is frictionless.
(D) There is always a center of mass.

3. Two objects are sitting on a level, frictionless surface. The ob-
jects are not connected or touching. A force F is applied to
one of the objects, which then moves with acceleration a.
Which of the following statements is most correct?

(A) The center of mass concept cannot be applied because
the external force does not act on both objects.

(B) The center of mass moves with acceleration that could
be greater than a.

(C) The center of mass moves with acceleration that must
be equal to a.

(D) The center of mass moves with acceleration that must
be less than a.

4. Two objects of unequal mass are connected by a light string
that passes over a pulley. One of the objects is given an initial
upward velocity. The center of mass of the two objects will

(A) accelerate up or down, depending on the relative
masses of the two objects.

(B) accelerate downward only after it has reached some
highest point.

(C) accelerate downward at some value less than g.
(D) accelerate downward with a value of g.

5. Two objects of unequal mass are connected by a compressed
spring. The combined object is thrown vertically into the air.
At the highest point of the trajectory the spring releases, re-
sulting in one of the objects being projected even higher into
the air; the spring remains attached to the other object.

Shortly after the spring releases, the center of mass of the ob-
jects is

(A) moving upward and accelerating upward.
(B) moving upward but accelerating downward.
(C) moving downward but accelerating upward.
(D) moving downward and accelerating downward.
(E) There is not enough information given to answer the

question.

7-3 Many-Particle Systems
6. Three objects are on a table. You can find the center of mass

by
(A) combining the three objects together according to Eq.

7-12.
(B) combining the two lightest objects first according to

Eq. 7-12, calling it a new “particle,” and then combin-
ing the third object to this new particle.

(C) combining the two heaviest objects first, calling it a
new “particle,” and then adding the third object to this
new particle.

(D) any of the above methods; they are equivalent.

7. Seven identical geese are flying south together at constant
speed. A hunter shoots one of them, which immediately dies
and falls to the ground. The other six continue flying south at
the original speed. After the one goose has hit the ground, the
center of mass of all seven geese

(A) continues south at the original speed, but is now lo-
cated some distance behind the flying geese.

(B) continues south, but at the original speed.

(C) continues south, but at the original speed.
(D) stops with the dead goose.

8. Measure the height that a person can jump by how far above
the ground her head rises. Can a person jump higher with her
hands fixed above her head or with her hands fixed at her
sides?

(A) With her hands fixed above head.
(B) With hands fixed at sides.
(C) The result is the same in both cases.
(D) The answer depends on the relative size of the person’s

hands compared to her overall mass.

7-4 Center of Mass of Solid Objects
9. A solid body has a center of mass located inside the body. A

hole is drilled somewhere in the body, but not near the center
of mass. After the hole has been drilled, the center of mass
of the remaining body moves from the original position

1
7

6
7

(because the sand dropping onto the belt has no component of ve-
locity in the x direction. Thus that is, an observer
traveling with the belt would see the sand leaving the hopper (and
the hopper itself) moving in the negative x direction. Solving for
the net external force, we find

� 0.129 N.

� Fext,x � �vrel,x
dM

dt
� vx

dM

dt
� (0.96 m/s)(0.134 kg/s)

vrel,x � �vx ;
The force has a positive x component; that is, it must be applied in
the direction of motion of the belt to increase the x component of
the velocity of each grain of sand that drops onto the belt from 0
to 0.96 m/s.
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(A) away from the hole. (B) toward the hole.
(C) not at all. (D) in a random direction.

10. Consider Sample Problem 7-6. The inner ball is released
and rolls around inside the spherical shell for some time be-
fore coming to rest. During this time the center of mass
(A) moves both horizontally and vertically.
(B) moves both horizontally and vertically, but returns to

the original horizontal position when the system comes
to rest.

(C) moves only vertically.
(D) moves vertically only downward, because the center of

mass can never move upward.

7-5 Conservation of Momentum in a System of Particles
11. A system of N particles is free from any external forces.

(a) Which of the following is true for the magnitude of the
total momentum of the system?

(A) It must be zero.
(B) It could be non-zero, but it must be constant.
(C) It could be non-zero, and it might not be constant.
(D) The answer depends on the nature of the internal

forces in the system.

(b) Which of the following must be true for the sum of the
magnitudes of the momenta of the individual particles in
the system?

(A) It must be zero.
(B) It could be non-zero, but it must be constant.
(C) It could be non-zero, and it might not be constant.
(D) It could be zero, even if the magnitude of the total mo-

mentum is not zero.

12. An isolated rail car of mass M is moving along a straight, fric-
tionless track at an initial speed v0 . The car is passing under a
bridge when a crate filled with N bowling balls, each of mass
m, is dropped from the bridge into the bed of the rail car. The
crate splits open and the bowling balls bounce around inside
the rail car, but none of them fall out.

(a) Is the momentum of the rail car � bowling balls system
conserved in this collision?

(A) Yes, the momentum is completely conserved.
(B) Only the momentum component in the vertical direc-

tion is conserved.
(C) Only the momentum component parallel to the track is

conserved.
(D) No components are conserved.

(b) What is the average speed of the rail car � bowling balls
system some time after the collision?

(A) (B)
(C)
(D) The speed cannot be determined because there is not

enough information.

13. An isolated rail car originally moving with speed v0 on a
straight, frictionless, level track contains a large amount of
sand. A release valve on the bottom of the car malfunctions,
and sand begins to pour out straight down relative to the rail
car.

(a) Is momentum conserved in this process?

(A) The momentum of the rail car alone is conserved.
(B) The momentum of the rail car � sand remaining

within the car is conserved.
(C) The momentum of the rail car � all of the sand, both

inside and outside the rail car, is conserved.
(D) None of the three previous systems have momentum

conservation.

(b) What happens to the speed of the rail car as the sand
pours out?

(A) The car begins to roll faster.
(B) The car maintains the same speed.
(C) The car begins to slow down.
(D) The problem cannot be solved since momentum is not

conserved.
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QUESTIONS

1. A canoeist in a still pond can reach shore by jerking sharply
on the rope attached to the bow of the canoe. How do you ex-
plain this? (It really can be done.)

2. How might a person sitting at rest on a frictionless horizontal
surface get altogether off it?

3. A box is sitting on a frictionless, level surface. A small spring
cannon, which is capable of firing a lump of clay, is lowered
into the box on a string attached to the ceiling. Before the can-
non is fired, the center of mass of the cannon, clay, and box is
fixed at a point A. The cannon fires; the clay shoots from the
cannon and sticks to the wall of the box. Does the center of
mass of the cannon, clay, and box system move? Explain.

4. Does the center of mass of a solid object necessarily lie
within the object? If not, give examples.

5. Figure 7-21 shows (a) an isosceles triangular prism and (b) a
right circular cone whose diameter is the same length as the
base of the triangle. The center of mass of the triangle is one-

cm
cm

Figure 7-21. Question 5.

6. How is the center of mass concept related to the concept of
geographic center of the country? To the population center of
the country? What can you conclude from the fact that the ge-
ographic center differs from the population center?

7. Where is the center of mass of the Earth’s atmosphere?

third of the way up from the base but that of the cone is only
one-fourth of the way up. Can you explain the difference?



8. The center of mass of a full can of soda is approximately at
the center. (a) Part of the soda is consumed and the can is re-
placed on the table. What happens to the center of mass of the
can � soda system? (b) Eventually all of the soda is con-
sumed and the can is replaced on the table. What happens to
the center of mass of the can? See Problem 5.

9. An amateur sculptor decides to portray a bird (Fig. 7-22).
Luckily, the final model is actually able to stand upright. The
model is formed of a single thick sheet of metal of uniform
thickness. Of the points shown, which is most likely to be the
center of mass?
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Figure 7-23. Question 11.

Figure 7-24. Question 16.

consisting of man and firecracker. It will be most convenient
to describe each motion during each of the following periods:
(a) after he throws the firecracker, but before it explodes; (b)
between the explosion and the first piece of firecracker hitting
the ice; (c) between the first fragment hitting the ice and the
last fragment landing; and (d) during the time when all frag-
ments have landed but none has reached the edge of the ice.

15. You throw an ice cube with velocity into a hot, gravity-free,
evacuated space. The cube gradually melts to liquid water and
then boils to water vapor. (a) Is it a system of particles all the
time? (b) If so, is it the same system of particles? (c) Does the
motion of the center of mass undergo any abrupt changes? (d)
Does the total linear momentum change?

16. An evacuated box is at rest on a frictionless table. You punch
a small hole in one face so that air can enter. (See Fig. 7-24.)
How will the box move? What argument did you use to arrive
at your answer?

vB

5

4

23

6

1

Figure 7-22. Question 9.

10. Someone claims that when a skillful high jumper clears the
bar, the jumper’s center of mass actually goes under the bar.
Is this possible?

11. A ballet dancer doing a grand jete (great leap; see Fig. 7-23)
seems to float horizontally in the central portion of her leap.
Show how the dancer can maneuver her legs in flight so that,
although her center of mass does indeed follow the expected
parabolic trajectory, the top of her head moves more or less
horizontally. (See “The Physics of Dance,” by Kenneth Laws,
Physics Today, February 1985, p. 24.)

12. Can a sailboat be propelled by air blown at the sails from a
fan attached to the boat? Explain your answer.

13. If only an external force can change the state of motion of the
center of mass of a body, how does it happen that the internal
force of the brakes can bring a car to rest?

14. A man stands still on a large sheet of slick ice; in his hand he
holds a lighted firecracker. He throws the firecracker at an an-
gle (that is, not vertically) into the air. Describe briefly, but as
exactly as you can, the motion of the center of mass of the
firecracker and the motion of the center of mass of the system

Air

No 
friction

Vacuum

17. A railroad flatcar is initially at rest. It holds N people each of
weight w. If each person in succession runs parallel to the
tracks with a relative velocity vrel and jumps off the end, do
they impart to the car a greater velocity than if they all run
and jump at the same time?

18. Can you think of variable-mass systems other than the exam-
ples given in the text?

19. It is not correct to use the equation for a
system of variable mass. To show this (a) put the equation in
the form and (b) show that
one side of this equation has the same value in all inertial
frames, where as the other side does not. Hence the equation
cannot be generally valid. (c) Show that Eq. 7-31 leads to no
such contradiction.

20. In 1920 a prominent newspaper editorialized as follows about
the pioneering rocket experiments of Robert H. Goddard, dis-
missing the notion that a rocket could operate in a vacuum:
“That Professor Goddard, with his ‘chair’ in Clark College
and the countenancing of the Smithsonian Institution, does
not know the relation of action to reaction, and of the need to
have something better than a vacuum against which to re-
act— to say that would be absurd. Of course, he seems only
to lack the knowledge ladled out daily in high schools.” What
is wrong with this argument?

21. The final velocity of the final stage of a multi-stage rocket is
much greater than the final velocity of a single-stage rocket of
the same total mass and fuel supply. Explain this fact.

22. Can a rocket reach a speed greater than the speed of the ex-
haust gases that propel it? Explain why or why not.

23. Are there any possible methods of propulsion in outer space
other than rockets? If so, what are they and why are they not
used?

(� F
B

ext � M d vB/dt)/(dM/dt) � vB

� F
B

ext � d(M vB)/dt



24. Equation 7-32 suggests that the speed of a rocket can increase
without limit if enough fuel is burned. Is this reasonable?
What is the limit of applicability of Eq. 7-32? Where in our
derivation of Eq. 7-32 did we introduce this limit? (See “The

Equation of Motion for Relativistic Particles and Systems
with Variable Rest Mass,” by Kalman B. Pomeranz, American
Journal of Physics, December 1964, p. 955.)
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Figure 7-25. Exercise 7.

Figure 7-26. Exercise 10.

Figure 7-27. Exercise 11.

EXERCISES

7-1 The Motion of a Complex Object

7-2 Two-Particle Systems
1. How far is the center of mass of the Earth–Moon system

from the center of the Earth? (From Appendix C, obtain the
masses of the Earth and Moon and the distance between the
centers of the Earth and Moon. It is interesting to compare 
the answer to the Earth’s radius.)

2. Show that the ratio of the distances x1 and x2 of two particles
from their center of mass is the inverse ratio of their masses;
that is,

3. A Plymouth with a mass of 2210 kg is moving along a
straight stretch of road at 105 km/h. It is followed by a Ford
with mass 2080 kg moving at 43.5 km/h. How fast is the cen-
ter of mass of the two cars moving?

4. Two skaters, one with mass 65 kg and the other with mass 
42 kg, stand on an ice rink holding a pole with a length of 
9.7 m and a mass that is negligible. Starting from the ends 
of the pole, the skaters pull themselves along the pole until
they meet. How far will the 42-kg skater move?

5. Two particles P and Q are initially at rest 1.64 m apart. P has
a mass of 1.43 kg and Q a mass of 4.29 kg. P and Q attract
each other with a constant force of 1.79 � 10�2 N. No exter-
nal forces act on the system. (a) Describe the motion of the
center of mass. (b) At what distance from P’s original posi-
tion do the particles collide?

6. A shell is fired from a gun with a muzzle velocity of 466 m/s,
at an angle of 57.4° with the horizontal. At the top of the tra-
jectory, the shell explodes into two fragments of equal mass.
One fragment, whose speed immediately after the explosion
is zero, falls vertically. How far from the gun does the other
fragment land, assuming level terrain?

7. A dog weighing 10.8 lb is standing on a flatboat so that he is
21.4 ft from the shore. He walks 8.50 ft on the boat toward
shore and then halts. The boat weighs 46.4 lb, and one can as-
sume there is no friction between it and the water. How far is
he from the shore at the end of this time? (Hint: The center of

x1/x2 � m2/m1 .

mass of boat � dog does not move. Why?) The shoreline is
also to the left in Fig. 7-25.

8. Richard, mass 78.4 kg, and Judy, who is less massive, are en-
joying Lake George at dusk in a 31.6-kg canoe. When the ca-
noe is at rest in the placid water, they change seats, which are
2.93 m apart and symmetrically located with respect to the ca-
noe’s center. Richard notices that the canoe moved 41.2 cm rel-
ative to a submerged log and calculates Judy’s mass. What is it?

9. An 84.4-kg man is standing at the rear of a 425-kg iceboat
that is moving at 4.16 m/s across ice that may be considered
to be frictionless. He decides to walk to the front of the 
18.2-m-long boat and does so at a speed of 2.08 m/s with re-
spect to the boat. How far does the boat move across the ice
while he is walking?

7-3 Many-Particle Systems
10. Where is the center of mass of the three particles shown in

Fig. 7-26?

3
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2 8 kg
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11. In the ammonia (NH3) molecule, the three hydrogen (H)
atoms form an equilateral triangle, the distance between cen-
ters of the atoms being 16.28 � 10�11 m, so that the center of
the triangle is 9.40 � 10�11 m from each hydrogen atom. The
nitrogen (N) atom is at the apex of a pyramid, the three 
hydrogens constituting the base (see Fig. 7-27). The 
nitrogen/hydrogen distance is 10.14 � 10�11 m and the nitro-

N

H

H

H



gen/hydrogen atomic mass ratio is 13.9. Locate the center of
mass relative to the nitrogen atom.

12. Consider Sample Problem 7-3. The 6.5-kg fragment is observed
at s to be moving with a velocity whose horizontal
component is 11.4 m/s in the same direction as that of the launch
of the original projectile and whose vertical component is 4.6 m/s
downward. Find the velocity of the 3.1-kg fragment at that time.

7-4 Center of Mass of Solid Objects
13. Three thin rods each of length L are arranged in an inverted U,

as shown in Fig. 7-28. The two rods on the arms of the U each
have mass M; the third rod has mass 3M. Where is the center
of mass of the assembly?

t � 1.42

nates of the center of mass of the box with respect to the co-
ordinate system shown in Fig. 7-30.

7-5 Conservation of Momentum in a System of Particles
16. A vessel at rest explodes, breaking into three pieces. Two

pieces, one with twice the mass of the other, fly off perpen-
dicular to one another with the same speed of 31.4 m/s. The
third piece has three times the mass of the lightest piece. 
Find the magnitude and direction of its velocity immediately
after the explosion. (Specify the direction by giving the angle
from the line of travel of the least massive piece.)

17. Each minute, a special game warden’s machine gun fires 220,
12.6-g rubber bullets with a muzzle velocity of 975 m/s. How
many bullets must be fired at an 84.7-kg animal charging to-
ward the warden at 3.87 m/s in order to stop the animal in its
tracks? (Assume that the bullets travel horizontally and drop
to the ground after striking the target.)

18. A railway flat car is rushing along a level frictionless track at a
speed of 45 m/s. Mounted on the car and aimed forward is a
cannon that fires 65-kg cannon balls with a muzzle speed of
625 m/s. The total mass of the car, the cannon, and the large
supply of cannon balls on the car is 3500 kg. How many cannon
balls must be fired to bring the car as close to rest as possible?

19. Twelve 100.0-kg containers of rocket parts in empty space are
loosely tethered by ropes tied together at a common point.
The center of mass of the twelve containers is originally at
rest. A 50-kg lump of “space-goo” moving at 80 m/s collides
with one of the containers and sticks to it. (a) Assuming that
none of the tethers break, find the speed of the center of mass
of the twelve containers after the collision with the space goo.
(b) Assuming instead that the tether of the struck container
does break, find the speed of the center of mass of the twelve
containers after the collision.

7-6 Systems of Variable Mass
20. A rocket at rest in space, where there is virtually no gravity,

has a mass of 2.55 � 105 kg, of which 1.81 � 105 kg is fuel.
The engine consumes fuel at the rate of 480 kg/s, and the ex-
haust speed is 3.27 km/s. The engine is fired for 250 s. (a)
Find the thrust of the rocket engine. (b) What is the mass of
the rocket after the engine burn? (c) What is the final speed
attained?

21. Consider a rocket at rest in empty space. What must be its
mass ratio (ratio of initial to final mass) in order that, after fir-
ing its engine, the rocket’s speed is (a) equal to the exhaust
speed and (b) equal to twice the exhaust speed?

22. During a lunar mission, it is necessary to make a midcourse
correction of 22.6 m/s in the speed of the spacecraft, which is
moving at 388 m/s. The exhaust speed of the rocket engine is
1230 m/s. What fraction of the initial mass of the spacecraft
must be discarded as exhaust?

23. A rocket of total mass 1.11 � 105 kg, of which 8.70 � 104 kg
is fuel, is to be launched vertically. The fuel will be burned at
the constant rate of 820 kg/s. Relative to the rocket, what is
the minimum exhaust speed that allows liftoff at launch?

24. A 5.4-kg toboggan carrying 35 kg of sand slides from rest
down an icy slope 93 m long, inclined 26° below the horizon-
tal. The sand leaks from the back of the toboggan at the rate
of 2.3 kg/s. How long does it take the toboggan to reach the
bottom of the slope?

25. A freight car, open at the top, weighing 9.75 metric tons, is
coasting along a level track with negligible friction at 
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Figure 7-28. Exercise 13.

Figure 7-29. Exercise 14.

Figure 7-30. Exercise 15.
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14. Fig. 7-29 shows a composite slab with dimensions 22.0 cm �
13.0 cm � 2.80 cm. Half of the slab is made of aluminum
(density � 2.70 g/cm3) and half of iron (density � 7.85 g/cm3),
as shown. Where is the center of mass of the slab?

11 cm

11 cm 13 cm

22 cm
2.8 cm

Aluminum

Iron

15. A box, open at the top, in the form of a cube of edge length
40 cm, is constructed from thin metal plate. Find the coordi-

40 cm

40 cm
40 cm

O

z

y

x



1.36 m/s when it begins to rain hard. The raindrops fall verti-
cally with respect to the ground. What is the speed of the car

when it has collected 0.50 metric tons of rain? What assump-
tions, if any, must you make to get your answer?
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Figure 7-31. Problem 1.

Figure 7-32. Problem 3.

Figure 7-33. Problem 4.

Figure 7-34. Problem 5.

PROBLEMS

1. A man of mass m clings to a rope ladder suspended below a
balloon of mass M; see Fig. 7-31. The balloon is stationary
with respect to the ground. (a) If the man begins to climb the
ladder at a speed v (with respect to the ladder), in what direc-
tion and with what speed (with respect to the Earth) will the
balloon move? (b) What is the state of motion after the man
stops climbing?

hanging from one side and a length from the other
side. Find the acceleration a as a function of x.

4. A cannon and a supply of cannonballs are inside a sealed rail-
road car of length L, as in Fig. 7-33. The cannon fires to the
right; the car recoils to the left. The cannonballs remain in the
car after hitting the far wall. (a) After all the cannonballs have
been fired, what is the greatest distance the car can have
moved from its original position? (b) What is the speed of the
car after all the cannonballs have been fired?

L � x

2. Two bodies, each made up of weights from a set, are con-
nected by a light cord that passes over a light, frictionless pul-
ley with a diameter of 56.0 mm. The two bodies are at the
same level. Each originally has a mass of 850 g. (a) Locate
their center of mass. (b) Thirty-four grams are transferred
from one body to the other, but the bodies are prevented from
moving. Locate the center of mass. (c) The two bodies are
now released. Describe the motion of the center of mass and
determine its acceleration.

3. A uniform flexible chain of length L, with weight per unit
length �, passes over a small, frictionless peg; see Fig. 7-32.
It is released from a rest position with a length of chain x

x

L

5. A cylindrical storage tank is initially filled with aviation gaso-
line. The tank is then drained through a valve on the bottom.
See Fig. 7-34. (a) As the gasoline is withdrawn, describe
qualitatively the motion of the center of mass of the tank and
its remaining contents. (b) What is the depth x to which the
tank is filled when the center of mass of the tank and its re-
maining contents reaches its lowest point? Express your an-
swer in terms of H, the height of the tank; M, its mass; and m,
the mass of gasoline it can hold.

H

x

6. Find the center of mass of a homogeneous semicircular plate.
Let R be the radius of the circle.

7. A 1400-kg cannon, which fires a 70.0-kg shell with a muzzle
speed of 556 m/s, is set at an elevation angle of 39.0° above
the horizontal. The cannon is mounted on frictionless rails, so
that it recoils freely. (a) What is the speed of the shell with re-
spect to the Earth? (b) At what angle with the ground is the
shell projected? (Hint: The horizontal component of the mo-
mentum of the system remains unchanged as the gun is fired.)

8. A rocket sled with a mass of 2870 kg moves at 252 m/s on a
set of rails. At a certain point, a scoop on the sled dips into a
trough of water located between the tracks and scoops water



COMPUTER PROBLEM

1. A medium-sized rocket has a mass of 4000 kg when empty and
can hold 27,000 kg of fuel and oxidizer. The engine burns fuel
at a rate of 230 kg/s and the speed of the exhaust gas is a con-
stant 2,500 m/s. Assume the rocket is launched vertically and
that there is minimal air friction. Numerically solve for the tra-
jectory of the rocket. Include effects caused by the variation of
free-fall acceleration with altitude,

where y is the altitude of the rocket above the ground and RE is
the radius of the Earth. (a) At what altitude does burn-out oc-
cur? (b) What is the speed of the rocket at this point? (c) What
will be the highest point of the trajectory?

g � (9.8 m/s2) � RE

RE � y �
2

,

into an empty tank on the sled. Determine the speed of the
sled after 917 kg of water have been scooped up.

9. To keep a conveyor belt moving when it transports luggage
requires a greater driving force than for an empty belt. What
additional driving force is needed if the belt moves at a con-
stant speed of 1.5 m/s and the rate at which luggage is placed
on one end of the belt and removed at the other end is 20
kg/s? Assume that the luggage is dropped vertically onto the
belt; persons removing luggage grab hold of it and bring it to
rest relative to themselves before lifting it off the belt.

10. A 5860-kg rocket is set for vertical firing. The exhaust speed
is 1.17 km/s. How much gas must be ejected each second to
supply the thrust needed (a) to overcome the weight of the
rocket and (b) to give the rocket an initial upward acceleration
of 18.3 m/s2? Note that, in contrast to the situation described
in Sample Problem 7-9, gravity is present here as an external
force.

11. Two long barges are floating in the same direction in still wa-
ter, one with a speed of 9.65 km/h and the other with a speed
of 21.2 km/h. While they are passing each other, coal is shov-
eled from the slower to the faster one at a rate of 925 kg/min;
see Fig. 7-35. How much additional force must be provided
by the driving engines of each barge if neither is to change
speed? Assume that the shoveling is always perfectly side-
ways and that the frictional forces between the barges and the
water do not depend on the weight of the barges.

12. A flexible inextensible string of length L is threaded into a
smooth tube, into which it snugly fits. The tube contains a
right-angled bend and is positioned in the vertical plane so

that one arm is vertical and the other horizontal. Initially, at
a length y0 of the string is hanging down in the vertical

arm. The string is released and slides through the tube, so that
at any subsequent time t later, it is moving with a speed dy/dt,
where y(t) is the length of the string that is then hanging 
vertically. (a) Show that in terms of the variable-mass prob-
lem so that the equation of motion has the form
mdv/dt � Fext . (b) Show that the specific equation of motion
is (c) Show that

is a solution to the equation of motion [by substitution into
(b)] and discuss the solution.

y � (y0 /2)(e√g/Lt � e�√g/Lt )

d2y/dt2 � gy/L.

vrel � 0,

t � 0,

158 Chapter 7 / Systems of Particles

Figure 7-35. Problem 11.
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ROTATIONAL
KINEMATICS

Up to this point, we have studied only the transla-

tional motion of objects. We considered both solid rigid bodies (such as a tossed baton) and systems in

which parts of the body are in relative motion (such as a cannon and its ejected cannonball).

The most general motion of a rigid body includes rotational as well as translational motions. In this

chapter we begin to consider this general motion. We start by describing the rotation with appropriate vari-

ables and relating them to one another; this is rotational kinematics and is the subject of this chapter. Relat-

ing rotational motion to the interaction of an object with its environment (rotational dynamics) is discussed

in the next two chapters.

8-1 ROTATIONAL MOTION

Figure 8-1 shows a fixed exercise bicycle. The axle of the
spinning front wheel is fixed in space; let it define the z axis
of our coordinate system. An arbitrary point P on the wheel
is a perpendicular distance r from point A on the z axis. The
line AB is drawn through P from A. The motion of point P
traces out the arc of a circle as the wheel turns. It does not

necessarily do so at constant speed, because the rider might
be changing the rate at which she is pedaling.

The motion of the wheel is an example of pure rotation
of a rigid body; which we define as follows:

A rigid body moves in pure rotation if every point of the
body (such as P in Fig. 8-1) moves in a circular path.
The centers of these circles must lie on a common

Figure 8-1. (a) The wheel of a fixed exercise bicycle is an example of the pure
rotation of a rigid body. (b) The coordinates used to describe the rotation of the
wheel. The axis of rotation, which is perpendicular to the xy plane, is the z axis. An
arbitrary point P at a distance r from the axis A moves in a circle of radius r.
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straight line called the axis of rotation (the z axis of
Fig. 8-1).

We can also characterize the motion of the wheel by the
reference line AB in Fig. 8-1. As the wheel rotates, the line
AB moves through a certain angle in the xy plane. Another
way to define a pure rotation is the following:

A rigid body moves in pure rotation if a reference line
perpendicular to the axis (such as AB in Fig. 8-1)
moves through the same angle in a given time interval
as any other reference line perpendicular to the axis in
the body.

In the case of an ordinary bicycle wheel, the line AB might
represent one of the (assumed radial) spokes of the wheel.
The above definition thus means that, for a wheel in pure
rotation, if one spoke turns through a certain angle �� in a
time interval �t, then any other spoke must also turn
through �� during that same interval.

The general motion of a rigid object will include both ro-
tational and translational components, as, for example, in the
case of a wheel on a moving bicycle. A point P on such a
wheel moves in a circle according to an observer in the same
reference frame as the wheel (the bicycle rider, for instance),
but another observer fixed to the ground would describe the
motion differently. In even more complex cases, such as a
wobbling football in flight, we may have a combination of
translational motion, rotational motion about an axis, and a
variation in the direction of the axis. In general, the three-di-
mensional description of a rigid body requires six coordi-
nates: three to locate the center of mass, two angles (such as
latitude and longitude) to orient the axis of rotation, and one
angle to describe rotations about the axis. Figure 8-2 shows a
two-dimensional arbitrary rigid body undergoing both rota-
tional and translational motion. In this case only three coor-
dinates are needed: two for the center of mass and one for the
angular coordinate of a reference line in the body.

In this chapter only pure rotational motion is consid-
ered. (In the next chapter the more complicated case of
combined rotation and translation is discussed.) We con-
sider only rigid objects, in which there is no relative motion
of the parts as the object rotates; a liquid in a spinning con-
tainer, for instance, is excluded.

8-2 THE ROTATIONAL VARIABLES

Figure 8-3a shows a body of arbitrary shape rotating about
the z axis. We can tell exactly where the entire rotating
body is in our reference frame if we know the location of
any single point P of the body in this frame. Thus, for the
kinematics of this problem, we need consider only the
(two-dimensional) motion of a point in a circle of radius r
equal to the perpendicular distance from P to the point A on
the z axis. Figure 8-3b shows a slice through the body par-
allel to the xy plane that includes the point P.

The angle � in Fig. 8-3b is the angular position of the
reference line AP with respect to the x� axis. We arbitrarily

160 Chapter 8 / Rotational Kinematics

O

A

P

P

A

AP

y

x

Reference
line

Figure 8-2. An arbitrary rigid body
in both rotational and translational mo-
tion. In this special two-dimensional
case, the translational motion is confined
to the xy plane. The dashed line shows
the path in the xy plane corresponding to
the translational motion of the axis of ro-
tation, which is parallel to the z axis
through point A. The rotational motion is
indicated by the line AP.

Figure 8-3. (a) An arbitrary rigid body rotating about the z
axis. (b) A cross-sectional slice through the body. The x� and y�
axes are parallel to the x and y axes, respectively, but pass through
point A. The reference line AP, which connects a point P of the
body to the axis, is instantaneously located at an angle � with re-
spect to the x� axis. The point P moves through an arc length s as
the line AP rotates through the angle �.
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choose the positive sense of the rotation to be counterclock-
wise, so that (in Fig. 8-3b) � increases for counterclock-
wise rotation and decreases for clockwise rotation, accord-
ing to an observer who is farther along the positive z axis
than the rotating object.

As the body rotates, the point P moves through an arc of
length s, as shown in Fig. 8-3b. The arc length and the ra-
dius (the distance from P to the axis of rotation) determine
the angle through which the reference line rotates:

(8-1)

Angles defined in this way are given in units of radians
(rad). The angle �, being the ratio of two lengths, is a pure
number and has no dimensions. It does, however, have units
(radians, in this case). When the arc length is numerically
equal to r, then � � r/r � 1 radian. We can often treat radi-
ans as “unity” in equations, introducing the unit when nec-
essary. Certainly not all equations that are the ratio of two
lengths (like Eq. 8-1) will be measures of angles and re-
quire radian measure!

Because the circumference of a circle of radius r is 2�r,
it follows from Eq. 8-1 that a particle that moves in an arc
length of one circumference must trace out an angle of 2�
rad. Thus

1 revolution � 2� radians � 360°,
or

1 radian � 57.3° � 0.159 revolution.

Often we can express angles and associated rotational
quantities in units based on either radians, degrees, or revo-
lutions. However, when an equation mixes angular and lin-
ear quantities, such as Eq. 8-1, the angular variables must
always be expressed in radians.

Let the body of Fig. 8-3b rotate counterclockwise. At
time t1 the angular position of the line AP is �1 , and at a
later time t2 its angular position is � 2 . This is shown in Fig.
8-4, which gives the positions of P and of the reference line
at these times; the outline of the body itself has been omit-
ted for simplicity.

The angular displacement of P is � 2 � �1 � �� dur-
ing the time interval We define the average
angular velocity �av of particle P in this time interval as

(8-2)

The instantaneous angular velocity � is the limit ap-
proached by this ratio as �t approaches zero:

or

(8-3)

Angular velocity can be positive or negative, according
to whether � is increasing or decreasing. (Later we will
show that � is a vector quantity, which can have positive
or negative components relative to a particular axis, just
like the translational velocity As in the case of transla-vB.)

� �
d�

dt
.

� � lim
�t :0

��

�t

�av �
�2 � �1

t2 � t1
�

��

�t
.

t2 � t1 � �t.

� � s/r.

tional motion, when we use the term “angular velocity,”
we mean the instantaneous angular velocity. When we re-
fer to angular speed, we mean the magnitude of the angu-
lar velocity.

Angular velocity has the dimensions of inverse time
(T�1); its units may be radians per second (rad/s) or revolu-
tions per second (rev/s).

For a rigid body in pure rotation, the angular velocity is
the same for every point of the body. All lines like AP in
Fig. 8-3, which are fixed in the body and run perpendicular
to the axis of rotation to any points of the body, rotate at the
same angular velocity.

If the angular velocity of P is not constant, then the
point has an angular acceleration. Let �1 and � 2 be the in-
stantaneous angular velocities at the times t1 and t2 , respec-
tively; then the average angular acceleration 	av of the
point P is defined as

(8-4)

The instantaneous angular acceleration is the limit of
this ratio as �t approaches zero:

or

(8-5)

Angular acceleration can be positive or negative, depending
on whether the angular velocity is increasing or decreasing.
When we refer to “angular acceleration,” we mean the in-
stantaneous angular acceleration. Its dimensions are inverse
time squared (T�2), and its units might be rad/s2 or rev/s2.
Because � is the same for each point of a rigid body, it fol-
lows from Eq. 8-5 that 	 must also be the same for each
point and so 	 is, like �, characteristic of the body as a
whole.

Instead of the rotation of a rigid body, we could have
considered the motion of a single particle in a circular path.
That is, P in Fig. 8-4 can represent a particle of mass m,
constrained to move in a circle of radius r (perhaps held by

	 �
d�

dt
.

	 � lim
�t:0

��

�t

	av �
�2 � �1

t2 � t1
�

��

�t
.
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Figure 8-4. The reference line AP of Fig. 8-3b is at the angu-
lar coordinate �1 at time t1 and at the angular coordinate �2 at
time t2 . In the time interval the net angular displace-
ment is �� � �2 � �1 .

�t � t2 � t1 ,

A

y'

x'

∆

 2

 1

r

r
P at t1

P at t2



a rigid massless rod of length r pivoted on the z axis). All
the results derived in this section are valid whether we re-
gard P as a mathematical point or as a physical particle; we
could, for example, refer to the angular velocity or angular
acceleration of the particle P as it rotates about the z axis.
Later, we shall find it useful to regard the rotating rigid
body of Fig. 8-3 as a collection of particles, each of which
is rotating about the z axis with the same angular velocity
and angular acceleration.

Sample Problem 8-1. A fan blade is initially rotating
an angular speed of 48.6 rpm (revolutions per minute). It slows
down and eventually comes to rest in a time of 32 seconds after
turning through a total of 8.8 revolutions. Find (a) the average an-
gular velocity and (b) the average angular acceleration of the fan
blade.

Solution (a) As the fan comes to rest, the net displacement �� is
8.8 revolutions in a time The average angular velocity
is found from Eq. 8-2:

(b) The initial angular velocity is 
The final angular velocity �f is 0. The average angular accelera-
tion is given by Eq. 8-4:

In this problem it is quite acceptable to express the angular quanti-
ties in revolutions. However, as we shall see, in equations that mix
angular and linear variables (such as Eq. 8-1), the angular vari-
ables must always be expressed in radians.

The positive angular velocity and negative angular acceleration
suggest, in analogy with translational kinematics, that the fan is
slowing down. In the case of translational kinematics, it was neces-
sary to define a direction for the coordinate system to give meaning
to positive and negative quantities. In the next section we will show
that rotational variables behave like vectors and that likewise defin-
ing a coordinate system allows us to associate positive and negative
values with directions of rotation in the coordinate system.

Sample Problem 8-2. A wheel with a fixed axle (such
as on the exercise bicycle of Fig. 8-1) is rotating so that the instan-
taneous angular velocity of a reference line painted along a radius
is given as a function of the time by where

rad/s2 and rad/s3. (a) If the reference line is ini-
tially at � � 0 when find its angular position when

(b) What is the instantaneous angular acceleration of
the reference line at 

Solution (a) To obtain � from �, we must carry out an integral.
Writing Eq. 8-3 as we can integrate to find

or

where C is a constant of integration that must be determined from
the initial condition. In order to have � � 0 when we mustt � 0,

� � � (At 
 Bt 2) dt � 1
2 At 2 
 1

3 Bt 3 
 C,

� � � d� � � � dt,
d� � � dt,

t � 0.50 s?
t � 2.0 s.

t � 0,
B � 8.7A � 6.2

� � At 
 Bt 2,

	av �
��

�t
�

0 � 0.81 rev/s

32 s
� �0.025 rev/s2.

� i � 48.6 rev/min � 0.81 rev/s.

�av �
��

�t
�

8.8 rev

32 s
� 0.28 rev/s.

�t � 32 s.

have Evaluating the resulting expression at we
obtain

The wheel rotates through 35.6 radians or 5.7 revolutions in 2.0 s.
(b) To obtain the angular acceleration from the angular velocity,
we must find the derivative as specified by Eq. 8-5:

Evaluating this expression at gives 	 � 6.2 rad/s2 

2(8.7 rad/s3)(0.50 s) � 14.9 rad/s2.

8-3 ROTATIONAL QUANTITIES
AS VECTORS

When we deal with displacement, velocity, and acceleration
in translational motion, whether in one dimension or more
than one, our first step is always to set up a coordinate sys-
tem and to specify the positive direction for each of the
axes. Only in this way can we define what it means for a
displacement, velocity, or acceleration component to be
positive or negative. This step is necessary because these
quantities are represented by vectors. Other quantities, such
as mass or temperature, carry no directional information;
they are scalars and their values are independent of any
choice of coordinate system.

So now we must ask whether the variables of angular
kinematics (angular displacement, angular velocity, angular
acceleration) also behave like vectors. If so, then we must
specify a coordinate system and define the variables with
respect to that system. To be represented as a vector, a
physical quantity must not only have magnitude and direc-
tion; it must also obey the laws of vector addition. Only
through experiment can we learn whether the angular vari-
ables obey these laws.

Let us begin with the angular displacement ��, which
specifies the angle through which a body rotates. One 
particular law that vectors must obey is the commutative
addition law: for two arbitrary vectors, we must have

that is, the order of the vectors does not
affect their sum. Let us examine this law for angular dis-
placements. We shall apply two successive rotations ��1

and �� 2 to an object, such as the book illustrated in Fig. 8-
5, which initially lies in the yz plane. As shown in Fig. 8-5a,
we first rotate by ��1 , a 90° turn about the x axis, followed
by �� 2, a 90° turn about the z axis. In Fig. 8-5b we show the
situation if the order of the two rotations is reversed: first
�� 2 (90° about the z axis) and then ��1 (90° about 
the x axis). As you can see, the final positions of the book 
are very different. Thus we conclude in this case that 
��1 
 �� 2 � �� 2 
 ��1 , and so finite angular displace-
ments cannot be represented as vector quantities.

The situation changes as the angular displacements are
made smaller. Figures 8-5c, d show the effect of successive

A
B


 B
B

� B
B


 A
B

;

t � 0.50 s

	 �
d�

dt
�

d

dt
 (At 
 Bt 2) � A 
 2Bt.

� � 1
2(6.2 rad/s2)(2.0 s)2 
 1

3(8.7 rad/s3)(2.0 s)3 � 35.6 rad.

t � 2.0 s,C � 0.
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20° rotations, and now the two final positions of the book
are more nearly the same. The smaller we make the rotation
angle, the more similar the final positions become. If the an-
gular displacements are made infinitesimal, the positions are
identical and the order of the rotations no longer affects the
final outcome; that is, Hence in-
finitesimal angular rotations can be represented as vectors.

Quantities defined in terms of infinitesimal angular dis-
placements may also be vectors. For example, the angular
velocity is Since is a vector and dt is a
scalar, the quotient is a vector. Angular velocity can�B

d�
B

�B � d�
B

/dt.

d�1 
 d�2 � d�2 
 d�1 .

8-3 Rotational Quantities as Vectors 163

Figure 8-5. (a) The book is given two successive rotations:
about the x axis and about the z axis. (b) If

the order of the rotations is reversed, the final position of the book
is different. (c) Now the book is rotated as in (a) but by two
smaller angles: about the x axis and about
the z axis. (d) If the order of the rotations in (c) is reversed, the fi-
nal position more closely resembles that of (c).
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Figure 8-6. The angular velocity vector of (a) a rotating rigid
body and (b) a rotating particle, both taken about a fixed axis. (c)
The right-hand rule determines the direction of the angular veloc-
ity vector.

therefore be represented as a vector. In Fig. 8-6a, for exam-
ple, we represent the angular velocity of the rotating
rigid body by an arrow drawn along the axis of rotation; in
Fig. 8-6b we represent the rotation of a particle P about a
fixed axis in just the same way. The length of the arrow is
made proportional to the magnitude of the angular velocity.
The sense of the rotation determines the direction in which
the arrow points along the axis. By convention, if the fin-
gers of the right hand curl around the axis in the direction
of rotation of the body, the extended thumb points along the
direction of the angular velocity vector (Fig 8-6c). For the
wheel of Fig. 8-1, therefore, the angular velocity vector

�B



points perpendicularly into the page (in the negative z di-
rection) if the rider is pedaling forward. In Fig. 8-3b, is
perpendicular to the page pointing up out of the page, cor-
responding to the counterclockwise rotation. Note that the
object does not move in the direction of the angular veloc-
ity vector. The vector represents the angular velocity of the
rotational motion taking place in a plane perpendicular to it.

Angular acceleration is also a vector quantity. This fol-
lows from the definition in which is a vec-
tor and dt a scalar. Later we shall encounter other rotational
quantities that are vectors, such as torque and angular mo-
mentum. The use of the right-hand rule to define the direc-
tion of the vectors and leads to a consistent vec-
tor formalism for all rotational quantities.

8-4 ROTATION WITH CONSTANT
ANGULAR ACCELERATION

For translational motion of a particle or a rigid body along
a fixed direction, such as the x axis, we have seen (in Chap-
ter 2) that the simplest type of motion is that in which the
acceleration ax is zero. The next simplest type corresponds
to a constant (other than zero); for this motion we de-
rived Eqs. 2-26 and 2-28, which describe the velocity and
the position as functions of the time.

For the rotational motion of a particle or a rigid body
around a fixed axis (which we take to be the z axis), the
simplest type of motion is that in which the angular acceler-
ation 	z is zero (such as uniform circular motion). The next
simplest type of motion, in which 	z � a constant (other
than zero), corresponds exactly to translational motion with
ax � a constant (other than zero). As before, we can derive
equations that give the angular velocity � and angular dis-
placement � as functions of the time t. These angular equa-
tions can be derived, using methods we used to derive the
translational equations, or they can simply be written down,
by substituting angular quantities for the corresponding
quantities in the translational equations.

We first derive the expression for �z as a function of t.
We begin by rewriting Eq. 8-5 as

We now integrate on the left from �0z (the angular velocity
at time to �z (the angular velocity at time t), and on
the right from time 0 to time t:

where the last step can be taken only when the angular ac-
celeration 	z is constant. Carrying out the integration, we
obtain

or
(8-6)�z � �0z 
 	zt.

�z � �0z � 	zt

��z

�0z

d�z � �t

0
	zdt � 	z �t

0
dt,

t � 0)

d�z � 	zdt.

ax �

�Bd�
B

, �B,

d�B�B � d�B/dt,

�B
This is the rotational analogue of Eq. 2-26,
Note that we could obtain the rotational expression by sub-
stituting �z for vx and 	z for ax in the translational expres-
sion.

Setting in Eq. 8-6 and integrating again, we
obtain an expression for the angular displacement in the
case of constant angular acceleration:

or
(8-7)

which is similar to the corresponding result for translational
motion with constant acceleration, Eq. 2-28, x � x0 


The positive sense of the angular quantities �z and 	z is
determined by the direction in which � is increasing. From
Eq. 8-3 we see that �z is positive if � is increasing with time
(that is, the object is rotating in a counterclockwise direc-
tion). Similarly, from Eq. 8-5, we see that 	z is positive if �z

is increasing with time, even if �z is negative and becoming
less negative. These are similar to the corresponding sign
conventions for the linear quantities. You can see from Fig.
8-3b that this association of positive �z with increasing � is
consistent with the use of the right-hand rule: if the fingers
of the right hand curl in the direction of increasing �, then
the thumb is pointing out of the page— that is, in the posi-
tive z direction— indicating that �z is positive.

The rotation of a particle (or a rigid body) about a fixed
axis has a formal correspondence to the translational mo-
tion of a particle (or a rigid body) along a fixed direction.
The kinematical variables are �, �z , and 	z in the first case
and x, vx , and ax in the second. These quantities correspond
in pairs: � to x, �z to vx , and 	z to ax . Note that the angular
quantities differ dimensionally from the corresponding lin-
ear quantities by a length factor. Note, too, that all six quan-
tities may be treated as components of one-dimensional
vectors in this special case. For example, a particle at any
instant can be moving in one direction or the other along its
straight-line path, corresponding to a positive or a negative
value for vx ; similarly, a particle at any instant can be rotat-
ing in one direction or another about its fixed axis, corre-
sponding to a positive or a negative value for �z .

When, in translational motion, we remove the restric-
tion that the motion be along a straight line and consider
the general case of motion in three dimensions along a
curved path, the components x, vx , and ax must be replaced
by the vectors and In Section 8-5, we see to what
extent the rotational kinematic variables reveal themselves
as vectors when we remove the restriction of a fixed axis of
rotation.

Sample Problem 8-3. Starting from rest at time 
a grindstone has a constant angular acceleration of 3.2 rad/s2. At

the reference line AB in Fig. 8-7 is horizontal. Find (a) thet � 0

t � 0,

aB.vB,rB,

v0xt 
 1
2axt 2.

� � �0 
 �0zt 
 1
2	zt 2,

��

�0

d� � �t

0
 (�0z 
 	zt) dt,

�z � d� /dt

vx � v0x 
 axt.
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angular displacement of the line AB (and hence of the grindstone)
and (b) the angular speed of the grindstone 2.7 s later.

Solution (a) We chose a coordinate system so that is along the
positive z direction (so the grindstone and the line AB rotate in the
xy plane).

At t � 0, we have and rad/s2.
Therefore, after 2.7 s, Eq. 8-7 gives

(b) From Eq. 8-6,

Sample Problem 8-4. Suppose the power driving the
grindstone of Sample Problem 8-3 is turned off when it is spin-
ning with an angular speed of 8.6 rad/s. A small frictional force on
the shaft causes a constant angular deceleration, and the grind-
stone eventually comes to rest in a time of 192 s. Find (a) the an-
gular acceleration and (b) the total angle turned through during the
slowing down.

Solution (a) Given and we
find 	z from Eq. 8-6:

Here the negative value of 	z shows that �z (which is positive) is
decreasing in magnitude.
(b) From Eq. 8-7 we have

8-5 RELATIONSHIPS BETWEEN
LINEAR AND ANGULAR VARIABLES

In Section 4-5 we discussed the linear velocity and acceler-
ation of a particle moving in a circle. When a rigid body ro-
tates about a fixed axis, every particle in the body moves in
a circle. Hence we can describe the motion of such a parti-
cle either in linear variables or in angular variables. The re-

� 822 rad � 131 rev. 
� 0 
 (8.6 rad/s)(192 s) 
 1

2(�0.045 rad/s2)(192 s)2
� � �0 
 �0zt 
 1

2	z t 2

	z �
�z � �0z

t
�

0 � 8.6 rad/s

192 s
� �0.045 rad/s2.

t � 192 s,�z � 0,�0z � 8.6 rad/s,

� 8.6 rad/s � 1.4 rev/s. 
�z � �0z 
 	zt � 0 
 (3.2 rad/s2)(2.7 s)

� 11.7 rad � 1.9 rev.
� 0 
 (0)(2.7 s) 
 1

2(3.2 rad/s2)(2.7 s)2

� � �0 
 �0zt 
 1
2	z t 2

	z � 3.2�0z � 0,�0 � 0,

�B

lationship between the linear and angular variables enables
us to pass back and forth from one description to another
and is very useful.

Consider a particle at P in the rigid body, a perpendicu-
lar distance r from the axis through A, as in Fig. 8-3a. This
particle moves in a circle of radius r. The angular position
� of the reference line AP is measured with respect to the x
or x� axis, as in Fig. 8-3b. The particle moves through a dis-
tance s along the arc when the body rotates through an an-
gle �, such that

(8-8)

where � is in radians.
Differentiating both sides of this equation with respect

to the time, and noting that r is constant, we obtain

However, ds/dt is the (tangential) linear speed vT of the par-
ticle at P and d�/dt is the angular speed � of the rotating
body, so that

(8-9)

This is a relation between the magnitudes of the tangential
linear velocity and the angular velocity; the linear speed of
a particle in circular motion is the product of the angular
speed and the distance r of the particle from the axis of ro-
tation.

Differentiating Eq. 8-9 with respect to the time, we have

However, dvT/dt is the magnitude of the tangential compo-
nent aT of the acceleration of the particle (see Section 8-6),
and d�/dt is the magnitude of the angular acceleration of
the rotating body, so that

(8-10)

Hence the magnitude of the tangential component of the
linear acceleration of a particle in circular motion is the
product of the magnitude of the angular acceleration and
the distance r of the particle from the axis of rotation.

We have seen in Section 4-5 that the radial (or cen-
tripetal) component aR of the acceleration is for a par-
ticle moving in a circle. This can be expressed in terms of
angular speed by use of Eq. 8-9. We have

(8-11)

The resultant acceleration of point P is shown in Fig. 8-8.
Equations 8-8 through 8-11 enable us to describe the

motion of one point on a rigid body rotating about a fixed
axis either in angular variables or in linear variables. We
might ask why we need the angular variables when we are
already familiar with the equivalent linear variables. The
answer is that the angular description offers a distinct 

aB

aR �
vT

2

r
� �2r.

vT
2 /r

aT � 	r.

dvT

dt
�

d�

dt
r.

vT � �r.

ds

dt
�

d�

dt
r.

s � �r,
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z B

Figure 8-7. Sample Problem 8-3. The reference line AB is
horizontal at and rotates with the grindstone in the xy plane.t � 0



advantage over the linear description when various points
on the same rotating body must be considered. On a rotat-
ing body, points that are at different distances from the axis
do not have the same linear displacement, speed, or accel-
eration, but all points on a rigid body rotating about a fixed
axis do have the same angular displacement, speed, or ac-
celeration at any instant. By the use of angular variables we
can describe the motion of the entire body in a simple way.

Figure 8-9 shows an interesting example of the relation
between linear and angular variables. When a tall chimney
is toppled by an explosive charge at its base, it will often
break as it falls, the rupture starting on the downward side
of the falling chimney.

Before rupture, the chimney is a rigid body, rotating
about an axis near its base with a certain angular accelera-
tion 	. According to Eq. 8-10, the top of the chimney has a

tangential acceleration aT given by 	L, where L is the
length of the chimney. The vertical component of aT can
easily exceed g, the acceleration of free fall. That is, the top
of the chimney is falling downward with a vertical accelera-
tion greater than that of a freely falling brick.

This can happen only as long as the chimney remains a
single rigid body. Put simply, the bottom part of the chim-
ney, acting through the mortar that holds the bricks to-
gether, must “pull down” on the top part of the chimney to
cause it to fall so fast. This shearing force is often more
than the mortar can tolerate, and the chimney breaks, The
chimney has now become two rigid bodies, its top part be-
ing in free fall and reaching the ground later than it would
if the chimney had not broken.

Sample Problem 8-5. If the radius of the grindstone of
Sample Problem 8-3 is 0.24 m, calculate (a) the linear or tangen-
tial speed of a point on the rim, (b) the tangential acceleration of a
point on the rim, and (c) the radial acceleration of a point on the
rim, at the end of 2.7 s. (d) Repeat for a point halfway in from the
rim— that is, at 

Solution We have � � 8.6 rad/s after 2.7 s, and
r � 0.24 m. Then,
(a) 
(b) 
(c) 
(d) The angular variables are the same for this point at 
m as for a point on the rim. That is, once again 	 � 3.2 rad/s2 and
� � 8.6 rad/s. Using Eqs. 8-9 to 8-11, with m, we ob-
tain for this point

These are each half of their respective values for the point on the
rim. The linear variables scale in proportion to the radius from the
axis of rotation.

Note once again that, in equations that involve only angular
variables, you may express the angular quantities in any angular
unit (degrees, radians, revolutions), as long as you do so consis-
tently. However, in equations in which angular and linear quanti-
ties are mixed, such as Eqs. 8-8 to 8-11, you must express the an-
gular quantities in radians, as we have done in this sample
problem. We must do so because Eqs. 8-9 to 8-11 were based on
Eq. 8-8, which in effect defines radian measure.

Sample Problem 8.6. A pulsar is a rapidly rotating
neutron star, the result of the gravitational collapse of an ordinary
star that has used up its fuel supply. Pulsars emit light or other
electromagnetic radiation in a narrow beam, which can sweep by
the Earth once in each revolution. A certain pulsar has a rotational
period of T � 0.033 s and a radius of r � 15 km. What is the tan-
gential speed of a point on its equator?

Solution The angular speed is

and the tangential speed is

vT � �r � (190 rad/s)(15 km) � 2900 km/s.

� �
2� radians

T
�

2� rad

0.033 s
� 190 rad/s

vT � 1.0 m/s, aT � 0.38 m/s2, aR � 8.9 m/s2.

r � 0.12

r � 0.12
aR � �2r � (8.6 rad/s)2(0.24 m) � 18 m/s2.
aT � 	r � (3.2 rad/s2)(0.24 m) � 0.77 m/s2,
vT � �r � (8.6 rad/s)(0.24 m) � 2.1 m/s,

	 � 3.2 rad/s2,

r � 0.12 m.
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Figure 8-8. The radial and tangential components of the ac-
celeration of a particle at point P of the rigid body rotating about
the z axis.

Figure 8-9. A falling chimney often is not strong enough to
provide the tangential acceleration at large radius that is necessary
if the entire object is to rotate like a rigid body with constant an-
gular acceleration. See “More on the Falling Chimney,” by A. A.
Bartlett, The Physics Teacher, September 1976, p. 351, for an ac-
count of this phenomenon.



It is interesting to note that this is about 1% of the speed of light
and also nearly 4 orders of magnitude larger than the tangential
speed of a point at the Earth’s equator.

8-6 VECTOR RELATIONSHIPS
BETWEEN LINEAR AND ANGULAR
VARIABLES (Optional)

In the previous section we developed relationships between
the angular velocity �, tangential velocity vT , angular ac-
celeration 	, tangential acceleration aT , and radial (or cen-
tripetal) acceleration aR . All of these quantities are repre-
sented by vectors, and we now examine their relationships
in vector form.

We have often found it helpful to express vectors in
terms of their components by using unit vectors. In rectan-
gular (Cartesian) coordinates, the unit vectors are 
which respectively identify the x, y, z directions (see Ap-
pendix H). In analyzing rotational motion, it is more useful
to use new unit vectors that identify the radial and tangen-
tial directions. We assume that the rotation is described by
Fig. 8-3, and we focus our attention on an arbitrary particle
of the rotating body. This particle, at point P, moves in a
circular path parallel to the xy plane; that is, its tangential
velocity has only x and y components. (Its angular velocity,
as we have seen, points in the z direction.)

Figure 8-10a shows the rotating particle and the radial
and tangential unit vectors, which we call and The
radial unit vector points in the direction of increasing
r— that is, radially outward from the center of the circle.
The tangential unit vector points in the direction of in-
creasing �— tangent to the circle and in the counterclock-
wise direction. Like and the unit vectors and are
dimensionless, have unit length, and are perpendicular to
one another. Unlike and the directions of and û�ûrĵ,î

û�ûrĵ,î

û�

ûr

û� .ûr

k̂,ĵ,î,

change as the particle moves around the circle. When we
take derivatives of expressions involving and we
must take this change of direction into account. The unit
vectors and on the other hand, can be treated as con-
stants for differentiation.

Using Fig. 8-10b we can express and in terms of 
and 

(8-12a)

(8-12b)

The velocity of the particle has only a tangential compo-
nent (no radial component), and can thus be written in vec-
tor form as its magnitude times the unit vector in the tan-
gential direction:

(8-13)

Because the rotating object may in general have an angular
acceleration, the tangential velocity may change in magni-
tude as well as direction.

The acceleration of the particle can be found in the
usual way as 

(8-14)

In the first term, the derivative is just the tangential
acceleration aT . To evaluate the second term, we must find
an expression for the derivative of the unit vector Using
Eq. 8-12b we have

(8-15)

Now where � �
(Eq. 8-3). Similarly, sin �. Mak-

ing these substitutions in Eq. 8-15 and removing common
factors, we obtain

(8-16)

where we have used Eq. 8-12a in the last step. We can now
write Eq. 8-14 as

(8-17)

The first term in Eq. 8-17 is the tangential acceleration
a vector with magnitude aT pointing in the

tangential direction (the direction of increasing �). We can
write the second term in a more instructive form using Eq.
8-11: The quantity

is, according to Eq. 8-11, the radial (or centripetal) ac-
celeration aR . The radial acceleration can be represented in
vector form as the minus sign indicating that
this vector points in the direction of decreasing r— that is,
toward the center of the circle. In terms of and Eq.
8-17 is

(8-18)

These three acceleration vectors are shown in Fig. 8-8.

aB � aBT 
 aBR .

aBR ,aBT

aBR � �aRûr ,

vT
2 /r

�vT�ûr � �vT(vT/r) ûr � �(vT
2 /r) ûr .

aBT � aT û� ,

aB � aT û� � vT�ûr .

dû�

dt
� ��[(cos �)î 
 (sin �)ĵ] � ��ûr ,

d(cos �)/dt � ��d�/dt
d(sin �)/dt � (cos �)d�/dt � � cos �,

dû�

dt
� �

d(sin �)

dt
î 


d(cos �)

dt
ĵ.

û� .

dvT/dt
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d vB

dt
�

d(vT û�)

dt
�

dvT

dt
û� 
 vT

dû�

dt
.

d vB/dt:
aB

vB � vT û� .

û� � (�sin �)î 
 (cos �)ĵ.

ûr � (cos �)î 
 (sin �)ĵ,
ĵ:

îû�ûr

ĵ,î

û� ,ûr
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Figure 8-10. (a) A particle moving counterclockwise in a
circle or radius r. (b) The unit vectors and and their relation
to and ĵ.î
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The Vectors and 

The spatial relationship between the angular vectors and
and the linear vectors and can be written in a com-

pact form using the vector cross product, which is defined
and discussed in Appendix H. The vector cross product of
two vectors and is another vector which we write
as This vector has two properties that are
important for our discussion: (1) The magnitude of is
AB sin �, where A is the magnitude of B is the magni-
tude of and � is the angle between and (2) The vector

is perpendicular to the plane formed by and in a direc-
tion determined by the right-hand rule (see Appendix H).

Figure 8-11a shows the rotating particle and the vectors
and representing its angular and linear velocities. The

vector locates the particle with respect to the origin of an
xyz coordinate system. As shown in the figure, the particle
moves in a circle of radius sin �.

Let’s consider the vector cross product Accord-
ing to the definition of the vector cross product, the magni-
tude of this cross product is �R sin � � �r, which equals
the magnitude of the tangential velocity vT , according to
Eq. 8-9. Figure 8-11a shows that the direction of this cross
product is the same as the direction of if we rotate the
fingers of the right hand from to through the angle �,
the thumb points in the direction of We have thus shown
that the magnitude and direction of the cross product

are identical to the magnitude and direction of 
and we can therefore write

(8-19)

This is the vector form of Eq. 8-9.

vB � �B  R
B

.

vB,�B  R
B

vB.
R
B

�B
vB:

�B  R
B

.
r � R

R
B
vB�B
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B
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 B
B

.
C
B

,B
B

A
B

aBvB�B
�B

aB�B We now evaluate the acceleration by taking the deriva-
tive of Eq. 8-19. In doing so we must be careful to preserve
the order of the vectors and because the order of the
vectors in the cross product is important 

Using the usual method for taking the derivative
of a product, we have

(8-20)

Note that in both terms on the right side of Eq. 8-20,
comes before , so we have correctly preserved the order
of and .

Consider the first term on the right of Eq. 8-20. Just like
the analogous linear equation the equation

(Eq. 8-5) holds for any component of and 
and thus also for the vectors themselves: In the
last term of Eq. 8-20, is equal to the velocity of the
particle. Making these substitutions in Eq. 8-20, we have

(8-21)

According to the rule for finding the magnitude of a
cross product, the magnitude of the first term is
	R sin � � 	r, which is just the tangential acceleration aT

according to Eq. 8-10. To find the direction of this vector
product, we note that the expression shows that

must have the same direction as With a fixed axis of
rotation, which we have assumed, always points in the
same direction (along the axis of rotation), so any change in

must also point along the axis. Thus has the same di-
rection as —namely, along the z axis as shown in Fig. 8-
11b. The right-hand rule for cross products shows that

is in the direction of the tangent to the circle at the
location of P. Because has the same magnitude and
direction as the tangential acceleration we must have

The magnitude of the vector cross product in the second
term of Eq. 8-21 is �vT , because the angle be-
tween these two vectors is 90° as shown in Fig. 8-11a. Us-
ing Eq. 8-9 we can write this as which is the ra-
dial acceleration (Eq. 8-11). The right-hand rule for vector
products (Fig. 8-11a) shows that points radially in-
ward at P. The product has the magnitude and di-
rection of the radial acceleration and so 
Making these two substitutions in Eq. 8-21 
and gives us again Eq. 8-18.

Equations 8-19 and 8-21 then give us the vector rela-
tionships between the angular and linear variables. The
beauty of these compact expressions is that, like all vector
equations, they contain information about the magnitudes
and the directions of the relationships.
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Figure 8-11. (a) A particle at P in the rotating rigid body of
Fig. 8-3a is located at R with respect to the origin O. The particle
has angular velocity (directed along the z axis) and tangential
velocity (b) The particle at P has angular acceleration along
the z axis. The particle also has tangential acceleration and ra-
dial acceleration aBR .
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MULTIPLE CHOICE

8-1 Rotational Motion
1. You have a small globe, which is mounted so that it can spin

on the polar axis and can be spun about a horizontal axis (so
that the south pole can be on top). Give the globe a quick spin
about the polar axis, and then, before it stops, give it a spin
about the horizontal axis. Are there any points on the globe
that are at rest?

(A) There are two points, fixed on the globe, that are at
rest.

(B) There are two points that are instantaneously at rest,
but these two points move around the globe in an ap-
parently random fashion.

(C) At some times two points are instantaneously at rest,
but at other times there are no points at rest.

(D) There are no points at rest until the globe stops spin-
ning.

2. A bicycle wheel is rolling on a level surface. At any given in-
stant in time the wheel.

(A) is undergoing pure rotational motion.
(B) is undergoing pure translational motion.
(C) is undergoing both translational and rotational motion.
(D) is undergoing motion that can be described by the an-

swers (A) or (C).

3. Consider rigid-body physics in a higher or lower dimension
than three. How many coordinates are required to specify the
location and orientation of a rigid body

(a) if the space is two-dimensional?

(A) 2 (B) 3 (C) 4 (D) 5

(b) if the space is one-dimensional?

(A) 0 (B) 1 (C) 2 (D) 3

(c) if the space is four-dimensional?

(A) 7 (B) 8 (C) 9 (D) 10

8-2 The Rotational Variables

8-3 Rotational Quantities as Vectors
4. Which way does point for the Earth?

(A) Parallel to the NS axis and pointing north.
(B) Parallel to the NS axis and pointing south.
(C) Parallel to the NS axis and pointing east.
(D) Parallel to the NS axis and pointing west.

8-4 Rotation with Constant Angular Acceleration
5. Two different disks of radii are free to spin separately

about an axis through the center and perpendicular to the
plane of each disk. Both disks start from rest, and both un-
dergo the same angular acceleration for the same length of
time. Which disk will have the larger final angular velocity?

(A) Disk 1
(B) Disk 2
(C) The disks will have the same angular velocity.
(D) The answer depends on the mass of the disks.

r1 � r2

�B

8-5 Relationships between Linear and Angular Variables
6. A disk is uniformly accelerated from rest with angular accel-

eration 	. The magnitude of the linear acceleration of a point
on the rim of the disk

(a) grows with the time t as

(A) t (B) t2 (C) t3 (D) t4

for and

(b) grows as

(A) t (B) t2 (C) t3 (D) t4

for 

8-6 Vector Relationships between Linear and Angular
Variables

7. A small bug of mass m is stationary on a horizontal turntable
rotating with angular velocity The bug’s position is fixed
relative to the rotating turntable, and is given by the vector 
which is measured from the axis of the turntable to the bug.
Consider the vector described by 

(a) Which direction does this vector point?

(A) Toward the axis of rotation
(B) Away from the axis of rotation
(C) Tangent to the circular path traced out by the bug
(D) In a vertical direction

(b) The dimensions of this vector are the same as that for

(A) angular acceleration. (B) force.
(C) linear momentum. (D) velocity squared.

(c) This vector is proportional to

(A) mvr. (B) mr2. (C) mv2/r. (D) mr/v 2.

where v is the speed of the bug as measured from a nonrotat-
ing frame.

8. The Coriolis force (see Section 5-6) is a pseudoforce that oc-
curs in rotating coordinate systems (such as the Earth). The
force is given by where is the rotational ve-
locity of the Earth and is the velocity of a particle as mea-
sured from the Earth’s (noninertial) frame of reference.

(a) A projectile is launched from the equator due north. The
direction of the Coriolis force on this projectile is

(A) east. (B) west. (C) up.
(D) down. (E) The force is zero.

(b) A projectile is launched from the equator due east. The
direction of the Coriolis force on this projectile is

(A) north. (B) south. (C) up.
(D) down. (E) The force is zero.

(c) A projectile is launched from the equator vertically up-
ward. The direction of the Coriolis force on this projectile
is

(A) north. (B) south. (C) east.
(D) west. (E) The force is zero.

(See Exercise 34.)

vB
�B�2m�B  vB

m�B  (�B  rB).

rB,
�B.

	t 2 �� 1.

	t 2 �� 1
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QUESTIONS

1. In Section 8-1 we stated that, in general, six variables are 
required to locate a rigid body with respect to a particular
reference frame. How many variables are required to locate
the body of Fig. 8-2 with respect to the xy frame shown 
in that figure? If this number is not six, account for the dif-
ference.

2. The rotation of the Sun can be monitored by tracking
sunspots, magnetic storms on the Sun that appear dark
against the otherwise bright solar disk. Figure 8.12a shows
the initial positions of five spots and Fig. 8-12b the posi-
tions of these same spots one solar rotation later. What can
we conclude about the physical nature of the Sun from these
observations?

10. Is the relationship valid if 
and refer to different axes of rotation? Is it valid if they
refer to different rotations about the same axis?

11. The planet Venus (see Fig. 8-14) moves in a circular orbit
around the Sun, completing one revolution every 225 days.
Venus also rotates about a polar axis, completing one rotation
every 243 days. The sense (direction) of the rotational motion
is opposite, but parallel, to that of the orbital motion. (a) De-
scribe a vector that represents the rotation of Venus about its
axis. (b) Describe the vector that represents the angular veloc-
ity of Venus about the Sun. (c) Describe the resultant angular
velocity, obtained by adding the orbital and rotational angular
velocities.

��2

��1��1 
 ��2 � ��2 
 ��1
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Figure 8-12. Question 2.

Figure 8-13. Question 9.

Figure 8-14. Question 11.

(a) (b)

3. In what sense is the radian a “natural” measure of angle and
the degree an “arbitrary” measure of that same quantity?
Hence what advantages are there in using radians rather than
degrees?

4. Could the angular quantities �, �z , and 	z be expressed in
terms of degrees instead of radians in Eqs. 8-6 and 8-7?

5. A rigid body is free to rotate about a fixed axis. Can the body
have nonzero angular acceleration even if the angular velocity
of the body is (perhaps instantaneously) zero? What is the lin-
ear equivalent of this question? Give physical examples to il-
lustrate both the angular and linear situations.

6. A golfer swings a golf club, making a long drive from the tee.
Do all points on the club have the same angular velocity at
any instant while the club is in motion?

7. Does the vector representing the angular velocity of a wheel
rotating about a fixed axis necessarily have to lie along that
axis? Could it be pictured as merely parallel to the axis, but
located anywhere? Recall that we are free to slide a displace-
ment vector along its own direction or translate it sideways
without changing its value.

8. Experiment rotating a book after the fashion of Fig. 8-5, but
this time use angular displacements of 180° rather than 90°.
What do you conclude about the final positions of the book?
Does this change your mind about whether (finite) angular
displacements can be treated as vectors?

9. A small cube is contained in a larger cube as shown in Fig. 8-
13. Each corner of the small cube is attached to the corre-
sponding corner of the large cube with an elastic string; this is
a simple example of a spinor. Show that the inner cube can be

12. A disk is free to spin with a variable angular velocity. For a
point on the rim of the disk (a) can if (b) Can

if (c) Can and 

13. Why is it suitable to express the angular acceleration in rev/s2

in Eq. 8-7 but not in Eq. 8-10
(aT � 	r)?

(� � �0 
 �0zt 
 1
2	zt 2)

aR � 0?aT � 0aT � 0?aR � 0
aR � 0?aT � 0

rotated through 360° and the strings cannot be untangled, but
if the inner cube is rotated through 720° then the strings can
be untangled.



14. When we say that a point on the equator of the Earth has an
angular speed of 2� rad/day, what reference frame do we
have in mind?

15. Taking the rotation and the revolution of the Earth into ac-
count, does a tree move faster during the day or during the
night? With respect to what reference frame is your answer
given? (The Earth’s rotation and revolution are in the same di-
rection.)

16. A wheel is rotating about its axle. Consider a point on the
rim. When the wheel rotates with constant angular velocity,
does the point have a radial acceleration? A tangential accel-
eration? When the wheel rotates with constant angular accel-

eration, does the point have a radial acceleration? A tangential
acceleration? Do the magnitudes of these accelerations
change with time?

17. Suppose that you were asked to determine the distance 
traveled by a needle in playing a vinyl phonograph record.
What information do you need? Discuss from the point of
view of reference frames (a) fixed in the room, (b) fixed on
the rotating record, and (c) fixed on the arm of the record
player.

18. What is the relation between the angular velocities of a pair
of coupled gears of different radii?
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Figure 8-15. Exercise 9.

EXERCISES

8-1 Rotational Motion
1. A rigid body exists in an n-dimensional space. How many co-

ordinates are needed to specify the position and orientation of
this body in this space?

8-2 The Rotational Variables
2. Show that 1 rev/min � 0.105 rad/s.

3. The angle turned through by the flywheel of a generator dur-
ing a time interval t is given by

where a, b, and c are constants. What is the expression for its
(a) angular velocity and (b) angular acceleration?

4. Our Sun is 2.3  104 ly (light-years) from the center of our
Milky Way galaxy and is moving in a circle around this center
at a speed of 250 km/s. (a) How long does it take the Sun to
make one revolution about the galactic center? (b) How many
revolutions has the Sun completed since it was formed about
4.5  109 years ago?

5. A wheel rotates with an angular acceleration 	z given by

where t is the time and a and b are constants. If the wheel has
an initial angular velocity �0 , write the equations for (a) the
angular velocity and (b) the angle turned through as functions
of time.

6. What is the angular speed of (a) the second hand, (b) the
minute hand, and (c) the hour hand of a watch?

7. A good baseball pitcher can throw a baseball toward home
plate at 85 mi/h with a spin of 1800 rev/min. How many rev-
olutions does the baseball make on its way to home plate?
For simplicity, assume that the 60-ft trajectory is a straight
line.

8. A diver makes 2.5 complete revolutions on the way from a
10-m platform to the water below. Assuming zero initial verti-
cal velocity, calculate the average angular velocity for this
drive.

9. A wheel has eight spokes and a radius of 30 cm. It is mounted
on a fixed axle and is spinning at 2.5 rev/s. You want to shoot
a 24-cm arrow parallel to this axle and through the wheel

	z � 4at3 � 3bt2,

� � at 
 bt3 � ct 4,

without hitting any of the spokes. Assume that the arrow and
the spokes are very thin; see Fig. 8-15. (a) What minimum
speed must the arrow have? (b) Does it matter where between
the axle and the rim of the wheel you aim? If so, where is the
best location?

8-3 Rotational Quantities as Vectors
10. A planet P revolves around the Sun in a circular orbit, with

the Sun at the center, which is coplanar with and concentric to
the circular orbit of Earth E around the Sun. P and E revolve
in the same direction. The times required for the revolution of
P and E around the Sun are TP and TE . Let TS be the time re-
quired for P to make one revolution around the Sun relative to
E: show that Assume 

11. Repeat the previous problem to find an expression for TS

when TP � TE .

8-4 Rotation with Constant Angular Acceleration
12. A turntable rotating at 78 rev/min slows down and stops in 

32 s after the motor is turned off. (a) Find its (constant) angu-
lar acceleration in rev/min2. (b) How many revolutions does it
make in this time?

13. The angular speed of an automobile engine is increased uni-
formly from 1170 rev/min to 2880 rev/min in 12.6 s. (a) Find
the angular acceleration in rev/min2. (b) How many revolu-
tions does the engine make during this time?

14. As part of a maintenance inspection, the compressor of a 
jet engine is made to spin according to the graph shown in

TP � TE .1/TS � 1/TE � 1/TP .



Fig. 8-16. How many revolutions does the compressor make
during the test?

a circular turn of radius 3220 km at a constant speed of
28,700 km/h?

24. A threaded rod with 12.0 turns/cm and diameter 1.18 cm is
mounted horizontally. A bar with a threaded hole to match the
rod is screwed onto the rod; see Fig. 8-17. The bar spins
at 237 rev/min. How long will it take for the bar to move
1.50 cm along the rod?

172 Chapter 8 / Rotational Kinematics

Figure 8-17. Exercise 24.

15. The flywheel of an engine is rotating at 25.2 rad/s. When the
engine is turned off, the flywheel decelerates at a constant rate
and comes to rest after 19.7 s. Calculate (a) the angular acceler-
ation (in rad/s2) of the flywheel, (b) the angle (in rad) through
which the flywheel rotates in coming to rest, and (c) the num-
ber of revolutions made by the flywheel in coming to rest.

16. While waiting to board a helicopter, you notice that the ro-
tor’s motion changed from 315 rev/min to 225 rev/min in
1.00 min. (a) Find the average angular acceleration during the
interval. (b) Assuming that this acceleration remains constant,
calculate how long it will take for the rotor to stop. (c) How
many revolutions will the rotor make after your second obser-
vation?

17. A certain wheel turns through 90 rev in 15 s, its angular speed
at the end of the period being 10 rev/s. (a) What was the an-
gular speed of the wheel at the beginning of the 15-s interval,
assuming constant angular acceleration? (b) How much time
had elapsed between the time the wheel was at rest and the
beginning of the 15-s interval?

18. A pulley wheel 8.14 cm in diameter has a 5.63-m-long cord
wrapped around its periphery. Starting from rest, the wheel is
given an angular acceleration of 1.47 rad/s2. (a) Through what
angle must the wheel turn for the cord to unwind? (b) How
long does it take?

19. A flywheel completes 42.3 rev as it slows from an angular
speed of 1.44 rad/s to a complete stop. (a) Assuming constant
acceleration, what is the time required for it to come to rest?
(b) What is the angular acceleration? (c) How much time is
required for it to complete the first one-half of the 42.3 rev?

20. Starting from rest at a wheel undergoes a constant an-
gular acceleration. When the angular velocity of
the wheel is 4.96 rad/s. The acceleration continues until

when it abruptly ceases. Through what angle does
the wheel rotate in the interval to 

8-5 Relationships between Linear and Angular Variables
21. What is the angular speed of a car rounding a circular turn of

radius 110 m at 52.4 km/h?

22. A point on the rim of a 0.75-m-diameter grinding wheel
changes speed uniformly from 12 m/s to 25 m/s in 6.2 s.
What is the angular acceleration of the grinding wheel during
this interval?

23. What are (a) the angular speed, (b) the radial acceleration,
and (c) the tangential acceleration of a spaceship negotiating

t � 46.0 s?t � 0
t � 23.0 s,

t � 2.33 s,
t � 0,

Figure 8-16. Exercise 14.
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25. (a) What is the angular speed about the polar axis of a point
on the Earth’s surface at a latitude of 40° N? (b) What is the
linear speed? (c) What are the values for a point at the equa-
tor?

26. A gyroscope flywheel of radius 2.83 cm is accelerated from
rest at 14.2 rad/s2 until its angular speed is 2760 rev/min. (a)
What is the tangential acceleration of a point on the rim of the
flywheel? (b) What is the radial acceleration of this point
when the flywheel is spinning at full speed? (c) Through what
distance does a point on the rim move during the accelera-
tion?

27. If an airplane propeller of radius 5.0 ft rotates at
2000 rev/min and the airplane is propelled at a ground speed
of 300 mi/h what is the speed of a point on the
tip of the propeller, as seen by (a) the pilot and (b) an ob-
server on the ground? Assume that the plane’s velocity is par-
allel to the propeller’s axis of rotation.

28. The blades of a windmill start from rest and rotate with an an-
gular acceleration of 0.236 rad/s2. How much time elapses be-
fore a point on a blade experiences the same value for the
magnitudes of the centripetal acceleration and tangential ac-
celeration?

29. A rigid body, starting at rest, rotates about a fixed axis with
constant angular acceleration 	. Consider a particle a distance
r from the axis. Express (a) the radial acceleration and (b) the
tangential acceleration of this particle in terms of 	, r, and the
time t. (c) If the resultant acceleration of the particle at some
instant makes an angle of 57.0° with the tangential accelera-
tion, through what total angle has the body rotated from t � 0
to that instant?

30. An automobile traveling at 97 km/h has wheels of diameter
76 cm. (a) Find the angular speed of the wheels about the
axle. (b) The car is brought to a stop uniformly in 30 turns of
the wheels. Calculate the angular acceleration. (c) How far
does the car advance during this braking period?

31. A speedometer on the front wheel of a bicycle gives a reading
that is directly proportional to the angular speed of the wheel.
Suppose that such a speedometer is calibrated for a wheel of
diameter 72 cm but is mistakenly used on a wheel of diameter

(� 480 km/h),

(� 1.5 m)



62 cm. Would the linear speed reading be wrong? If so, in
what sense and by what fraction of the true speed?

8-6 Vector Relationships between Linear and Angular
Variables
32. An object moves in the xy plane such that cos �t and

sin �t. Here x and y are the coordinates of the object, t
is the time, and R and � are constants. (a) Eliminate t between
these equations to find the equation of the curve in which the
object moves. What is this curve? What is the meaning of the
constant �? (b) Differentiate the equations for x and y with re-
spect to the time to find the x and y components of the velocity
of the body, vx and vy . Combine vx and vy to find the magnitude
and direction of v. Describe the motion of the object. (c) Dif-
ferentiate vx and vy with respect to the time to obtain the mag-
nitude and direction of the resultant acceleration.

y � R
x � R

33. A rigid object rotating about the z axis is slowing down at
2.66 rad/s2. Consider a particle located at 

At the instant that find (a) the
velocity of the particle and (b) its acceleration. (c) What is the
radius of the circular path of the particle?

34. A 12-kg projectile is launched vertically upward with an ini-
tial speed of 35 m/s from a football field in Minneapolis,
MN. (a) Calculate the magnitude and direction of the Corio-
lis force (see Multiple Choice question 8 and Section 5-6) on
the projectile shortly after the projectile is launched. (b)
What is the approximate direction of the Coriolis force on
the projectile while the projectile is heading back toward the
Earth? (c) Will the projectile return to the original launch
point? If not, in which direction will it land relative to the
launch point?

�B � (14.3 rad/s)k̂,(1.26 m) k̂.
rB � (1.83 m)ĵ 
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Figure 8-18. Problem 4.

PROBLEMS

1. The angular position of a point on the rim of a rotating
wheel is described by 

(a) What is the angular velocity at s and
at s? (b) What is the average angular acceleration for
the time interval that begins at and ends at

(c) What is the instantaneous angular acceleration
at the beginning and end of this time interval?

2. A wheel with 16 spokes rotating in the clockwise direction is
photographed on film. The film is passed through a projector
at the rate of 24 frames/s, which is the proper rate for the pro-
jector. On the screen, however, the wheel appears to rotate
counterclockwise at 4.0 rev/min. Find the smallest possible
angular speed at which the wheel was rotating.

3. A solar day is the time interval between two successive ap-
pearances of the Sun overhead at a given longitude— that is,
the time for one complete rotation of Earth relative to the
Sun. A sidereal day is the time for one complete rotation of
Earth relative to the fixed stars— that is, the time interval be-
tween two successive overhead observations of a fixed direc-
tion in the heavens called the vernal equinox. (a) Show that
there is exactly one less (mean) solar day in a year than there
are (mean) sidereal days in a year. (b) If the (mean) solar day
is exactly 24 hours, how long is a (mean) sidereal day?

4. A pulsar is a rapidly rotating neutron star from which we re-
ceive radio pulses with precise synchronization, there being
one pulse for each rotation of the star. The period T of rota-
tion is found by measuring the time between pulses. At pres-
ent, the pulsar in the central region of the Crab nebula (see
Fig. 8-18) has a period of rotation of and this is
observed to be increasing at the rate of 1.26  10�5 s/y. (a)
Show that the angular speed � of the star is related to the pe-
riod of rotation by (b) What is the value of the an-
gular acceleration in rad/s2? (c) If its angular acceleration is
constant, when will the pulsar stop rotating? (d) The pulsar
originated in a supernova explosion in the year A.D. 1054.
What was the period of rotation of the pulsar when it was
born? (Assume constant angular acceleration.)

5. Two students perform a simple experiment. The first student
observes the orientation of a stationary disk with a single

� � 2�/T.

T � 0.033 s,

t � 4.0 s?
t � 2.0 s

t � 4.0
t � 2.0(1.0 rad/s3)t 3.

(3.0 rad/s2)t 2 
� � (4.0 rad/s)t �

mark on the edge of the rim. He then looks away. The second
student then gives the disk a constant rotational acceleration
of 3.0 rad/s2 for a time of 4.0 seconds; she then brings the
disk to a halt with constant angular acceleration in a time of
0.10 s. The first student is now allowed to look at the disk
again. (a) From the point of view of the first student, through
what angle did the disk move? (b) What was the average an-
gular velocity of the disk?

6. An astronaut is being tested in a centrifuge. The centrifuge
has a radius of 10.4 m and in starting, rotates according to
� � (0.326 rad/s2)t2. When s, what are the astro-
naut’s (a) angular speed, (b) tangential speed, (c) tangential
acceleration, and (d) radial acceleration?

7. Earth’s orbit about the Sun is almost a circle. (a) What is the
angular speed of Earth (regarded as a particle) about the Sun?
(b) What is its linear speed in its orbit? (c) What is the accel-
eration of Earth with respect to the Sun?

8. The flywheel of a steam engine runs with a constant angular
speed of 156 rev/min. When steam is shut off, the friction of
the bearings and of the air brings the wheel to rest in 2.20 h.
(a) What is the constant angular acceleration of the wheel, in
rev/min2? (b) How many rotations will the wheel make before
coming to rest? (c) What is the tangential linear acceleration

t � 5.60



COMPUTER PROBLEMS

1. The effective force on a projectile moving very close to the
Earth is

where is the acceleration of free fall, is the angular veloc-
ity of the Earth, and is the velocity of the projectile as mea-
sured from the Earth’s (noninertial) frame of reference.
(a) Write a computer program that will find the actual trajec-
tory of a 1.0-kg projectile launched vertically upward with an
initial velocity of 100 m/s from a point on the Earth’s equator.
How far from the launch point does the projectile land?
(b) Write a computer program that will find the actual trajec-
tory of a 1.0-kg projectile launched with an initial velocity of
100 m/s at a 45° angle above the horizontal due north from a

vB
�BgB

F
B

� mgB � m�B  (�B  rB) � 2m�B  vB,

point on the Earth’s equator. How large is the error caused by
the rotating Earth on the target location?

2. A flywheel slows down under the influence of a nonconstant
angular acceleration. The angular position of a reference line
on the flywheel is described by

from when the flywheel began slowing down, to 
when it came to a rest. Here 

and (a) Find an expres-
sion for the angular velocity, and find the time T at which the
velocity becomes zero. (b) Find the angle through which the
wheel rotates in being brought to rest.

� � 
0.100 s�1.C � �0.124 rad/s3,
B � 
5.12 rad/s,A � 
2.40 rad,

t � T,t � 0,

�(t) � (A 
 Bt 
 Ct 3)e��t

of a particle 52.4 cm from the axis of rotation when the fly-
wheel is turning at 72.5 rev/min? (d) What is the magnitude
of the total linear acceleration of the particle in part (c)?

9. An early method of measuring the speed of light makes use of
a rotating toothed wheel. A beam of light passes through a
slot at the outside edge of the wheel, as in Fig. 8-19, travels to
a distant mirror, and returns to the wheel just in time to pass
through the next slot in the wheel. One such toothed wheel
has a radius of 5.0 cm and 500 teeth at its edge. Measure-
ments taken when the mirror was a distance m from
the wheel indicated a speed of light of 3.0  105 km/s. (a)
What was the (constant) angular speed of the wheel? (b)
What was the linear speed of a point on its edge?

10. Wheel A of radius cm is coupled by a belt B to
wheel C of radius cm, as shown in Fig. 8-20.rC � 25.0

rA � 10.0

L � 500

Wheel A increases its angular speed from rest at a uniform
rate of 1.60 rad/s2. Determine the time for wheel C to reach a
rotational speed of 100 rev/min, assuming the belt does not
slip. (Hint: If the belt does not slip, the linear speeds at the
rims of the two wheels must be equal.)

11. The disc of a compact disc/digital audio system has an inner
and outer radius for its recorded material (the Tchaikovsky
and Mendelssohn violin concertos) of 2.50 cm and 5.80 cm,
respectively. At playback, the disc is scanned at a constant lin-
ear speed of 130 cm/s, starting from its inner edge and mov-
ing outward. (a) If the initial angular speed of the disc is
50.0 rad/s, what is its final angular speed? (b) The spiral scan
lines are 1.60 �m apart; what is the total length of the scan?
(c) What is the playing time?

12. A car moves due east on a straight and level road at a constant
velocity An observer stands a distance b north of the road.
Find the angular velocity and angular acceleration of the
car as measured by the observer as a function of time. As-
sume that the car is closest to the observer at time 

13. A rocket sled moves on a straight horizontal track with a ve-
locity An observer standing a distance b from the track
measures the angular velocity to be constant. (a) Find 
assuming that the rocket sled is closest to the observer when

(b) At approximately what time tc does the motion of
the rocket sled become physically impossible?
t � 0.

vB(t),�B
vB(t).

t � 0.

�B�B
vB.
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Figure 8-19. Problem 9.

Figure 8-20. Problem 10.
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ROTATIONAL
DYNAMICS

In Chapter 8 we considered rotational kinematics

and pointed out that it contained no basic new features, the rotational parameters �, �, and � being related

to corresponding translational parameters x, v, and a for the particles that make up the rotating system. In

this chapter, following the pattern of our study of translational motion, we consider the causes of rotation, a

subject called rotational dynamics. Rotating systems are made up of particles, and we have already learned

how to apply the laws of classical mechanics to the motion of particles. For this reason rotational dynam-

ics, like kinematics, should contain no features that are fundamentally new. As in Chapter 8, however, it is

very useful to recast the concepts of translational motion into a new form, especially chosen for its conve-

nience in describing rotating systems.

9-1 TORQUE

We began our study of dynamics in Chapter 3 by defining a
force in terms of the acceleration it produced when acting
upon a body of standard mass (Section 3-3). We were then
able to obtain the mass of any other body in relation to the
standard mass by measuring the acceleration produced
when the same force acts on each body (Section 3-4). We
incorporated our observations about force, mass, and accel-
eration into Newton’s second law, according to which the
net force acting on a body is equal to its mass times its ac-
celeration.

Our procedure for rotational dynamics is similar. We
will begin by considering the angular acceleration produced
when a force acts on a particular rigid body that is free to
rotate about a fixed axis. In analogy with translational mo-
tion, we will find that the angular acceleration is propor-
tional to the magnitude of the applied force. However, a
new feature emerges that was not present in translational
motion: the angular acceleration also depends on where the
force is applied to the body. A given force applied at differ-
ent locations on a body (or even at the same location but in
different directions) will in general produce different angu-
lar accelerations.

The quantity in rotational dynamics that takes into ac-
count both the magnitude of the force and the direction and
location at which it is applied is called the torque. The word
torque comes from a Latin root meaning “twist,” and you
can think of a torque as a twist in the same sense that we
think of a force as a push or a pull. Like force (and like an-
gular acceleration), torque is a vector quantity. In this chap-
ter we will consider only cases in which the rotational axis
is fixed in direction. As a result it will be necessary to con-
sider only one component of the torque vector. This restric-
tion is similar to our discussion of translational dynamics in
one dimension in Chapter 3.

In addition, we find that the angular acceleration of a
body in response to a particular torque depends not only on
the mass of the body but also on how that mass is distrib-
uted relative to the axis of rotation. For a given torque, we
get a different angular acceleration when the mass is close
to the axis of rotation than we get when it is farther away.
The rotational quantity that describes the mass of a body
and its distribution relative to the axis of rotation is called
the rotational inertia.* Unlike the mass, the rotational iner-
tia of a body is not an intrinsic property of the body, but in-

* Also known as the moment of inertia.
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stead depends on the choice of the axis of rotation. Just as
the mass can be regarded as the property of a body that rep-
resents its resistance to linear acceleration, the rotational in-
ertia represents the resistance of a body to angular accelera-
tion. We discuss the rotational inertia of solid bodies in the
next section; in this section we consider the torque on a
body due to an applied force.

One of our most common experiences with rotational
motion is opening a hinged door. We observe that a given
force can produce various amounts of angular acceleration,
depending on where the force is applied to the door and
how it is directed (Fig. 9-1). A force (such as applied at
the edge and directed along the door cannot produce an an-
gular acceleration, nor can a force (such as applied at
the hinge line. A force (such as applied at right angles
at the outer edge of the door produces the largest angular
acceleration.

Figure 9-2 shows an arbitrary rigid body that is free to
rotate about the z axis. A force is applied to the body at
point P, which is located a perpendicular distance r from
the axis of rotation. Figure 9-3a shows a cross-sectional
slice through the body in the xy plane; the vector in this
plane locates the point P relative to the axis. We assume
that the force also lies in this plane and thus has only x
and y components; any possible z component of the force
has no effect on rotations about the z axis, just as a vertical
force applied to the door of Fig. 9-1 gives no resulting an-
gular acceleration about the hinge line.

As Fig. 9-3b shows, the vectors and make an angle
� with each other. The force can be resolved into its ra-
dial and tangential components. The radial component

F
B

F
B

rB

F
B

rB

F
B

F
B

3)
F
B

2)

F
B

1)

has no effect on the rotation of the body
about the z axis, just as the force  in Fig. 9-1 is not suc-
cessful in rotating the door. Only the tangential component

produces a rotation about the z axis (like the
force in Fig. 9-1).

In addition to the magnitude of the tangential compo-
nent of the angular acceleration of the body will depend
on how far from the axis the force is applied. The greater is
the distance from the axis, the greater is the angular accel-
eration produced by a given force.

The angular acceleration thus depends on both the tan-
gential component of the force and the distance of the point
of application of the force from the axis of rotation. The ro-
tational quantity that includes both of these factors is called
the torque �. Its magnitude is defined as

(9-1)

Torque has dimensions of force times distance. The unit of
torque may be the newton-meter or pound-foot

among other possibilities.
According to Eq. 9-1, the torque is zero if: (1) r � 0—

that is, the force is applied at or through the axis of rota-
tion; (2) F � 0— that is, there is no applied force; or (3)
� � 0° or 180°— that is, the force is applied in the radial
direction either outward or inward. In each of these three
cases, the force produces no angular acceleration about the
z axis.

Had we chosen to place the axis of rotation at a differ-
ent location in the body, the force applied at P could result
in a different torque (because r or � might be different). The
torque produced by a given force thus depends on the
choice of the axis of rotation, or equivalently of the origin
of the coordinate system. To make this choice clear, we will
always refer to the particular point about which we have
calculated the torque. Thus Eq. 9-1 defines the torque about
point O. Had we selected a different point O� midway be-
tween O and P, the resulting torque about O� would be half
as great as the torque about point O (because the distance r
would be half as great).

Figure 9-3c shows another way of interpreting the
torque about O. The component of the force perpendicular
to  is labeled as this is the same as the tangential
component FT in Fig. 9-3b and has magnitude F sin �. The
component of perpendicular to is labeled as and hasr�F

B
rB

F� ;rB

(lb 	 ft),
(N 	m)

� � rF sin �.

F
B

,

F
B

3

FT � F sin �

F
B

1

FR � F cos �
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Figure 9-1. Applying a given force to a door produces an
angular acceleration � that varies with the point at which is ap-
plied and with its direction relative to the hinge line. Force is
applied along a line that would pass through the hinge line, and it
produces no angular acceleration (the door does not move). Force

is applied at the hinge line; it likewise produces no angular ac-
celeration. Force is applied at a point far from the hinge line
and in a direction perpendicular to the line connecting the point of
application of with the hinge line; this force produces the
largest possible angular acceleration.
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Figure 9-2. A rigid body is free to rotate about the z axis. A
force is applied at point P of the body.F
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magnitude r sin �. We can then rewrite Eq. 9-1 in either of
two ways:

(9-2a)

(9-2b)

In Eq. 9-2a, the magnitude of the torque depends on the
component of the force perpendicular to if this compo-
nent is zero then the torque is zero. In Eq. 9-2b, the torque
depends on the moment arm which, as Fig. 9-3c shows,
is the perpendicular distance from the origin to the line
along which acts, called the line of action of If the
moment arm of a force is zero, then the torque about O is
zero; for example, the radial component FR has a moment
arm of zero and so gives no torque about O.

Torque as a Vector
Equation 9-1 gives the magnitude of the torque, but torque
also has a direction, which we take to be the direction of
the axis around which the force produces a rotation. In Fig.
9-2, that axis is the z axis. If a quantity has both magnitude
and direction, we suspect that we may be able to represent
it as a vector, provided that it satisfies the transformation
and combination rules that we associate with vectors. The
torque does indeed satisfy those rules, and thus it is conve-
nient to represent torque as a vector.

To find the torque, we must combine the vector and
the vector into a new vector One way of combining
two arbitrary vectors and in to a third vector is by
means of the vector product (or cross product), written as

(and read as “A cross B”). The cross product
of and is defined to be a vector whose magnitude is

where A is the magnitude of is the
magnitude of and � is the smaller angle between and

This definition is in the same form as
Eq. 9-1 for the torque which leads us to sus-
pect that the torque may be written as the cross product of
the vectors and 

What about the direction of the vector determined by
the cross product? The direction of the vector 
is defined to be perpendicular to the plane formed by

as determined by the right-hand rule: align the fin-
gers of the right hand with the first vector and rotate(A

B
),
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B
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rB;

� � (r sin �)F � r�F.

� � r(F sin �) � rF� ,

the fingers from to through the smaller of the two an-
gles between those vectors. The extended thumb then
points in the direction of Note that, according to this de-
finition, the cross product is not the same as the
cross product in fact, The two
cross products have the same magnitude but opposite direc-
tions. Further details about the cross product may be found
in Appendix H.

In terms of the cross product, the torque is expressed as

(9-3)

According to the definition of the cross product, the magni-
tude of the vector given by Eq. 9-3 is rF sin �, in agree-
ment with the definition of the magnitude of the torque in
Eq. 9-1. To illustrate how the right-hand rule determines the
direction of the torque vector, in Fig. 9-4 we have redrawn
the vectors and from Fig. 9-2; for simplicity the rigid
body itself is not shown. According to the right-hand rule as
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Figure 9-3. (a) A cross-sectional slice in the xy plane of the body shown in Fig. 9-2. The force
is in the xy plane. (b) The force is resolved into its radial (FR) and tangential components.

(c) The component of perpendicular to is (also identified as the tangential component FT),
and the component of perpendicular to (or to its line of action ) is r� .F
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Figure 9-4. A force acts at point P in a rigid body (not
shown). This force exerts a torque on the body with
respect to the origin O. The torque vector points in the direction of
increasing z; it could be drawn anywhere we choose, as long as it
is parallel to the z axis. The inset shows how the right-hand rule is
used to find the direction of the torque. For convenience we can
slide the force vector laterally, without changing its direction, until
the tail of joins the tail of rB.F
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illustrated in the inset to the figure, the fingers are aligned
with and rotated through the angle � to The thumb
then points in the direction of the torque vector, which is
parallel to the z axis. In terms of the components of

and we can
write the torque (see Appendix H) as 

. (9-4)

The torque as defined by the cross product in Eq. 9-3 is
perpendicular to the plane determined by and In the
case of Fig. 9-4, that plane is the xy plane. The torque must
then be perpendicular to the xy plane, or parallel to the z
axis. It is not necessary to draw the torque vector along the
z axis (which we have done in Fig. 9-4); we could locate
the vector anywhere in the coordinate system of Fig. 9-4
without changing the validity of Eq. 9-3, as long as re-
mains parallel to the z axis.

With the rigid body and the applied force positioned as
in Fig. 9-2, the torque has only a positive z component.
Equation 9-1 defines �z in the geometry of Fig. 9-2, but that
equation gives only the magnitude of �z and not its sign.
Under the action of the applied force, the angular velocity
of the rigid body will increase in the direction shown in
Fig. 9-2, which corresponds to an angular acceleration in
the z direction and having a positive z component (using the
definitions given in Section 8-3 for the direction of the an-
gular velocity and angular acceleration vectors). Thus a
positive �z produces a positive �z . This is very similar to
the vector relationship in the linear form of Newton’s sec-
ond law, according to which a force component in a given
direction produces an acceleration in that direction.

We can assign an algebraic sign to the vector compo-
nent of a torque along any axis by regarding that torque
component as positive if it tends to produce counterclock-
wise rotations when viewed from along that axis, and nega-
tive if it tends to produce clockwise rotations. From another
point of view, to find the sign of the component of a torque
vector along any axis, say the z axis, align the thumb of the
right hand along the positive direction of that axis; then �z

is positive for a force which, acting alone, would tend to
produce a rotation in the direction of the fingers of the right
hand; negative torques are those that tend to produce rota-
tions in the opposite direction. Equation 9-4 gives the signs
of the components directly.

Sample Problem 9-1. A pendulum consists of a body
of mass kg on the end of a rigid rod of length 
1.25 m and negligible mass (Fig. 9-5). (a) What is the magnitude
of the torque due to gravity about the pivot point O at the instant
the pendulum is displaced as shown through an angle of � � 10°
from the vertical? (b) What is the direction of the torque about O
at that instant? Does its direction depend on whether the pendu-
lum is displaced to the left or right of vertical?

Solution (a) We can use Eq. 9-1 directly to find the magnitude of
the torque, with and 

� 0.36 N 	m.
� � Lmg sin � � (1.25 m)(0.17 kg)(9.8 m/s2)(sin 10�)

F � mg:r � L

L �m � 0.17
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�B � (yFz � zFy)î  (zFx � xFz)ĵ  (xFy � yFx)k̂
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B

� Fx î  Fy ĵ  Fz k̂,rB � xî  yĵ  zk̂

F
B

.rB

(b) With the displacement as shown in Fig. 9-5a, the torque about
the pivot is into the plane of the paper. You should be able to con-
vince yourself that, if the pendulum is displaced on the opposite
side of the vertical, the torque has the opposite direction. As we
discuss later in this chapter, the effect of a torque is to produce an
angular acceleration parallel to the torque. In the first instance, the
angular acceleration into the paper tends to move the pendulum
toward its equilibrium position. When the pendulum is displaced
on the opposite side of the vertical (Fig. 9-5b), the torque out of
the paper tends once again to restore the pendulum to its equilib-
rium position. Check these conclusions using the right-hand rule
to relate the sense of the rotation to the direction of the angular ac-
celeration vector (assumed parallel to the torque).

9-2 ROTATIONAL INERTIA AND
NEWTON’S SECOND LAW

Hold a long stick in your hand, as in Fig. 9-6. By turning
your wrist, you can rotate the stick about various axes. You
will find that it takes considerably less effort to rotate the
stick about an axis along its length (as in Fig. 9-6a) than it
does to rotate it about an axis perpendicular to its length (as
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Figure 9-5. Sample Problem 9-1. A pendulum, consisting of
a body of mass m on the end of a massless rigid rod of length L.
(a) Gravity exerts a torque into the page at O, indicated there by
the symbol (suggesting the tail of an arrow). (b) When the pen-
dulum is displaced to the left of the vertical, the torque at O is out
of the page, indicated by the symbol � (suggesting the tip of an
arrow).

�

Figure 9-6. To rotate a long stick about the axis along its
length, as in (a), takes less effort than it does to rotate it about an
axis perpendicular to its length, as in (b). In (a), the particles of
the stick lie closer to the axis of rotation than they do in (b), and
so the stick has a smaller rotational inertia in (a).

Axis of
rotation

(a)

Axis of rotation

(b)



in Fig. 9-6b). The difference occurs because the rotational
inertia is different in the two cases. Unlike the mass of an
object (the translational inertia), which has only a single
value, the rotational inertia of an object can vary if we
choose different axes of rotation. As we shall see, it de-
pends on how the mass is distributed relative to the axis of
rotation. In Fig. 9-6a, the mass lies relatively close to the
axis of rotation; in Fig. 9-6b, the mass lies on the average
much further from the axis. This difference results in a
larger rotational inertia in Fig. 9-6b, which we feel as a
greater resistance to rotation. In this section we consider the
rotational inertia of a particle or a collection of particles;
the next section deals with the rotational inertia of solid
bodies such as the stick of Fig. 9-6.

Rotational Inertia of a Single Particle
Figure 9-7 shows a single particle of mass m. The particle
is free to rotate about the z axis, to which it is attached by a
thin rod of length r and of negligible mass. A force is ap-
plied to the particle in an arbitrary direction at an angle �
with the rod. As we have discussed in Section 9-1, a force
component parallel to the axis of rotation (the z axis) has no
effect on the rotation about that axis, so we need to con-
sider only a force that lies in the xy plane.

The tangential component of is the only force on the
particle that acts in the tangential direction, so the net tan-
gential force is sin �. Newton’s second law ap-
plied to the tangential motion of the particle gives

Substituting F sin � for the net tangential
force, and also substituting (Eq. 8-10), we obtain

If we multiply both sides by the radius r, the left side of this
equation becomes rF sin �, which is the z component of the
torque about point O as defined in Eq. 9-1. We therefore
obtain

(9-5)

This equation establishes the proportionality between the z
component of the torque and the z component of the angu-
lar acceleration for rotations about a fixed axis (the z axis).
It is similar to Newton’s second law for translational mo-

�z � mr 2�z .

F sin � � m�zr.

a T � �zr
� FT � ma T .

� FT � F

F
B

F
B

tion in one dimension (which can be written 
and the quantity mr2 in Eq. 9-5 is analogous to the mass in
the translational equation. We define this quantity to be the
rotational inertia I of the particle:

(9-6)

The rotational inertia depends on the mass of the particle
and on the perpendicular distance between the particle and
the axis of rotation. As the particle’s distance from the axis
increases, the rotational inertia increases, even though the
mass does not change.

Rotational inertia has dimensions of mass times length
squared (ML2), and its units might be for instance.
The rotational inertia may vary with the location or the di-
rection of the axis of rotation, but it is not a vector (its di-
rectional properties are more complicated than those of or-
dinary vectors). However, as defined in Eq. 9-6, for
rotations about a single axis the rotational inertia can be
treated as a scalar, in analogy with mass.

Newton’s Second Law for Rotation
With this definition of rotational inertia, we can now exam-
ine in more detail the relationship between torque and an-
gular acceleration. We shall do this in a more complicated
system that may consist of many particles. Just as our quest
for the relationship between force and linear acceleration
(as discussed in Chapter 3) led us to the translational form
of Newton’s second law, our discussion here will lead us to
a rotational form of Newton’s second law.

Let us begin by considering the rotational inertia of a
more complicated system consisting of many particles. We
still apply only a single force to one of the particles, as be-
fore. For example, Fig. 9-8a shows a rigid body consisting
of two particles of masses m1 and m2 , each of which is free
to rotate in the xy plane about the z axis. The particles are
connected to the axis by thin rods of negligible mass of
lengths r1 and r2 , respectively, and they are also connected
to one another by a similar rod. An external force in the
xy plane is applied to particle 1. Each particle also experi-
ences a tension acting along the rod that connects it to the
origin and as well as a tension acting along the rod
connecting the two particles and as shown in Fig.
9-8b. Because (the force exerted on particle 1 by the
rod) and (the force on the rod by particle 1) form an ac-
tion– reaction pair, and similarly for and and also
because the net force on the rod must be zero
(due to its negligible mass), we must have 

The net force acting on particle 1 is 
and on particle 2, We

consider the radial and tangential components of the forces
and accelerations. The components of the net forces are
shown in Fig. 9-8c. Because the particles are connected to
the origin by rigid rods, there is no radial motion. Further-
more, the radial components of the net forces and

give no torque about the origin O, because their mo-
ment arms are zero. Only the tangential components of the
� F
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Figure 9-7. A force is applied to a particle attached to a
rigid rod of negligible mass that rotates in the xy plane. The torque
due to is in the positive z direction (out of the page) as indicated
by the � symbol at the origin.
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net forces contribute to the net torque about O. The net
torque about O for the two-particle system is the sum of the
net torques for each of the particles:

� ( F1T)r1  ( F2T)r2. (9-7)

For each particle, the net tangential force and the tangential
acceleration are related by Newton’s second law:

and Making these substitutions into
Eq. 9-7, we obtain

�z � ( F1T)r1  ( F2T)r2

(9-8)

where the third line follows from using Eq. 8-10 for the
tangential accelerations and The
angular accelerations �z are the same for both particles, be-
cause the two-particle object rotates as a rigid body.

The quantity in Eq. 9-8 is, by analogy
with Eq. 9-6, the total rotational inertia of this two-particle
system:

(9-9)

For rotations of two particles about a common axis, we can
simply add their rotational inertias. The obvious extension
to a rigid object consisting of N particles rotating about the
same axis is

(9-10)

We can make one further simplification in Eq. 9-8. Let
us return to Fig. 9-8b to examine the contributions to the
net torque about O. The tensions and have no torque
about O, because their lines of action go through O. More-
over, the tensions and do not contribute to the net
torque on the two-particle system, because they are equal
and opposite and they have the same line of action. Thus
the net torque about O is due only to the external force P

B
,

T
B

2rT
B

1r

T
B

2T
B

1

I � m1r 1
2  m2r 2

2  			  mNrN
2 � � mnrn

2 .

I � m1r 1
2  m2r 2

2 .

m 1r 1
2  m 2r 2

2

a2T � �zr2).(a1T � �zr1

� (m1r 1
2  m2r 2

2)�z ,

� (m1�zr1)r1  (m2�zr2)r2

� (m1a1T)r1  (m2a2T)r2

���

� F2T � m 2a2T .m 1a1T

� F1T �

��
� �z � � �1z  � �2z

and we can replace in Eq. 9-8 with the z com-
ponent of the torque about O due only to the external force.
Making this substitution, and using Eq. 9-9, we can write
Eq. 9-8 as

(9-11)

This is the rotational form of Newton’s second law. It re-
lates the net external torque about a particular fixed axis
(the z axis in this case) to the angular acceleration about
that axis. The rotational inertia I must be calculated about
that same axis.

Equation 9-11 is very similar to the form of Newton’s
second law for translational motion in one dimension,

There is, however, a very significant differ-
ence: this translational equation is one component of the
vector equation but we cannot in general write
the rotational equation in this vector form because the rota-
tional inertia I may be different for rotations about the x, y,
and z axes. This suggests that the rotational inertia is a
more complicated quantity than the simple scalar form we
are using. However, in using Eq. 9-11 for rotations about a
single axis, we can regard I as a scalar.

In this calculation, we have taken the external force to
be applied to one of the particles. If we instead applied the
force elsewhere in the system of Fig. 9-8a (even to one of
the connecting rods), we would find a different value of

but Eq. 9-11 would remain valid. If many external
forces act on a rigid body, we add up the torques due to all
the external forces, taking each torque with respect to the
same z axis.

Sample Problem 9-2. Three particles of masses m1

(2.3 kg), m2 (3.2 kg), and m3 (1.5 kg) are connected by thin rods
of negligible mass so that they lie at the vertices of a 3-4-5 right
triangle in the xy plane (Fig. 9-9). (a) Find the rotational inertia
about each of the three axes perpendicular to the xy plane and
passing through one of the particles. (b) A force of magnitude
4.5 N is applied to m2 in the xy plane and makes an angle of 30°
with the horizontal. Find the angular acceleration if the system ro-
tates about an axis perpendicular to the xy plane and passing
through m3 .

F
B

� �ext,z ,

� F
B

� maB,

� Fz � maz .

� �ext, z � I�z .

� �ext,z ,� �z
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Figure 9-8. (a) A force is applied to a rigid body consisting of two particles connected to the axis of rotation (the z axis) and to each
other by rigid rods of negligible mass. The entire assembly rotates in the xy plane. (b) The forces acting on each particle. (c) The net force
on each particle and its radial and tangential components.
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Solution (a) Consider first the axis through m1 . For point masses,
m1 lies on the axis, so and m1 does not contribute to the ro-
tational inertia. The distances from this axis to m2 and m3 are

m and m. The rotational inertia about the axis
through m1 is then (using Eq. 9-10)

Similarly for the axis through m2 , we have

For the axis through m3 ,

If a given torque is applied to the system, for rotations about
which axis will the torque produce the greatest angular accelera-
tion? The least angular acceleration?
(b) Since the body rotates about an axis parallel to the z axis, only
the z component of the torque is needed. We can use Eq. 9-2b

for the magnitude of the torque, so we must find the
value of the moment arm indicated in Fig. 9-9. From the trian-
gle with the three particles at the vertices, we have

The angle between and the line connect-
ing m3 with m2 is 30° � 37° � 67°, and thus sin 67° �
4.6 m. The magnitude of the torque about m3 is then

Since Eqs. 9-1 and 9-2 give only the magnitude of the torque, we
must decide independently whether its z component is positive or
negative. Under the action of the force the system shown in
Fig. 9-9 will tend to rotate in a clockwise direction. Using the
right-hand rule with the fingers in the direction of the clockwise
rotation, the thumb points into the paper—that is, in the negative
z direction. We therefore conclude that 

Since this is the only external torque acting on the system, Eq.
9-11 gives the angular acceleration, using the rotational inertia
about the axis through m3 found in part (a):

�z � � �ext,z

I3
�

�20.7 N �m

117 kg �m2 � �0.18 rad/s2.

�z � �20.7 N �m.

F
B

,

�z � r�F � (4.6 m)(4.5 N) � 20.7 N �m.

r� � 5.0
F
B

� � sin�1 3/5 � 37	.

r�

(�z � r�F )

� 117 kg �m2. 
� (1.5 kg)(0 m)2

I3 � � mnrn
2 � (2.3 kg)(4.0 m)2 � (3.2 kg)(5.0 m)2

� 58 kg �m2. 
� (1.5 kg)(5.0 m)2

I2 � � mnrn
2 � (2.3 kg)(3.0 m)2 � (3.2 kg)(0 m)2

� 53 kg �m2. 
� (1.5 kg)(4.0 m)2

I1 � � mnrn
2 � (2.3 kg)(0 m)2 � (3.2 kg)(3.0 m)2

r3 � 4.0r2 � 3.0

r1 � 0

Once again, the negative sign indicates a clockwise angular accel-
eration using the right-hand rule.

Sample Problem 9-3. For the three-particle system of
Fig. 9-9, find the rotational inertia about an axis perpendicular to
the xy plane and passing through the center of mass of the system.

Solution First we must locate the center of mass:

The squared distances from the center of mass to each of the parti-
cles are

The rotational inertia then follows directly from Eq. 9-10:

Note that the rotational inertia about the center of mass is the
smallest of those we have calculated for this system (compare the
values in Sample Problem 9-2). This is a general result, which we
shall prove next. It is easier to rotate a body about an axis through
the center of mass than about any other parallel axis.

The Parallel-Axis Theorem
The result of the previous sample problem leads us to an
important general result, the parallel-axis theorem:

The rotational inertia of any body about an arbitrary
axis equals the rotational inertia about a parallel axis
through the center of mass plus the total mass times the
squared distance between the two axes.

Mathematically, the parallel-axis theorem has the following
form:

(9-12)

where I is the rotational inertia about the arbitrary axis, Icm

is the rotational inertia about the parallel axis through the
center of mass, M is the total mass of the object, and h is

I � Icm � Mh2,

� 35 kg �m2. 
� (1.5 kg)(11.74 m2) 

Icm � � mnrn
2 � (2.3 kg)(2.62 m2) � (3.2 kg)(3.40 m2)

� 11.74 m2. 

r 3
2 � (x 3 � x cm)2 � ycm

2 � (4.0 m � 0.86 m)2 � (1.37 m)2

� 3.40 m2, 

r 2
2 � x cm

2 � (y2 � ycm)2 � (0.86 m)2 � (3.0 m � 1.37 m)2

r 1
2 � x cm

2 � ycm
2 � (0.86 m)2 � (1.37 m)2 � 2.62 m2

� 1.37 m. 

�
(2.3 kg)(0 m) � (3.2 kg)(3.0 m) � (1.5 kg)(0 m)

2.3 kg � 3.2 kg � 1.5 kg

ycm � � mn yn

� mn

� 0.86 m, 

�
(2.3 kg)(0 m) � (3.2 kg)(0 m) � (1.5 kg)(4.0 m)

2.3 kg � 3.2 kg � 1.5 kg

x cm � � mn xn

� mn
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Figure 9-9. Sample Problem 9-2. Point C marks the center of
mass of the system consisting of the three particles.
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the perpendicular distance between the axes. Note that the
two axes must be parallel.

Before we prove the parallel-axis theorem, let us show
how it could have been used to obtain the results of Sample
Problem 9-2. We start with the rotational inertia about the
center of mass, which was found in Sample Problem 9-3.

The distance h between the axis through
the center of mass and the axis through m1 is just r1 , whose
square was computed in Sample Problem 9-3. Thus

in agreement with the result of part (a) of Sample Problem
9-2. You should check that I2 and I3 are similarly verified.

The parallel-axis theorem has an important corollary:
since the term Mh2 is always positive, Icm is always the
smallest rotational inertia of any group of parallel axes. (It
may not be the absolute smallest rotational inertia of the
object; an axis pointing in a different direction may yield a
smaller value.) Thus for rotations in a given plane, choosing
an axis through the center of mass gives the greatest angu-
lar acceleration for a given torque.

Proof of Parallel-Axis Theorem. Figure 9-10 shows a
thin slab in the xy plane, which can be regarded as a collec-
tion of particles. We wish to calculate the rotational inertia
of this object about the z axis, which passes through the ori-
gin O in Fig. 9-10 at right angles to the plane of that figure.
We represent each particle in the slab by its mass mn , its co-
ordinates xn and yn with respect to the origin O, and its co-
ordinates and with respect to the center of mass C.
The rotational inertia about an axis through O is

Relative to O, the center of mass has coordinates xcm and
ycm , and from the geometry of Fig. 9-10 you can see that

I � � mnrn
2 � � mn(xn

2  yn
2).

yn�xn�

� 53 kg 	m2, 
� 35 kg 	m2  (2.3 kg  3.2 kg  1.5 kg)(2.62 m2)

I1 � Icm  Mh2

Icm � 35 kg 	m2.

the relationships between the coordinates xn ,yn and 
are and Substituting these
transformations, we have

Regrouping the terms, we can write this as

The first summation above is just The next
two terms look like the formulas used to calculate the coordi-
nates of a center of mass (Eq. 7-12), but (as Fig. 9-10 shows)
they are calculated in the center-of-mass system. For in-
stance, because and similarly

in the center-of-mass coordinate sys-
tem, the center of mass is by definition at the origin, and so
these terms vanish. In the last term, we let h represent the
distance between the origin O and the center of mass C, so
that also, the total mass. Thus

which proves the parallel-axis theorem.

Sample Problem 9-4. The object shown in Fig. 9-11
consists of two particles, of masses m1 and m2 , connected by a
light rigid rod of length L. (a) Neglecting the mass of the rod, find
the rotational inertia I of this system for rotations of this object
about an axis perpendicular to the rod and a distance x from m1 .
(b) Show that I is a minimum when 

Solution (a) From Eq. 9-9, we obtain

(b) We find the minimum value of I by setting dI/dx equal to 0:

Solving, we find the value of x at which this minimum occurs:

This is identical to the expression for the center of mass of the ob-
ject, and thus the rotational inertia does reach its minimum value
at This is consistent with the parallel-axis theorem,
which requires that Icm be the smallest rotational inertia among
parallel axes.

x � x cm .

x �
m2L

m1  m2
.

dI

dx
� 2m1x  2m2(L � x)(�1) � 0.

I � m1x2  m2(L � x)2.

x � x cm .

I � Icm  Mh2,

� mn � M,h2 � x cm
2  ycm

2 ;

� mnyn� � Mycm� � 0;
x cm� � 0,� mn xn� � Mx cm� � 0

Icm � � mnrn�
2.

(x cm
2  ycm

2 ) � mn . 

I � � mn(xn�
2  yn�

2)  2x cm � mnxn�  2ycm � mnyn�

� � mn(xn�
2  2xn� x cm  x cm

2  yn�
2  2yn�ycm  ycm

2 ).

I � � mn[(xn�  x cm)2  (yn�  ycm)2] 

yn � yn�  ycm .xn � xn�  x cm

xn� ,yn�
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Figure 9-10. A thin slab in the xy plane is to be rotated about
the z axis, which is perpendicular to the page at the origin O. Point
C labels the center of mass of the slab. A particle P is located at
coordinates xn , yn relative to the origin O and at coordinates 
relative to the center of mass C.
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Figure 9-11. Sample Problem 9-4. The object is to be rotated
about an axis perpendicular to the connecting rod and a distance x
from m1 .
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Points at which the first derivative of a function equals zero
may not all be minima of the function; some may be maxima. Can
you show, using the second derivative, that we have indeed found
a minimum of I?

9-3 ROTATIONAL INERTIA OF
SOLID BODIES

If we regard a body as made up of a number of discrete
particles, we can calculate its rotational inertia about any
axis from Eq. 9-10, in which the sum is taken over all the
particles. If, however, we regard it as a continuous distribu-
tion of matter, we can imagine it divided into a large num-
ber of small mass elements �mn . Each �mn is located at a
particular perpendicular distance rn from the axis of rota-
tion. By considering each �mn as approximately a point
mass, we can calculate the rotational inertia according to
Eq. 9-10:

(9-13)

We shall soon take this to the limit of infinitesimally
small �mn so that the sum becomes an integral. For now,
let us illustrate the transition to integral calculus by using
Eq. 9-13 to approximate the rotational inertia of a uniform
solid rod rotated about an axis perpendicular to the rod at
its midpoint. Figure 9-12a illustrates the situation. The rod
has length L and mass M. Let us imagine that the rod is 
divided into 10 pieces, each of length L/10 and mass
M/10. The pieces are numbered from to so
that the nth piece is a distance rn from the axis; for this
calculation, we take rn to be measured from the axis to 
the center of the piece. Thus the pieces on each end 
have the pieces next to the ends have

and the pieces nearest the axis haver9 � 0.35L,r2 �
r1 � r10 � 0.45L,

n � 10,n � 1

I � � rn
2 �mn .

0.05L. We now carry out the sum over the 10
pieces according to Eq. 9-13:

where in the second equation the five terms listed corre-
spond to half of the rod and means we have five identical
terms from the other half. Evaluating the total of the numer-
ical factors, we obtain the result

Our reason for writing the result in this form will soon be
apparent.

Suppose now we divide the rod into 20 pieces, each of
length L/20 and mass M/20 (Fig. 9-12b). Repeating the
above calculation, we obtain the result

As we increase the number of pieces, does the result ap-
proach a limiting value that we can regard as the rotational
inertia? In Exercise 21, you are asked to derive the result
for any arbitrary number N of pieces:

(9-14)

Clearly this approaches a limit of ML2/12 as and
we can assign this as the value of the rotational inertia of
the rod. Note that the numerical coefficients for 

and show the approach to the 
limit 

The above algebraic method works easily in a few cases,
and it is helpful in forming an image in our minds of how in-
tegral calculus divides a solid object into infinitesimal pieces
and sums over the pieces. For calculations involving most
solids, the algebraic method is cumbersome, and it is far eas-
ier to use calculus techniques directly. Let us take the limit of
Eq. 9-13 as the number of pieces becomes very large or,
equivalently, as their masses �m become very small:

and in the usual way the sum becomes an integral in the limit:

(9-15)

The integration is carried out over the entire volume of the
object, but often certain geometrical simplifications can re-
duce the integral to more manageable terms.

As an example, let us return to the rod rotated about an
axis through its center. Figure 9-13 shows the problem
drawn for the integral approach. We choose an arbitrary el-
ement of mass dm located a distance x from the axis. (We
use x as the variable of integration.) The mass of this ele-

I � � r 2 dm.

I � lim
�mn: 0

� rn
2 �mn ,

( 1
12).

N : �( 1
12.03)N � 20( 1

12.12)
N � 10

N : �,

I �
1

12
ML2 � N 2 � 1

N 2 � (N pieces).

I � 0.0831ML2 �
1

12.03
ML2 (20 pieces).

I � 0.0825ML2 �
1

12.12
ML2 (10 pieces).

			

(0.1M)(0.15L)2  (0.1M )(0.05L)2  			, 

� (0.1M )(0.45L)2  (0.1M )(0.35L)2  (0.1M )(0.25L)2

I � r 1
2 �m1  r 2

2 �m2  			  r 10
2 �m10

r5 � r6 �
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Figure 9-12. (a) The rotational inertia of a solid rod of
length L, rotated about an axis through its center and perpendicu-
lar to its length, can be approximately computed by dividing the
rod into 10 equal pieces, each of length L/10. Each piece is treated
as a point mass a distance rn from the axis. (b) A more accurate
approximation to the rotational inertia of the rod is obtained by di-
viding it into 20 pieces.
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ment is equal to its density (mass per unit volume) � times
the volume element dV. The volume element is equal to the
area times its thickness dx:

We assume the rod has uniform cross-sectional area A and
uniform density �, the latter being equal to the total mass M
divided by the total volume Evalu-
ating Eq. 9-15, we obtain

With at the midpoint of the rod, the limits of integra-
tion are from to The rotational iner-
tia is then

(9-16)

This result is identical with the one deduced from the alge-
braic method, Eq. 9-14, in the limit 

If we wish to rotate the rod about an axis through one
end perpendicular to its length, we can use the parallel-axis
theorem (Eq. 9-12). We have already found and the dis-
tance h between the parallel axes is just half the length, so

Often we can calculate the rotational inertia of a solid
body by decomposing it into elements of known rotational
inertia. For example, suppose we have a uniform solid rec-
tangular plate of length a and width b, as shown in Fig.
9-14. We wish to calculate the rotational inertia about an
axis perpendicular to the plate and through its center.

The plate can be divided into a series of strips, each of
which is to be regarded as a rod. Consider the strip of mass
dm, length a, and width dx shown in Fig. 9-14. The mass
dm of the strip is related to the total mass M as the surface
area of the strip (a dx) is related to the total surface area ab:

dm �
M

b
dx. 

dm

M
�

a dx

ab
�

dx

b

I � 1
12ML2  M(L/2)2 � 1

3ML2.

Icm ,

N : �.

I � 1
12ML2. 

I �
M

L
�L/2

�L/2
x2 dx �

M

L

x3

3 �
�L/2

L/2

x � L /2.x � �L /2
x � 0

I � � r 2 dm � � x2 M

AL
A dx �

M

L
� x2 dx.

AL: � � M/V � M/AL.

dm � � dV � �A dx.

dV � A dx

The rotational inertia dI of the strip about the axis is, by the
parallel-axis theorem, related to the rotational inertia of the
strip (regarded as a rod) about its center of mass, given by
Eq. 9-16 as 

Substituting for dm yields

and I follows from the integral

The limits of integration on x are from �b/2 to b/2. Car-
rying out the integrations, we obtain

(9-17)

Note that this result is independent of the thickness of the
plate: we would get the same result for a stack of plates of
total mass M or, equivalently, for a solid rectangular block
of the same surface dimensions. Note also that our result
depends on the diagonal length of the plate rather than on a
and b separately. Can you explain this?

Working in this way, we can evaluate the rotational iner-
tia of almost any regular solid object. Figure 9-15 shows
some common objects and their rotational inertias. Al-
though it is relatively straightforward to use two- and three-
dimensional integrals to calculate these rotational inertias,
it is often possible, as we did in the above calculation, to
decompose a complex solid into simpler solids of known
rotational inertia. Problem 16 at the end of this chapter de-
scribes such a calculation for a solid sphere.

I � 1
12M(a2  b2).

I � � dI �
Ma2

12b
� dx 

M

b
� x2 dx.

dI �
Ma2

12b
dx 

M

b
x2 dx,

� 1
12dm a2  dm x2.

dI � dIcm  dm h2

dIcm � 1
12dm a2:
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x
dx

dm
A

Axis of 
rotation

Figure 9-13. The rotational inertia of a solid rod is computed
by integrating along its length. An element of mass dm is located
at a perpendicular distance x from the axis of rotation.

Figure 9-14. A solid rectangular plate of sides a and b is ro-
tated about an axis through its center and perpendicular to its sur-
face. To compute the rotational inertia, we consider the plate to be
divided into strips. The shaded strip can be considered a rod,
whose rotational inertia about the central axis can be found using
the parallel-axis theorem.

Axis of 
rotation

dx

b a

x



Sample Problem 9-5. Two identical solid spheres of
mass M and radius R are joined together, and the combination is
rotated about an axis tangent to one sphere and perpendicular to
the line connecting them (Fig. 9-16). What is the rotational inertia
of the combination?

Solution Like masses, rotational inertias of solid objects add like
scalars, so the total for the two spheres is For the first
sphere (the one closer to the axis of rotation) we have, from the
parallel axis theorem,

I1 � Icm  Mh2 � 2
5MR2  MR2 � 1.4MR2

I � I1  I2 .
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and for the second sphere,

The total is

9-4 TORQUE DUE TO GRAVITY

In Fig. 9-2, a force was applied to a single point on the
body, and it was then possible to use Eq. 9-3 to find the
torque due to that force. Suppose instead that you are hold-
ing one end of a long beam, the other end of which can
pivot about a horizontal axis through the end (Fig. 9-17). If
your hand were not supporting the end of the beam, it

I � I1  I2 � 10.8MR2.

I2 � Icm  Mh2 � 2
5MR2  M(3R)2 � 9.4MR2.

Axis
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(or ring) about
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end ⊥ to length

(f)

L

I =    ML21
3

Solid sphere
about any
diameter

(g)

2R 2R

Thin spherical 
shell about 
any diameter
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Figure 9-15. The rotational inertia of various solids about selected axes.

Figure 9-16. Sample Problem 9-5. Two spheres in contact
are rotated about an axis.

Figure 9-17. A hand holds one end of a beam that can rotate
about a horizontal axis through the other end.



would rotate about the axis due to the downward force of
gravity. If we regard the beam as a collection of point parti-
cles, then gravity acting downward gives a torque along the
axis due to the weight of each particle. The net torque on
the entire beam would be the sum of these individual
torques, but that would be a hopelessly complicated prob-
lem to solve.

Fortunately, the problem usually can be simplified. We
can replace the effect of gravity acting on all the particles
of a body with a single force that has two characteristics:
(1) it is equal to the weight of the object, and (2) it acts at a
single point called the center of gravity. (As we show later,
for most cases of interest—and for all cases considered in
this book— the center of gravity of a body coincides with
its center of mass.) Let us prove that the single force acting
on an object has the two characteristics listed above.

Imagine the body of mass M (Fig. 9-18) to be divided
into a large number of particles. The gravitational force ex-
erted by the Earth on the nth particle of mass mn is 
This force is directed down toward the center of the Earth.
The net force on the entire object due to gravity is the sum
over all the individual particles, or

(9-18)

Because we have assumed that has the same value for
every particle of the body, we can factor out of the sum-
mation of Eq. 9-18, which gives

(9-19)

This proves the first of the assertions we made above, that
we can replace the resultant force of gravity acting on the
entire body by the single force M gB.

� F
B

� gB � mn � M gB

gB
gB

� F
B

� � mngB.

mngB.

Let us now calculate the torque about an axis perpendic-
ular to the page through the arbitrary point O, as shown in
Fig. 9-18. The vector locates the particle of mass mn rel-
ative to this origin. The net torque about this point due to
gravity acting on all the particles is

(9-20)

where the last step is taken by moving the scalar mn within
the sum. Once again we use the constancy of to remove it
from the summation, being careful not to change the order
of the vectors and so that the sign of the cross product
does not change. According to Eq. 7-11, the remaining
summation, is just where is the vector
that locates the center of mass of the body relative to the
origin O. Taking these two steps, we can write Eq. 9-20 as

� ( )
(9-21)

The resultant torque on the body thus equals the torque that
would be produced by the single force acting at the
center of mass of the body, and thus the center of gravity
(cg) coincides with the center of mass, which proves the
second assertion we made above. A useful corollary of Eq.
9-21 is that the torque due to gravity about the center of
mass of a body is zero.

Center of Mass and Center of Gravity
In this section, we have used “center of mass” and “center of
gravity” interchangeably. The center of mass is defined for
any body and can be calculated, according to methods de-
scribed in Chapter 7, from the distribution of mass within
the body. The center of gravity, on the other hand, is defined
only for bodies in a gravitational field. To calculate the cen-
ter of gravity, we must know not only the mass distribution
of the body, but also the variation of over the body. If is
not constant over the body, then the center of gravity and the
center of mass may not coincide, in which case cannot be
removed from the sums in Eqs. 9-18 and 9-20.

Consider the “dumbbell” arrangement of Fig. 9-19, con-
sisting of two spheres of equal mass connected by a rod of
negligible mass. The axis of the rod is inclined at some
nonzero angle from the horizontal. The center of mass lies

gB

gBgB

M gB

� rBcm 
 M gB.


 gB � M rBcm 
 gB� mn rBn� �B

rBcmM rBcm ,� mn rBn ,

gBrBn

gB

� �B � � (rBn 
 mngB) � � (mn rBn 
 gB),

rBn
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Figure 9-18. Each particle in a body, such as the one with
mass mn , experiences a gravitational force such as The en-
tire weight of a body, though distributed throughout its volume as
the sum of the gravitational forces on all such particles, may be re-
placed by a single force of magnitude Mg acting at the center of
gravity. If the gravitational field is uniform (that is, the same for
all particles), the center of gravity coincides with the center of
mass, and so is the same as .rBcmrBcg

mngB.

y

x
O

mn

mng

rcg
rn

cg

Mg

Figure 9-19. Two spheres of equal mass connected by a light
rod. The center of mass lies halfway between the spheres. If the
gravitational acceleration is greater at the location of the lower
sphere, then the center of gravity is closer to that sphere.
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Mg2



at the geometrical center of the dumbbell. If its axis were
horizontal, the center of gravity would coincide with the
center of mass. When the axis is not horizontal, this is no
longer true. Because g varies slightly with distance from
the Earth, the lower sphere experiences a greater gravita-
tional force than the higher sphere. As a result, the center of
gravity is located slightly below the center of mass.

If the angle with the horizontal changes, or if we move
the dumbbell to a place where g has a different value, the
location of the center of gravity will change (while the cen-
ter of mass remains fixed). Thus the location of the center
of gravity depends on the orientation of the object as well
as on the local gravitational attraction. For a dumbbell of
length 1 m inclined at an angle of 45° near the Earth’s sur-
face, the distance between the center of mass and the center
of gravity is about 55 nm, far smaller than the precision at
which we normally work and therefore entirely negligible.
We can safely assume that the center of gravity coincides
with the center of mass.

If we suspend a body from an arbitrary point, it will
come to rest in a position where the net force is zero and
the net torque about any axis is zero. Because the net verti-
cal force is zero, the downward weight must equal the up-
ward force exerted at the point of support. The net torque
must also be zero, so the two forces must be acting along
the same vertical line.

The same conditions must be true if you try to balance a
vertical meter stick on your hand. If the stick starts to tip,
even slightly, the downward weight and the upward force of
your hand will not be acting along the same line, and there
will be a net torque on the stick that causes it to rotate and
fall to the floor. You must therefore constantly move your
hand to keep the upward force directly under the center of
gravity of the stick.

We can use this property to find the center of gravity of
an extended object. Consider a body of arbitrary shape sus-
pended from a point S (Fig. 9-20). The point of support

must be on a vertical line with the center of gravity. If we
draw a vertical line through S, then we know that the center
of gravity must lie somewhere on the line. We can repeat
the procedure with a new choice of point S, as in Fig. 9-20b,
and we find a second line that must contain the center of
gravity. The center of gravity must therefore lie at the inter-
section of the two lines.

If we suspend the object from the center of gravity, as in
Fig. 9-20c, and release it, the body will remain at rest no
matter what its orientation. We can turn it any way we wish,
and it remains at rest. This illustrates the corollary of Eq. 9-
21: the torque due to gravity is zero about the center of
gravity, because is zero at that point.

9-5 EQUILIBRIUM APPLICATIONS
OF NEWTON’S LAWS FOR
ROTATION

It is possible for the net external force acting on a body to
be zero, while the net external torque is nonzero. For exam-
ple, consider two forces of equal magnitude that act on a
body in opposite directions but not along the same line.
This body will have an angular acceleration but no linear or
translational acceleration. It is also possible for the net ex-
ternal torque on a body to be zero, while the net external
force is not (a body falling in gravity); in this case there is a
translational acceleration but no angular acceleration. For a
body to be in equilibrium both the net external force and
the net external torque must be zero. In this case the body
will have neither an angular acceleration nor a translational
acceleration. According to this definition, the body could
have a linear or an angular velocity, as long as that velocity
is constant. However, we will most often consider the spe-
cial case in which the body is at rest.

We therefore have two conditions of equilibrium:

(9-22)

and
(9-23)

Each of these vector equations can be replaced with its
equivalent three component (scalar) equations:

(9-24)

and
(9-25)

where for convenience we have dropped the subscript “ext”
from these equations. At equilibrium, the sum of the exter-
nal force components and the sum of the external torque
components along each of the coordinate axes must be
zero. This must be true for any choice of the directions of
the coordinate axes.

The equilibrium condition for the torques is true for any
choice of the axis about which the torques are calculated.
To prove this statement, we consider a rigid body on which

� �x � 0, � �y � 0, � �z � 0,

� Fx � 0, � Fy � 0, � Fz � 0

� �Bext � 0.

� F
B

ext � 0

rBcm
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Figure 9-20. A body suspended from an arbitrary point S, as
in (a) and (b), will be in stable equilibrium only if its center of
gravity (cg) hangs vertically below its suspension point S. The
dashed line in (b) represents the vertical line in (a), showing that
the center of gravity can be located by suspending the body succes-
sively from two different points. (c) If a body is suspended at its
center of gravity, it is in equilibrium no matter what its orientation.
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y y
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many forces act. Relative to the origin O, force is ap-
plied at the point located at force at and so on.
The net torque about an axis through O is therefore

(9-26)

Suppose a point P is located at displacement with re-
spect to O (Fig. 9-21). The point of application of with
respect to P, is The torque about P is

The first group of terms in the brackets gives according
to Eq. 9-26. We can rewrite the second group by removing
the constant factor of 

[ ( )]

where we make the last step because for a body
in translational equilibrium. Thus the torque about any two
points has the same value when the body is in translational
equilibrium.

Often we deal with problems in which all the forces lie
in the same plane. In this case the six conditions of Eqs. 9-
24 and 9-25 are reduced to three. We resolve the forces into
two components:

(9-27)

and, if we calculate torques about a point that also lies in
the xy plane, all torques must be in the direction perpendic-
ular to the xy plane. In this case we have

(9-28)� �z � 0,

� Fx � 0, � Fy � 0,

� F
B

ext � 0

� �BO ,
� F

B
extrBP 
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1 We limit ourselves mostly to planar problems to sim-
plify the calculations; this condition does not impose any
fundamental restriction on the application of the general
principles of equilibrium.

Equilibrium Analysis Procedures
Usually in equilibrium problems, we are interested in deter-
mining the values of one or more unknown forces by apply-
ing the conditions for equilibrium (zero net external force
and zero net external torque). Here are the procedures you
should follow:

1. Draw a boundary around the system, so that you can
clearly separate the system you are considering from its en-
vironment.

2. Draw a free-body diagram showing all external
forces that act on the system and their points of application.
External forces are those that act through the system
boundary that you drew in step 1; these often include grav-
ity, friction, and forces exerted by wires or beams that cross
the boundary. Internal forces (those that objects within the
system exert on each other) should not appear in the dia-
gram. Sometimes the direction of a force may not be obvi-
ous in advance. If you imagine making a cut through the
beam or wire where it crosses the boundary, the ends of this
cut will pull apart if the force acts outward from the bound-
ary. If you are in doubt, choose the direction arbitrarily, and
if you have guessed wrong your solution will result in nega-
tive values for the components of that force.

3. Set up a coordinate system and choose the direction
of the axes. This coordinate system will be used to resolve
the forces into their components.

4. Set up a coordinate system and axes for resolving the
torques into their components. In equilibrium, the net exter-
nal torque must be zero about any axis. Often you can
choose to calculate torques about a point through which
several forces act, thereby eliminating those forces from the
torque equation. In adding torque components, we follow
the sign convention that the torque along any axis is posi-
tive if acting alone it would produce a counterclockwise ro-
tation about that axis. The right-hand rule for torques can
also be used to establish this convention.

Once we have carried out these steps in setting up the
problem, we can carry out the solution using Eqs. 9-22 and
9-23 or 9-27 and 9-28, as the following problems illustrate.

Sample Problem 9-6. A uniform beam of length L
whose mass m is 1.8 kg rests with its ends on two digital scales, as
in Fig. 9-22a. A block whose mass M is 2.7 kg rests on the beam,
its center one-fourth of the way from the beam’s left end. What do
the scales read?

Solution We choose as our system the beam and the block, taken
together. Figure 9-22b is a free-body diagram for this system, show-
ing all the external forces that act on the system. The weight of the
beam, acts downward at its center of mass, which is at its geo-
metric center, since the beam is uniform. Similarly, the weight
of the block, acts downward at its center of mass. The scales push

M gB,
mgB,
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Figure 9-21. The force is one of N external forces that act
on a rigid body (not shown). The vector locates the point of ap-
plication of relative to O and is used in calculating the torque
of about O. The vector is used in calculating the
torque of about P.F
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upward at the ends of the beam with forces and The magni-
tudes of these latter two forces are the scale readings that we seek.

Our system is in static equilibrium, so we can apply the condi-
tions of Eqs. 9-27 and 9-28. The forces have no x components, so
the equation provides no information. The y component
of the net external force is With the
equilibrium condition we have

(9-29)

Further information about the unknown forces Fl and Fr comes
from the torque equation (Eq. 9-28). We choose to take torques
about an axis through the left end of the beam. The force Fl has a
moment arm of zero. Using the right-hand rule, we conclude 

Fl  Fr � Mg � mg � 0.

� Fy � 0,
� Fy � Fl  Fr � Mg � mg.

� Fx � 0

F
B

r .F
B

l

that Fr gives a positive torque, and Mg and mg give negative
torques. The net torque is found by multiplying each force by 
its moment arm (in this case, its distance from the chosen 
axis): With

we have

(9-30)

or

Note how our choice of axis eliminates the force Fl from the
torque equation and allows us to solve directly for the other force.
If we had chosen to take torques about any arbitrary point, we
would have obtained an equation involving Fl and Fr which could
be solved simultaneously with Eq. 9-29. Our choice of axis helps
to simplify the algebra somewhat, but of course it in no way
changes the ultimate solution.

If we substitute the value of Fr into Eq. 9-29 and solve for Fl ,
we find

Note that the length of the beam and the height of the center of
mass of the block do not enter the solution to this problem. Is this
physically reasonable?

Try solving this problem by using only the balance of torques
equation, once for an axis at the left end of the beam and again for
an axis at the right end of the beam. This method, just like the
method we used in solving this problem, gives two equations that
can be solved for the unknowns Fl and Fr .

Sample Problem 9-7. A ladder whose length L is
12 m and whose mass m is 45 kg rests against a wall. Its upper
end is a distance h of 9.3 m above the ground, as in Fig. 9-23a.
The center of mass of the ladder is one-third of the way up the
ladder. A firefighter whose mass M is 72 kg climbs halfway up the
ladder. Assume that the wall, but not the ground, is frictionless.
What forces are exerted on the ladder by the wall and by the
ground?

� (2.7 kg  1.8 kg)(9.8 m/s2) � 15 N � 29 N.
Fl � (M  m)g � Fr

� 1
4(9.8 m/s2)[2.7 kg  2(1.8 kg)] � 15 N.

Fr � � g

4 � (M  2m) 

Fr L �
mgL

2
�

MgL

4
� 0

� �z � 0,
(mg)(L /2) � (Mg)(L /4).� �z � (Fl)(0)  (Fr)(L) �
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Figure 9-22. Sample Problem 9-6. (a) A beam of mass m
supports a block of mass M. The digital scales display the vertical
forces exerted on the two ends of the beam. (b) A free-body dia-
gram showing the forces that act on the system, consisting of
beam  block.
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Figure 9-23. Sample Problem
9-7. (a) A firefighter climbs halfway
up a ladder that is leaning against a
frictionless wall. (b) A free-body dia-
gram, showing (to scale) all the
forces that act.



Solution Figure 9-23b shows a free-body diagram. The wall ex-
erts a horizontal force on the ladder; it can exert no vertical
force because the wall– ladder contact is assumed to be friction-
less. The ground exerts a force on the ladder with a horizontal
component f due to friction and a vertical component N, the nor-
mal force. We choose coordinate axes as shown, with the origin O
at the point where the ladder meets the ground. The distance a
from the wall to the foot of the ladder is readily found from

The x and y components of the net force on the ladder are
and Equations 9-27

and 0) then give

(9-31)

From the second of these equations,

Taking torques about an axis through point O and parallel to the z
direction, we note that Fw gives a negative torque, Mg and mg give
positive torques, and N and f give zero torques about O because
their moment arms are zero. Multiplying each force by its moment
arm, we find 

Using Eq. 9-28 we find

(9-32)

This wise choice of location for the axis eliminated two variables,
f and N, from the balance of torques equation. We find, solving
Eq. 9-32 for Fw ,

From Eq. 9-31 we have at once

Sample Problem 9-8. A uniform beam of length
m and mass kg is hinged at a wall as in Fig.

9-24a. A wire connected to the wall a distance m above
the hinge is connected to the other end of the beam, the length
of the wire being such that the beam makes an angle of � � 30°
with the horizontal. A body of mass kg is suspended
from the upper end of the beam. Find the tension in the wire and
the force exerted by the hinge on the beam.

Solution Figure 9-24b shows all the external forces that act on
the beam, which we have chosen as our system. Because two of
the forces are directed vertically downward, we choose our axes to
be horizontal and vertical. The tension in the wire and the force
exerted by the hinge on the beam are represented by their horizon-
tal and vertical components.

The components of the net force on the beam are 
and and the equilibrium

condition for the force (Eq. 9-27) gives

(9-33)

To apply the equilibrium condition on the torque (Eq. 9-28), we
choose our axis at the upper end of the beam (why?), and we find
the net torque by multiplying each force by its moment arm:

Fh � Th � 0 and Fv  Tv � Mg � mg � 0.

� Fy � Fv  Tv � Mg � mg,Fh � Th

� Fx �

M � 56

d � 2.1
m � 8.5L � 3.3

f � Fw � 410 N.

�
(9.8 m/s2)(7.6 m)[(72 kg)/2  (45 kg)/3]

9.3 m
� 410 N.

Fw �
ga(M/2  m/3)

h

�Fw h 
Mga

2


mga

3
� 0.

(� �z � 0),(N)(0)  ( f )(0).
�(Fw)(h)  (Mg)(a/2)  (mg)(a/3) � �z �

N � (M  m)g � (72 kg  45 kg)(9.8 m/s2) � 1150 N.

Fw � f � 0 and N � Mg � mg � 0.

� Fy �(� Fx � 0
� Fy � N � Mg � mg.� Fx � Fw � f

a � √L2 � h2 � √(12 m)2 � (9.3 m)2 � 7.6 m.

F
B

w

� �z � � (Fv)(L cos �)  (Fh)(L sin �)  (mg) L cos �) 
Setting this equal to 0 and doing

some manipulation, we find

(9-34)

So far we have three equations in the four unknowns (Fv , Fh , Tv ,
Th). A fourth relationship comes from the requirement that Tv and Th

must add to give a resultant tension directed along the wire. The
wire cannot support a force component perpendicular to its long di-
mension. (This is not true for the rigid beam.) The fourth equation is

(9-35)

where tan � � sin �)/(L cos �).
Combining the four equations we find, after doing the neces-

sary algebra,

The tension in the wire will then be

and the force exerted by the hinge on the beam is

Note that both T and F are considerably larger than the combined
weights of the beam and the suspended body (632 N).

The vector makes an angle with the horizontal of

Thus the resultant force vector acting on the beam at the hinge
does not point along the beam direction.

� � tan�1 Fv

Fh

� 32.2�.

F
B

F � √Fh
2  Fv

2 � 950 N.

T � √T h
2  T v

2 � 814 N,

Fv � 506 N, Fh � 804 N, Tv � 126 N, Th � 804 N.

(d � L

Tv � Th tan �,

T
B

Fv � Fh tan � � mg/2 � 0.

(Tv)(0)  (Th)(0)  (Mg)(0).
(1

2
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Figure 9-24. Sample Problem 9-8. (a) A beam is supported
by a hinge on a wall at its lower end and by a wire to the wall at
its upper end. An object of mass M hangs from the upper end of
the beam. (b) A free-body diagram, showing the forces acting on
the beam. A force is exerted by the hinge and a force is sup-
plied by the tension in the wire.
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In the preceding examples we have been careful to limit
the number of unknown forces to the number of independent
equations relating the forces. When all the forces act in a
plane, we can have only three independent equations of
equilibrium, one for rotational equilibrium about any axis
normal to the plane and two others for translational equilib-
rium in the plane. However, we often have more than three
unknown forces. For example, in Sample Problem 9-7, if we
drop the assumption of a frictionless wall, we have four un-
known quantities—namely, the horizontal and vertical com-
ponents of the force acting on the ladder at the wall and the
horizontal and vertical components of the force acting on
the ladder at the ground. Because we have only three equa-
tions, these forces cannot be determined. We must therefore
be able to find another independent relation between the un-
known forces if we hope to solve the problem uniquely. (In
Sample Problem 9-8, this last equation came from a physi-
cal property of one of the elements of the system.) Taking
torques about a second axis does not give a fourth indepen-
dent equation; you can show that such an equation is a linear
combination of the first torque equation and the two force
equations, and so it contains no new information.

Another simple example of an undetermined structure
occurs when we wish to determine the forces exerted by the
ground on each of the four tires of an automobile when it is
at rest on a horizontal surface. If we assume that these
forces are normal to the ground, we have four unknown
quantities. We have only three independent equations giv-
ing the equilibrium conditions—one for translational equi-
librium in the single direction of all the forces and two for
rotational equilibrium about the two axes perpendicular to
each other in a horizontal plane. Again the solution of the
problem is mathematically indeterminate.

Of course, since there is actually a unique solution to
this physical problem, we must find a physical basis for the
additional independent relation between the forces that en-
ables us to solve the problem. The difficulty is removed
when we realize that structures are never perfectly rigid, as
we have assumed throughout. All structures are actually
somewhat deformed. For example, the automobile tires and
the ground are deformed, as are the ladder and wall. The
laws of elasticity and the elastic properties of the structure
provide the necessary additional relation between the four
forces. A complete analysis therefore requires not only the
laws of rigid body mechanics but also the laws of elasticity.

9-6 NONEQUILIBRIUM
APPLICATIONS OF NEWTON’S
LAWS FOR ROTATION

In this section we remove the restriction from the previous
section in which the angular acceleration was zero because
the net torque was zero. Here we consider cases in which a
nonzero net torque acts on a body and imparts an angular
acceleration to it.

In the case of linear motion in one dimension, we solve
similar problems using Newton’s second law,
where one component of the net force produces a compo-
nent of the acceleration along the same coordinate axis. To
maintain the analogy with Newton’s laws for linear motion,
we continue the restriction that the body rotate about a sin-
gle fixed axis. We use the rotational form of Newton’s sec-
ond law (Eq. 9-11), where (as in the previous
section) we have for convenience dropped the “ext” sub-
script with the understanding that we are considering only
external torques in our analysis.

In this section we will analyze problems involving an-
gular accelerations produced by a torque applied to an ob-
ject with a fixed axis of rotation. In the next section we will
broaden the discussion somewhat to include cases in which
the object rotates and also moves linearly (but keeps the
axis of rotation in a fixed direction). In Chapter 10 we con-
sider rotations in which the axis is not fixed in direction.

Sample Problem 9-9. A playground merry-go-round
is pushed by a parent who exerts a force of magnitude 115 N at
a point P on the rim a distance of r � 1.50 m from the axis of ro-
tation (Fig. 9-25). The force is exerted in a direction at an angle
32° below the horizontal, and the horizontal component of the
force is in a direction 15° inward from the tangent at P. (a) Find
the magnitude of the component of the torque that accelerates the
merry-go-round. (b) Assuming that the merry-go-round can be
represented as a steel disk 1.5 m in radius and 0.40 cm thick and
that the child riding on it can be represented as a 25-kg “particle”
1.0 m from the axis of rotation, find the resulting angular accelera-
tion of the system including the merry-go-round and child.

Solution (a) Only the horizontal component of produces a ver-
tical torque. Let us find the component of along the hori-
zontal line perpendicular to The horizontal component of is

The component of Fh perpendicular to is

The (vertical) torque along the axis of rotation is thus

� � rF� � (1.50 m)(94.2 N) � 141 N 	m.

F� � Fh cos 15� � 94.2 N.

rB
Fh � F cos 32� � 97.5 N.

F
B

rB.
F
B

F� ,
F
B

F
B

� �z � I�z ,

� Fx � max ,
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Figure 9-25. Sample Problem 9-9. A parent pushes a play-
ground merry-go-round. The parent is leaning down, so the force
has a downward component. Furthermore, because the parent is
outside the rim, the force is directed slightly inward. The horizon-
tal component of the force, Fh , is in the plane of the rotating plat-
form and makes an angle of 15° with the tangent at P, the point at
which the force is applied.



The component of Fh parallel to sin 15°) produces no
torque at all about the axis of rotation, and the vertical component
of sin 32°) produces a torque perpendicular to the axis
that would tend to tip the rotating platform out of the horizontal
plane (because the parent is pushing down on the platform) if that
torque were not opposed by an equal and opposite torque from the
bearings.
(b) The merry-go-round is a circular disk of radius R � 1.5 m and
thickness d � 0.40 cm. Its volume is �R2d � 2.83 
 104 cm3.
The density of steel is 7.9 g/cm3, so the mass of the merry-go-
round is (2.8 
 104 cm3)(7.9 g/cm3) � 2.23 
 105 g � 223 kg.
From Figure 9-15c we obtain the rotational inertia of a disk ro-
tated about an axis perpendicular to its center:

The rotational inertia of the child, whom we treat as a particle of
mass kg at a distance of m from the axis of rota-
tion, is

The total rotational inertia is 
The angular acceleration can now be found

from Eq. 9-11:

Based on the direction of the force shown in Fig. 9-25, the right-
hand rule indicates that both �z and �z point vertically upward
from the plane of the merry-go-round.

Sample Problem 9-10. Figure 9-26a shows a pulley,
which can be considered as a uniform disk of mass kg
and radius cm, mounted on a fixed (frictionless) horizon-
tal axle. A block of mass kg hangs from a light cord that
is wrapped around the rim of the disk. Find the acceleration of the

m � 1.2
R � 20

M � 2.5

�z �
�z

It

�
141 N 	m

276 kg 	m2 � 0.51 rad/s2.

kg 	m2 � 276 kg 	m2.
It � Im  Ic � 251 kg 	m2  25

Ic � mr 2 � (25 kg)(1.0 m)2 � 25 kg 	m2.

r � 1.0m � 25

Im � 1
2MR2 � 1

2(223 kg)(1.5 m)2 � 251 kg 	m2.

F (� F

r (� Fh falling block, the tension in the cord, and the angular acceleration
of the disk.

Solution Figure 9-26b shows a free-body diagram for the block.
Note that, in drawing the free-body diagram for the analysis of ro-
tations, it is necessary to show the forces and their points of appli-
cation, so that we may determine the line of action for each force
in calculating the corresponding torque. We choose the y axis to be
positive downward, so that the net force is which
is a positive quantity if the block accelerates downward. Using the
y component of Newton’s second law we have

Figure 9-26c shows a partial free-body diagram for the disk.
Choosing the positive z axis to be out of the plane of the figure,
the z component of the net torque about O is TR (neither
the weight of the disk nor the upward force exerted at its point of
support contribute to the torque about O, because both their lines
of action pass through O). Applying the rotational form of New-
ton’s second law (Eq. 9-11) gives where �z is positive
for the counterclockwise rotation. With and 
we obtain or

Because the cord does not slip or stretch, the acceleration ay of the
block must equal the tangential acceleration aT of a point on the
rim of the disk. With we can combine the equations
for the block and the disk to obtain

and

As expected, the acceleration of the falling block is less than g,
and the tension in the cord is less than the weight of the
hanging block We see also that the acceleration
of the block and the tension depend on the mass of the disk but
not on its radius. As a check, we note that the formulas derived
above predict and for the case of a massless disk

This is what we expect; the block simply falls as a free
body, trailing the cord behind it.

The angular acceleration of the disk follows from

and it is positive, corresponding to a rotation in the direction of
the arrow in Fig. 9-26a.

For rotations about a fixed axis, the angular velocity and
acceleration have only one component, and therefore only
that same component of the torque enters into Newton’s
laws. However, we may apply a force to a rigid body in any
direction, and there will in general be two or three compo-
nents to the torque, only one of which actually produces ro-
tations. What happens to the other components?

Consider the bicycle wheel shown in Fig. 9-27. The axle
of the wheel is fixed in direction by the two bearings, so

�z �
a

R
�

4.8 m/s2

0.20 m
� 24 rad/s2 � 3.8 rev/s2

(M � 0).
T � 0a � g

(�mg � 11.8 N).
(� 6.0 N)

� 6.0 N. 

T � mg
M

M  2m
� (1.2 kg)(9.8 m/s2) 

2.5 kg

2.5 kg  (2)(1.2 kg)

a � g
2m

M  2m
� (9.8 m/s2) 

(2)(1.2 kg)

2.5 kg  (2)(1.2 kg)
� 4.8 m/s2,

ay � aT � a,

T � 1
2MaT .

TR � (1
2MR2)(aT /R)

�z � aT /R,I � 1
2MR2

TR � I�z ,

� �z �

mg � T � may .

(� Fy � may),

� Fy � mg � T,
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Figure 9-26. Sample Problem 9-10. (a) A falling block
causes the disk to rotate. (b) A free-body diagram for the block.
(c) A partial free-body diagram for the disk. The directions taken
as positive are shown by the arrows in (a). The positive z axis is
out of the page.



that the rotation axis corresponds to the z axis. A force is
applied to the wheel in an arbitrary direction, and in general
the associated torque may have x, y, and z components, as
shown in Fig. 9-27. Each component of the torque tends to
produce rotation about its corresponding axis. However, we
have assumed that the body is fixed in such a way that rota-
tion about only the z axis is possible. The x and y compo-
nents of the torque produce no motion. In this case, the
bearings serve to constrain the system to rotate about only
the z axis, and they must therefore provide torques that can-
cel the x and y components of the torque from the applied
force. This indicates what is meant by a body constrained
to move about a fixed axis: only torque components parallel
to that axis are effective in rotating the body, and torque
components perpendicular to the axis are assumed to be
balanced by other parts of the system. The bearings must
provide torques with x and y components to keep the direc-
tion of the axis of rotation fixed; the bearings may also pro-
vide a torque in the z direction, such as in the case of non-

F
B

ideal bearings that exert frictional forces on the axle of the
wheel. Since the center of mass of the wheel does not
move, the forces exerted by the bearings must add to the
external forces to give a net force of zero.

9-7 COMBINED ROTATIONAL
AND TRANSLATIONAL MOTION

Figure 9-28 shows a time-exposure photograph of a rolling
wheel. This is one example of a possibly complex motion
in which an object simultaneously undergoes both rota-
tional and translational displacements.

In general, the translational and rotational motions are
completely independent. For example, consider a puck sliding
across a horizontal surface (perhaps a sheet of ice). You can
start the puck in translational motion only (no rotation), or you
can spin it in one place so that it has only rotational and no
translational motion. Alternatively, you can simultaneously
push the puck (with any linear velocity) and rotate it (with any
angular velocity), so it moves across the ice with both transla-
tional and rotational motion. The center of mass moves in a
straight line (even in the presence of an external force such as
friction), but the motion of any other point of the puck may be
a complicated combination of the rotational and translational
motions, like the point on the rim of the wheel in Fig. 9-28.

As represented by the sliding puck or the rolling wheel,
we restrict our discussion of this combined motion to cases
satisfying two conditions: (1) the axis of rotation passes
through the center of mass (which serves as the reference
point for calculating torque and angular momentum), and
(2) the axis always has the same direction in space (that is,
the axis at one instant is parallel to the axis at any other in-
stant). If these two conditions are valid, we may apply Eq.
9-11 using only external torques) to the rota-
tional motion. Independent of the rotational motion, we
may apply Eq. 7-16 using only external
forces) to the translational motion.

There is one special case of this type of motion that we
often observe; this case is illustrated by the rolling wheel of
Fig. 9-28. Note that where the illuminated point on the rim

(� F
B

� M aB cm ,

(� �z � I�z ,
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Figure 9-27. A rigid body, in this case a wheel, is free to ro-
tate about the z axis. An arbitrary force shown acting at a point
on the rim, can produce torque components along the three coor-
dinate axes. Only the z component is successful in rotating the
wheel. The x and y components of the torque would tend to tip the
axis of rotation away from the z axis. This tendency must be op-
posed by equal and opposite torques (not shown) exerted by the
bearings, which hold the axis in a fixed direction.
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,

Figure 9-28. A time-exposure photo of a rolling wheel. Small lights have been attached to the wheel, one at its center and another
at its edge. The latter traces out a curve called a cycloid.



contacts the surface, the light seems especially bright, cor-
responding to a long exposure of the film. At these instants,
that point is moving very slowly relative to the surface, or
may perhaps be instantaneously at rest. This special case, in
which an object rolls across a surface in such a way that
there is no relative motion between the object and the sur-
face at the instantaneous point of contact, is called rolling
without slipping.

Figure 9-29 shows another example of rolling without
slipping. Note that the spokes of the bicycle wheel near the
bottom are in sharper focus than the spokes at the top,
which appear blurred. The top of the wheel is clearly mov-
ing faster than the bottom! In rolling without slipping, the
frictional force between the wheel and the surface is re-
sponsible for preventing the relative motion at the point of
contact. Even though the wheel is moving, it is the force of
static friction that applies.

Not all cases of rolling on a frictional surface result in
rolling without slipping. For example, imagine a car trying
to start on an icy street. At first, perhaps the wheels spin in
place, so we have pure rotation with no translation. If sand
is placed on the ice, the wheels still spin rapidly, but the car
begins to inch forward. There is still some slipping between
the tires and the ice, but we now have some translational
motion. Eventually the tires stop slipping on the ice, so
there is no relative motion between them; this is the condi-
tion of rolling without slipping.

Figure 9-30 shows one way to view rolling without slip-
ping as a combination of rotational and translational mo-
tions. In pure translational motion (Fig. 9-30a), the center
of mass C (along with every point on the wheel) moves
with velocity vcm to the right. In pure rotational motion
(Fig. 9-30b) at angular speed �, every point on the rim has
tangential speed �R. When the two motions are combined,
the resulting velocity of point B (at the bottom of the
wheel) is For rolling without slipping, the point
where the wheel contacts the surface must be at rest; thus

or

(9-36)

Superimposing the resulting translational and rotational
motions, we obtain Fig. 9-30c. Note that the linear speed at
the top of the wheel (point T) is exactly twice that at the
center.

Equation 9-36 applies only in the case of rolling without
slipping; in the general case of combined rotational and
translational motion, vcm does not equal �R.

There is yet another instructive way to analyze rolling
without slipping: we consider the point of contact B to be
an instantaneous axis of rotation, as illustrated in Fig. 9-
31. At each instant there is a new point of contact B and
therefore a new axis of rotation, but instantaneously the
motion consists of a pure rotation about B. The angular ve-
locity of this rotation about B is the same as the angular
velocity � of the rotation about the center of mass. Since
the distance from B to T is twice the distance from B to C,
once again we conclude that the linear speed at T is twice
that at C.

vcm � �R.

vcm � �R � 0,

vcm � �R.
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Figure 9-29. A photo of a rolling bicycle wheel. Note that the
spokes near the top of the wheel are more blurred than those near
the bottom. This is because the top has a greater linear velocity.

Figure 9-30. Rolling can be viewed as a superposition of pure translation and rotation about the
center of mass. (a) The translational motion, in which all points move with the same linear velocity. 
(b) The rotational motion, in which all points move with the same angular velocity about the central
axis. (c) The superposition of (a) and (b), in which the velocities at T, C, and B have been obtained by
vector addition of the translational and rotational components.
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Sample Problem 9-11. A solid cylinder of mass M
and radius R starts from rest and rolls without slipping down an
inclined plane of length L and height h (Fig. 9-32). Find the speed
of its center of mass when the cylinder reaches the bottom.

Solution The free-body diagram of Fig. 9-32b shows the forces
acting on the cylinder: the weight the normal force and
the frictional force Based on the choice of x and y axes shown
in the figure, the components of the net force on the cylinder are

sin � � f and Mg cos �. If we apply
Newton’s second law with and we obtain for the
x and y equations

To find the net torque about the center of mass, we note that the
lines of action of both and pass through the center of mass
and so their moment arms are zero. Only the frictional force con-
tributes to the torque, and so Newton’s second law
for rotation then gives

In Fig. 9-32, the z axis is out of the page and so �z is indeed nega-
tive. The condition for rolling without slipping is vcm � �R; dif-

�fR � Icm�z .

� �z � �fR.

M gBN
B

Mg sin � � f � Macm and N � Mg cos � � 0.

ay � 0,ax � acm

�Fy � N �� Fx � Mg

f
B

.
N
B

,M gB,

ferentiating this expression gives which relates the
magnitudes of acm and �. Substituting �z � �acm/R and

(for a cylinder), we find

Substituting this into the first translational equation, we find

That is, the acceleration of the center of mass for the rolling
cylinder is less than its acceleration would be if the
cylinder were sliding down the incline (g sin �). This result holds
at any instant, regardless of the position of the cylinder along the
incline.

Because the acceleration is constant, we can use the equa-
tions of Chapter 2 to find the velocity. With and taking

(where the x axis lies along the plane), Eqs. 2-26
and 2-28 respectively become and Solv-
ing the second equation for the time t, we find 
With this result the first equation gives

This method also determines the force of static friction needed
for rolling:

What would happen if the force of static friction between the sur-
faces were less than this value?

Sample Problem 9-12. A uniform solid cylinder of
radius R and mass is given an initial
(clockwise) angular velocity �0 of 15 rev/s and then lowered on 
to a uniform horizontal surface (Fig. 9-33). The coefficient of ki-
netic friction between the surface and the cylinder is 
Initially, the cylinder slips as it moves along the surface, but after
a time t, pure rolling without slipping begins. (a) What is the 
velocity vcm of the center of mass at the time t? (b) What is the
value of t?

Solution (a) Figure 9-33b shows the forces that act on the cylin-
der. The x and y components of the net force are f and

During the interval from time 0 to time t while
slipping occurs, the forces are constant and so the acceleration
� Fy � N � Mg.

� Fx �

�k � 0.21.

M (�3.2 km)(�12 cm)

f � 1
2Macm � (1

2M)(2
3 g sin �) � 1

3Mg sin �.

� acm √ 2L

acm
� √2Lacm � √2L(2

3g sin �) � √4
3Lg sin �

vcm � acmt

t � √2L /acm .
L � 1

2acmt 2.vcm � acmt
x � x 0 � L

v0x � 0

( 2
3 g sin �)

acm � 2
3 g sin �.

f � �
Icm�z

R
� �

( 1
2MR2)(�acm/R)

R
�

1

2
Macm .

Icm � 1
2 MR2

acm � �R,
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Figure 9-31. A rolling body can be considered to be rotating
about an instantaneous axis at the point of contact B. The vectors
show the instantaneous linear velocities of selected points.

Figure 9-32. Sample Problem 9-11. (a) A cylinder rolls
without slipping down the incline. (b) The free-body diagram of
the cylinder.
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Figure 9-33. Sample Problem 9-12. (a) The rotating cylin-
der initially slips as it rolls. (b) The free-body diagram of the
cylinder.
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must be constant. In this time interval, vfx � vcm and vix � 0. The
acceleration is then

The x component of Newton’s second law then gives

Only the frictional force gives a torque about the center of mass,
so the net torque is With and �vcm/R
at the instant when rolling without slipping begins (the minus
signs indicating that the cylinder is spinning clockwise), the angu-
lar acceleration is

Newton’s second law for rotation gives Substituting
for f and �z from the above two equations, we obtain

using from Fig. 9-15. After eliminating common fac-
tors we can solve for vcm to find

Note that vcm does not depend on the values of M, g, or �k . What,
however, would occur if any of these quantities were zero?
(b) With and also we can elimi-
nate f and solve for t:

Sample Problem 9-13. A toy yo-yo* of total mass
kg consists of two disks of radius cm con-

nected by a thin shaft of radius cm (Fig. 9-34a). A
string of length 1.2 m is wrapped around the shaft. If the yo-
yo is thrown downward with an initial velocity of m/s,
what is its rotational velocity when it reaches the end of the
string?

Solution The free-body diagram for the yo-yo is shown in Fig. 9-
34b. The net force is (taking the downward di-
rection to be positive), and the net torque about the center of mass
is (taking counterclockwise torques to be positive).
The translational and rotational forms of Newton’s second law
then give

Mg � T � May and TR0 � I�z .

� �z � TR0

� Fy � Mg � T

v0 � 1.4
L �

R0 � 0.25
R � 2.8M � 0.24

t �
vcm

�k g
�

3.8 m/s

(0.21)(9.80 m/s2)
� 1.8 s.

f � �kN � �kMg,f � Mvcm /t

vcm � 1
3�0R � 1

3(15 rev/s)(2� rad/rev)(0.12 m) � 3.8 m/s.

Icm � 1
2MR2

� Mvcm

t �R �

1
2MR2(�vcm /R  �0)

t

fR � Icm�z .

�z �
��

�t
�

�f � �i

t
�

�vcm/R  �0

t
.

�f ��i � ��0� �z � fR.

f � Max �
Mvcm

t

ax �
�vx

�t
�

vfx � vix

t
�

vcm � 0

t
�

vcm

t
.

We consider the string to be of negligible thickness and assume
that it does not slip as it is unwinding. The point where the string
contacts the shaft is instantaneously at rest, just like the point B in
Figs. 9-30 and 9-31. With it follows that (in magni-
tudes only) In our notation for this problem, acm � ay

(a positive quantity) and � � �z (also a positive quantity). Thus,
taking and combining the force and torque equations
to eliminate the tension, we solve for the angular acceleration:

To complete the solution, we need the rotational inertia, which is
not given. Let us assume that the thin shaft makes a negligible
contribution to I (the mass and radius of the shaft are both small
compared to the disks). Then the rotational inertia is 
and

To find the final angular velocity from this acceleration, we can
use Eq. 8-6, if we know the time t for the yo-yo
to unwind. This time can be found from Eq. 8-7,

The angle through which the yo-yo ro-
tates as the string unwinds is � � �0 � L/R0 � 480 rad, and the
initial angular velocity is (1.4 m/s)(0.0025 m) �
560 rad/s. With these substitutions, Eq. 8-7 then gives

(30.75 rad/s2)t2  (560 rad/s)t � 480 rad � 0.

Solving this quadratic equation, we find s or �19 s. The
positive value is the physically meaningful one, and so

�z � �0z  �z t � 560 rad/s  (61.5 rad/s2)(0.82 s) � 610 rad/s.

t � 0.82

�0z � v0/R0 �

1
2�zt2.� � �0  �0zt 

�z � �0z  �z t,

�
980 cm/s2

0.25 cm  (2.8 cm)2/2(0.25 cm)
� 61.5 rad/s2.

�z �
g

R0

1

1  R2/2R0
2

I � 1
2MR2

�z �
g

R0

1

1  I/MR0
2 .

ay � �z R0

acm � �R0 .
vcm � �R0 ,
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* See “The Yo-Yo: A Toy Flywheel,” by Wolfgang Burger, American Sci-
entist, March–April 1984, p. 137.
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Figure 9-34. Sample Problem 9-13. (a) A yo-yo falls as the
string unwinds from the axle. (b) The force diagram.



MULTIPLE CHOICE

9-1 Torque
1. Consider the object in Fig. 9-2. Invert the coordinate system

so that and Clearly un-
der this transformation. What happens to and 

(A)
(B)
(C)
(D)

2. A particle is located at in meters. A con-
stant force (in newtons) begins to act on
the particle. As the particle accelerates under the action of this
force the torque, as measured about the origin,

(A) increases. (B) decreases. (C) is zero.
(D) is a nonzero constant.

3. In one of his many action movies Jackie Chan jumped off a
building by wrapping a rope around his waist and then al-
lowed it to unwind as he fell to the ground, much the same as
a yo-yo. Assuming his acceleration toward the ground was a
constant much less than g, the tension in the rope would be 

(A) almost equal to his weight.
(B) exactly equal to his weight.
(C) much less than his weight.
(D) exactly zero.

(See Who Am I, starring Jackie Chan.)

9-2 Rotational Inertia and Newton’s Second Law

9-3 Rotational Inertia of Solid Bodies
4. About what axis would a uniform cube have its minimum ro-

tational inertia?
(A) Any axis passing through the center of the cube and

the center of one face
(B) Any axis passing through the center of the cube and

the center of one edge
(C) Any axis passing through the center of the cube and

one vertex (a diagonal)
(D) A uniform cube has the same rotational inertia for any

axis of rotation through its center.

9-4 Torque Due to Gravity

9-5 Equilibrium Applications of Newton’s Laws for
Rotation

5. A long straight rod experiences several forces, each acting at
a different location on the rod. All forces are perpendicular to
the rod. The rod might be in translational equilibrium, rota-
tional equilibrium, both, or neither.
(a) If a calculation reveals that the net torque about the left

end is zero, then one can conclude that the rod

(A) is definitely in rotational equilibrium.
(B) is in rotational equilibrium only if the net force on the

rod is also zero.
(C) might not be in rotational equilibrium even if the net

force on the rod is also zero.
(D) might be in rotational equilibrium even if the net force

is not zero.

(b) If a calculation reveals that the net force on the rod is
zero, then one can conclude that the rod

(A) is definitely in rotational equilibrium.

F
B

� 0î  0ĵ  4k̂
rB � 0î  3ĵ  0k̂,

�B : ��B and F
B

: �F
B

.
�B : ��B and F

B
: F

B
.

�B : �B and F
B

: �F
B

.
�B : �B and F

B
: F

B
.

F
B

?�B
rB : �rBz : �z.x : �x, y : �y

(B) is in rotational equilibrium only if the net torque about
every axis through any one point is found to be zero.

(C) might be in rotational equilibrium if the net torque
about every axis through any one point is found to be
zero.

(D) might be in rotational equilibrium even if the net
torque about any axis through any one point is not
zero.

6. A parent pushes a balanced frictionless playground merry-go-
round. The parent exerts a force tangent to the merry-go-
round resulting in a torque of 240 the distance between
the center of the merry-go-round and the point of application
of the force is 1.6 m.
(a) Is the merry-go-round in equilibrium?

(A) Yes, for both translational and rotational motion
(B) Only for translational motion
(C) Only for rotational motion
(D) No, not for translational or rotational motion

(b) What, if any, is the magnitude of the horizontal force ex-
erted by the merry-go-round axle on the merry-go-round?

(A) 384 N (B) 240 N
(C) 150 N (D) There is no force.

7. A ladder is at rest with its upper end against a wall and its
lower end on the ground. A worker is about to climb it. When
is it more likely to slip?

(A) Before the worker is on it.
(B) When the worker is on the lowest rung.
(C) When the worker is halfway up the ladder.
(D) When the worker is on the top rung.

9-6 Nonequilibrium Applications of Newton’s Laws for
Rotation

8. Newton’s second law for translational motion in the xy plane
is Newton’s second law for rotation is

Consider the case of a particle moving in the xy
plane under the influence of a single force.

(A) Both and must be used to ana-
lyze the motion of this particle.

(B) Either or can be used to analyze
the motion of this particle.

(C) Only needs to be used to analyze the mo-
tion of this particle.

(D) Only can be used to analyze the motion of
this particle.

9-7 Combined Rotational and Translational Motion
9. Consider four objects, all solid spheres. Sphere (A) has radius

r and mass m, (B) has radius 2r and mass m, (C) has radius r
and mass 2m, and (D) has radius r and mass 3m. All can be
placed at the same point on the same inclined plane where
they will roll without slipping to the bottom. The answer to
the following questions might also be (E), all are the same.
(a) Which object has the largest rotational inertia?
(b) If released from rest, which object will experience the

largest net torque?
(c) If released from rest, which object will experience the

largest linear acceleration?

� �z � I�z

� F
B

� maB

� �z � I�z� F
B

� maB

� �z � I�z� F
B

� maB

� �z � I�z .
� F

B
� maB;

N 	m;
F
B
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(d) If allowed to roll down the incline, which object will have
the largest speed at the bottom of the incline?

(e) If allowed to roll down the incline, which object will
reach the bottom of the incline in the shortest time?

10. Consider four objects: (A), a solid sphere; (B), a spherical
shell; (C), a solid disk; and (D), a metal hoop. All have the
same mass and radius; all can be placed at the same point on
the same inclined plane where they will roll without slipping
to the bottom. The answer to the following questions might
also be (E), all are the same.

(a) Which object has the largest rotational inertia about its
axis of symmetry?

(b) If released from rest, which object will experience the
largest net torque?

(c) If released from rest, which object will experience the
largest linear acceleration?

(d) If allowed to roll down the incline, which object will have
the largest speed at the bottom of the incline?

(e) If allowed to roll down the incline, which object will
reach the bottom of the incline in the shortest time?
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QUESTIONS

1. Explain why the wheel is such an important invention.

2. A yo-yo falls to the bottom of its cord and then climbs back
up. (a) Does it reverse its direction of rotation at the bottom?
Explain your answer. (b) What “pulls” the yo-yo back to the
top?

3. A yo-yo is resting on a horizontal table and is free to roll (see
Fig. 9-35). If the string is pulled by a horizontal force such as
F1 , which way will the yo-yo roll? What happens when the
force F2 is applied (its line of action passes through the point
of contact of the yo-yo and table)? If the string is pulled verti-
cally with the force F3 , what happens?

9. Long balancing poles help a tightrope walker to maintain bal-
ance. How?

10. Is there such a thing as a truly rigid body? If so, give an ex-
ample. If not, explain why.

11. You are sitting in the driver’s seat of a parked automobile.
You are told that the forces exerted upward by the ground on
each of the four tires are different. Discuss the factors that en-
ter into a consideration of whether this statement is true or
not.

12. In Sample Problem 9-7, if the wall were not frictionless,
would the empirical laws of friction supply us with the extra
condition needed to determine the extra (vertical) force ex-
erted by the wall on the ladder?

13. Can the mass of an object be considered as concentrated at its
center of mass for purposes of computing its rotational iner-
tia? If yes, explain why. If no, offer a counterexample.

14. About what axis is the rotational inertia of your body the
least? About what axis through your center of mass is your
rotational inertia the greatest?

15. If two circular disks of the same weight and thickness are
made from metals having different densities, which disk, if ei-
ther, will have the larger rotational inertia about its symmetry
axis?

16. The rotational inertia of a body of rather complicated shape is
to be determined. The shape makes a mathematical calcula-
tion from exceedingly difficult. Suggest ways in
which the rotational inertia about a particular axis could be
measured experimentally.

17. Five solids are shown in cross section in Fig. 9-36. The cross
sections have equal heights and equal maximum widths. The
solids have equal masses. Which one has the largest rotational
inertia about a perpendicular axis through the center of mass?
Which has the smallest?

� r 2 dm

Figure 9-35. Question 3.

F3

F2

F1

4. Do the center of mass and the center of gravity coincide for a
building? for a lake? Under what conditions does the differ-
ence between the center of mass and the center of gravity be-
come significant? Give an example.

5. If a rigid body is thrown into the air without spinning, it does
not spin during its flight, provided air resistance can be ig-
nored. What does this simple result imply about the location
of the center of gravity?

6. The Olympic gymnast Mary Lou Retton did some amazing
things on the uneven parallel bars. A friend tells you that
careful analysis of films of Retton’s exploits shows that, no
matter what she does, her center of mass is above her point(s)
of support at all times, as required by the laws of physics.
Comment on your friend’s statement.

7. Stand facing the edge of an open door, one foot on each side
of the door. You will find that you are not able to stand on
your toes. Why?

8. Sit in a straight-backed chair and try to stand up without lean-
ing forward. Why can’t you do it?

Hoop Cube Cylinder Prism Sphere

Figure 9-36. Question 17.

18. Does Eq. 9-17 still hold if the slab is not “thin”— that is, if its
thickness is comparable to (or even greater than) a or b?

19. You can distinguish between a raw egg and a hardboiled one
by spinning each one on a table. Explain how. Also, if you



stop a spinning raw egg with your fingers and release it very
quickly, it will resume spinning. Why?

20. For storing wind energy or solar energy, flywheels have been
suggested. The amount of energy that can be stored in a fly-
wheel depends on the density and tensile strength of the mate-
rial making up the flywheel and for a given weight one wants
the lowest density strong material available. Can you make
this plausible? (See “Flywheels,” by R. F. Post and S. F. Post,
Scientific American, December 1973, p. 17.)

21. Apart from appearance, why do sports cars have wire wheels?

22. Fig. 9-37a shows a meter stick, half of which is wood and
half of which is steel, that is pivoted at the wooden end at O.
A force is applied to the steel end at a. In Fig. 9-37b, the stick
is pivoted at the steel end at O� and the same force is applied
at the wooden end at a�. Does one get the same angular accel-
eration in each case? If not, in which case is the angular ac-
celeration greater?

disks hang over the sides as in Fig. 9-38. The system rolls
down the ramp without slipping. (a) Near the bottom of the
ramp the disks touch the horizontal table and the system takes
off with greatly increased translational speed. Explain why.
(b) If this system raced a hoop (of any radius) down the ramp,
which would reach the bottom first?
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F
(a)

O a

F
(b)

O' a'

Figure 9-37. Question 22.

23. Describe qualitatively what happens to the system of Fig. 9-
26 if the disk is given an initial clockwise angular velocity as
it is released. What changes, if any, occur in the linear accel-
eration of the block, or the angular acceleration of the disk?
See Sample Problem 9-10.

24. A cannonball and a marble roll from rest down an incline.
Which gets to the bottom first?

25. A cylindrical can filled with corned beef and an identical can
filled with apple juice both roll down an incline. Compare
their angular and linear accelerations. Explain the difference.

26. A solid wooden cylinder rolls down two different inclined
planes of the same height but with different angles of inclina-
tion. Will it reach the bottom with the same speed in each
case? Will it take longer to roll down one incline than the
other? Explain your answers.

27. A solid brass cylinder and a solid wooden cylinder have the
same radius and mass, the wooden cylinder being longer. You
release them together at the top of an incline. Which will beat
the other to the bottom? Suppose that the cylinders are now
made to be the same length (and radius) and that the masses
are made to be equal by boring a hole along the axis of the
brass cylinder. Which cylinder will win the race now? Explain
your answers. Assume that the cylinders roll without slipping.

28. State Newton’s three laws of motion in words suitable for ro-
tating bodies.

29. Two heavy disks are connected by a short rod of much
smaller radius. The system is placed on a ramp so that the

Figure 9-38. Question 29.

30. In cutting down a tree, a logger makes a cut on the side facing
the direction in which the tree is to fall. Explain why. Would
it be safe to stand directly behind the tree on the opposite side
of the fall?

31. Comment on each of the following assertions about skiing.
(a) In downhill racing, one wants skis that do not turn easily.
(b) In slalom racing, one wants skis that turn easily. (c) There-
fore, the rotational inertia of downhill skis should be larger
than that of slalom skis. (d) Considering that there is low fric-
tion between skis and snow, how does a skier exert torques to
turn or stop a turn? (See “The Physics of Ski Turns,” by J. I.
Shonie and D. L. Mordick, The Physics Teacher, December
1972, p. 491.)

32. Consider a straight stick standing on end on (frictionless) ice.
What would be the path of its center of mass if it falls?

33. Explain why a wheel rolling on a flat horizontal surface can-
not be slowed down by static friction. Assuming no slipping,
what does slow the wheel down?

34. Ruth and Roger are cycling along a path at the same speed.
The wheels of Ruth’s bike are a little larger in diameter than
the wheels of Roger’s bike, How do the angular speeds of
their wheels compare? What about the speeds of the top por-
tions of their wheels?

35. A cylindrical drum, pushed along by a board from an initial
position shown in Fig. 9-39, rolls forward on the ground a
distance L/2, equal to half the length of the board. There is no
slipping at any contact. Where is the board then? How far has
the man walked?

Figure 9-39. Question 35.

L L
2



EXERCISES

9-1 Torque
1. A particle is located at coordinates 

What is the magnitude of the torque about the origin when the
particle is acted upon by a force of magnitude 5.0 N in (a) the
positive x direction, (b) the positive y direction, and (c) the
negative x direction?

2. Figure 9-40 shows the lines of action and the points of appli-
cation of two forces about the origin O, all vectors being in
the plane of the figure. Imagine these forces to be acting on a
rigid body pivoted about an axis through O and perpendicular
to the plane of the figure. (a) Find an expression for the mag-
nitude of the resultant torque on the body. (b) If m,

m, N, N, and
what are the magnitude and direction of the resul-

tant torque?
�2 � 58.0�,

�1 � 75.0�,F2 � 4.90F1 � 4.20r2 � 2.15
r1 � 1.30

y � 3.0 m.x � 2.0 m,

7. Vectors and lie in the xy plane. The angle between and
is �, which is less than 90°. Let Find

the magnitude of and the angle between and .

8. Let and Let 
(a) Find c, expressed in unit vector notation. (b) Find

the angle between and .
9. What is the torque about the origin on a particle located at

due to a force 
(3.5 N) Express your result in unit
vector notation.

10. A particle is located at 
A constant force of magnitude 2.6 N acts on the

particle. Find the components of the torque about the origin
when the force acts in (a) the positive x direction and (b) the
negative z direction.

9-2 Rotational Inertia and Newton’s Second Law
11. A small lead sphere of mass 25 g is attached to the origin by a

thin rod of length 74 cm and negligible mass. The rod pivots
about the z axis in the xy plane. A constant force of 22 N in
the y direction acts on the sphere. (a) Considering the sphere
to be a particle, what is the rotational inertia about the origin?
(b) If the rod makes an angle of 40� with the positive x axis,
find the angular acceleration of the rod.

12. Three particles are attached to a thin rod of length 1.00 m and
negligible mass that pivots about the origin in the xy plane.
Particle 1 (mass 52 g) is attached a distance of 27 cm from
the origin, particle 2 (35 g) is at 45 cm, and particle 3 (24 g)
at 65 cm. (a) What is the rotational inertia of the assembly?
(b) If the rod were instead pivoted about the center of mass of
the assembly, what would be the rotational inertia?

13. Two thin rods of negligible mass are rigidly attached at their
ends to form a 90� angle. The rods rotate in the xy plane with
the joined ends forming the pivot at the origin. A particle of
mass 75 g is attached to one rod a distance of 42 cm from the
origin, and a particle of mass 30 g is attached to the other rod
a distance of 65 cm from the origin. (a) What is the rotational
inertia of the assembly? (b) How would the rotational inertia
change if the particles were both attached to one rod at the
given distances from the origin?

14. Consider the assembly of Exercise 13 when the first rod lies
along the positive x axis and the second rod along the positive
y axis. A force acts on both parti-
cles. Find the resulting angular acceleration.

9-3 Rotational Inertia of Solid Bodies
15. A helicopter rotor blade is 7.80 m long and has a mass of 110

kg. (a) What force is exerted on the bolt attaching the blade to
the rotor axle when the rotor is turning at 320 rev/min? (Hint:
For this calculation the blade can be considered to be a point
mass at the center of mass. Why?) (b) Calculate the torque
that must be applied to the rotor to bring it to full speed from
rest in 6.70 s. Ignore air resistance. (The blade cannot be con-
sidered to be a point mass for this calculation. Why not? As-
sume the distribution of a uniform rod.)

16. Each of three helicopter rotor blades shown in Fig. 9-42 is
5.20 m long and has a mass of 240 kg. The rotor is rotating at

î  (2.5 N)ĵF
B

� (3.6 N)

(0.85 m)k̂.
ĵî  (�0.36 m)rB � (0.54 m)

ĵ  (4.3 N)k̂?î � (2.4 N)
F
B

�z � 1.6 my � �2.0 m,x � 1.5 m,

b
B

aB
aB 
 b

B
.

cB �b
B

� 4î � 2ĵ � 3k̂.aB � 2î � 3ĵ  k̂

cBb
B

cB
cB � aB 
 (b

B

 aB).b

B
aBb

B
aB
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Figure 9-41. Exercise 4.

F1

 1
2

O F2
r1

r2

3. Redraw Fig. 9-40 under the following transformations: (a)
(b) and (c) and in

each case showing the new direction of the torque. Check for
consistency with the right-hand rule.

4. The object shown in Fig. 9-41 is pivoted at O about an axis
perpendicular to the plane of the page. Three forces act on it
in the directions shown on the figure: FA � 10 N at point A,
8.0 m from O; FB � 16 N at point B, 4.0 m from O; and
FC � 19 N at point C, 3.0 m from O. What are the magnitude
and direction of the resultant torque about O?

rB : �rB,F
B

: �F
B

rB : �rB,F
B

: �F
B

,

FC
160°

135°

90°FB

FA

C

B

O

A

5. Two vectors and lie in the xy plane. Their magnitudes
are units and units. Their directions are, re-
spectively, 320° and 85° measured counterclockwise from
the positive x axis. Find the magnitude and the direction of

6. Vector has magnitude 3.20 units and lies in the yz plane
63.0° from the y axis with a positive z component. Vector 
has magnitude 1.40 units and lies in the xz plane 48.0° from
the x axis with a positive z component. Find aB 
 b

B
.

b
B

aB
rB 
 sB.

s � 7.3r � 4.5
sBrB

Figure 9-40. Exercise 2.



350 rev/min. What is the rotational inertia of the rotor assem-
bly about the axis of rotation? (Each blade can be considered
a thin rod.)

out altering the rotational inertia of the body about that axis is
called the radius of gyration. Let k represent the radius of gy-
ration and show that

This gives the radius of the “equivalent hoop” in the general
case.

21. Fig. 9-45 shows the solid rod considered in Section 9-3 (see
also Fig. 9-12) divided into an arbitrary number N of pieces.
(a) What is the mass mn of each piece? (b) Show that the dis-
tance of each piece from the axis of rotation can be written

(c) Use Eq. 9-13
to evaluate the rotational inertia of this rod, and show that it
reduces to Eq. 9-14. You may need the following sums:

�
N

n�1
n2 � N(N  1)(2N  1)/6.

�
N

n�1
n � N(N  1)/2, 

�
N

n�1
 1 � N, 

rn � (n � 1)L/N  (1
2)L/N � (n � 1

2)L /N.

k � √I/M.
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Figure 9-42. Exercise 16.

Figure 9-43. Exercise 17.

Figure 9-45. Exercise 21.

Figure 9-44. Exercise 19.

Figure 9-46. Exercise 22.

5.
2 

m

a

c

b

18. Calculate the rotational inertia of a meter stick, with mass
0.56 kg, about an axis perpendicular to the stick and located
at the 20-cm mark.

19. Two particles, each with mass m, are fastened to each other
and to a rotation axis by two rods, each with length L and
mass M, as shown in Fig. 9-44. The combination rotates
around the rotation axis with angular velocity �. Obtain an al-
gebraic expression for the rotational inertia of the combina-
tion about this axis.

20. (a) Show that a solid cylinder of mass M and radius R is
equivalent to a thin hoop of mass M and radius for rota-
tion about a central axis. (b) The radial distance from a given
axis at which the mass of a body could be concentrated with-

R/√2,

O
m

m
L

Lω

L

rn

9-4 Torque Due to Gravity

9-5 Equilibrium Applications of Newton’s Laws for
Rotation
22. A certain nut is known to require forces of 46 N exerted on it

from both sides to crack it. What forces F will be required
when it is placed in the nutcracker shown in Fig. 9-46?

23. The leaning Tower of Pisa (see Fig. 9-47) is 55 m high and
7.0 m in diameter. The top of the tower is displaced 4.5 m
from the vertical. Treating the tower as a uniform, circular
cylinder, (a) what additional displacement, measured at the
top, will bring the tower to the verge of toppling? (b) What

13 cm

2.6
cm

F

Nut

F

17. Fig. 9-43 shows a uniform block of mass, M and edge lengths
a, b, and c. Calculate its rotational inertia about an axis
through one corner and perpendicular to the large face of the
block. (Hint: See Fig. 9-15.)



angle with the vertical will the tower make at that moment?
(The current rate of movement of the top is 1 mm/year.)

stacle of height h? Take r as the radius of the wheel and W as
its weight.
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Figure 9-47. Exercise 23.

Figure 9-48. Exercise 28.

Figure 9-49. Exercise 29.

Figure 9-50. Exercise 30.

Figure 9-51. Exercise 31.

24. A cube stays at rest on a horizontal table when a small hori-
zontal force is applied perpendicular to and at the center of an
upper edge. The force is now steadily increased. Does the
cube slide or topple first? The coefficient of static friction be-
tween the surfaces is equal to 0.46.

25. In Sample Problem 9-7 the coefficient of static friction �s be-
tween the ladder and the ground is 0.54. How far up the lad-
der can the firefighter go before the ladder starts to slip?

26. A parked automobile of mass 1360 kg has a wheel base (dis-
tance between front and rear axles) of 305 cm. Its center of
gravity is located 178 cm behind the front axle. Determine (a)
the upward force exerted by the level ground on each of the
front wheels (assumed the same) and (b) the upward force ex-
erted by the level ground on each of the rear wheels (assumed
the same).

27. A 160-lb person is walking across a level bridge and stops
three-fourths of the way from one end. The bridge is uniform
and weighs 600 lb. What are the values of the vertical forces
exerted on each end of the bridge by its supports?

28. A diver of weight 582 N stands at the end of a uniform
4.48-m diving board of weight 142 N. The board is attached
by two pedestals 1.55 m apart, as shown in Fig. 9-48. Find the
tension (or compression) in each of the two pedestals.

29. What minimum force F applied horizontally at the axle of the
wheel in Fig. 9-49 is necessary to raise the wheel over an ob-

4.48 m

1.55 m

h

r
F

30. A 52.3-kg uniform square sign, 1.93 m on a side, is hung from
a 2.88-m rod of negligible mass. A cable is attached to the end
of the rod and to a point on the wall 4.12 m above the point
where the rod is fixed to the wall, as shown in Fig. 9-50. (a)
Find the tension in the cable. (b) Calculate the horizontal and
vertical components of the force exerted by the wall on the rod.

31. One end of a uniform beam weighing 52.7 lb and 3.12 ft long is
attached to a wall with a hinge. The other end is supported by a
wire making equal angles of 27.0° with the beam and wall (see
Fig. 9-51). (a) Find the tension in the wire. (b) Compute the
horizontal and vertical components of the force on the hinge.

32. A 274-N plank, of length m, rests on the ground
and on a frictionless roller at the top of a wall of height

L � 6.23

Cable

Hinge Rod

1.93 m
2.88 m

4.12 m

1.93 m

27°

27°



9-6 Nonequilibrium Applications of Newton’s Laws for
Rotation
33. A cylinder having a mass of 1.92 kg rotates about its axis of

symmetry. Forces are applied as shown in Fig. 9-53:
N, N, and N. Also,

cm and cm. Find the magnitude and di-
rection of the angular acceleration of the cylinder.

R2 � 11.8R1 � 4.93
F3 � 2.12F2 � 4.13F1 � 5.88

37. A pulley having a rotational inertia of 1.14 
 10�3 kg	 m2 and
a radius of 9.88 cm is acted on by a force, applied tangentially
at its rim, that varies in time as where

N/s and N/s2. If the pulley was initially
at rest, find its angular speed after 3.60 s.

38. Two identical blocks, each of mass M, are connected by a light
string over a frictionless pulley of radius R and rotational inertia
I (Fig. 9-55). The string does not slip on the pulley, and it is not
known whether or not there is friction between the plane and the
sliding block. When this system is released, it is found that the
pulley turns through an angle � in time t and the acceleration of
the blocks is constant. (a) What is the angular acceleration of the
pulley? (b) What is the acceleration of the two blocks? (c) What
are the tensions in the upper and lower sections of the string? All
answers are to be expressed in terms of M, I, R, �, g, and t.

B � 0.305A � 0.496
F � At  Bt 2,
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Figure 9-52. Exercise 32.

Figure 9-53. Exercise 33.

Figure 9-54. Exercise 36.

Figure 9-55. Exercise 38.

m (see Fig. 9-52). The center of gravity of the plank
is at its center. The plank remains in equilibrium for any value
of � � 68.0° but slips if � � 68.0°. Find the coefficient of
static friction between the plank and the ground.

h � 2.87

h

L

30°

F1

F2

F3

R1

R2

34. A thin spherical shell has a radius of 1.88 m. An applied
torque of 960 imparts an angular acceleration equal to
6.23 rad/s2 about an axis through the center of the shell. Cal-
culate (a) the rotational inertia of the shell about the axis of
rotation and (b) the mass of the shell.

35. In the act of jumping off a diving board, a diver changed his
angular velocity from zero to 6.20 rad/s in 220 ms. The
diver’s rotational inertia is 12.0 kg 	 m2. (a) Find the angular
acceleration during the jump. (b) What external torque acted
on the diver during the jump?

36. Figure 9-54 shows the massive shield door at a neutron test
facility at Lawrence Livermore Laboratory; this is the world’s
heaviest hinged door. The door has a mass of 44,000 kg, a ro-
tational inertia about its hinge line of 8.7 
 104 kg 	 m2, and a
width of 2.4 m. What steady force, applied at its outer edge at
right angles to the door, can move it from rest through an an-
gle of 90° in 30 s?

N 	m

39. In an Atwood’s machine one block has a mass of 512 g and the
other a mass of 463 g. The pulley, which is mounted in hori-
zontal frictionless bearings, has a radius of 4.90 cm. When re-
leased from rest, the heavier block is observed to fall 76.5 cm
in 5.11 s. Calculate the rotational inertia of the pulley.

M
I

M

T2

T1



40. A wheel in the form of a uniform disk of radius 23.0 cm and
mass 1.40 kg is turning at 840 rev/min in frictionless bearings.
To stop the wheel, a brake pad is pressed against the rim of the
wheel with a radially directed force of 130 N. The wheel makes
2.80 revolutions in coming to a stop. Find the coefficient of
friction between the brake pad and the rim of the wheel.

9-7 Combined Rotational and Translational Motion
41. An automobile traveling 78.3 km/h has tires of 77.0-cm diame-

ter. (a) What is the angular speed of the tires about the axle? (b)
If the car is brought to a stop uniformly in 28.6 turns of the tires
(no skidding), what is the angular acceleration of the wheels?
(c) How far does the car advance during this braking period?

42. A yo-yo (see Sample Problem 9-13) has a rotational inertia of
950 g 	 cm2 and a mass of 120 g. Its axle radius is 3.20 mm and
its string is 134 cm long. The yo-yo rolls from rest down to the
end of the string. (a) What is its acceleration? (b) How long
does it take to reach the end of the string? (c) If the yo-yo
“sleeps” at the bottom of the string in pure rotary motion, what
is its angular speed, in rev/s? (d) Repeat (c), but this time as-
sume that the yo-yo was thrown down with an initial speed of
1.30 m/s.

43. An apparatus for testing the skid resistance of automobile tires
is constructed as shown in Fig. 9-56. The tire is initially mo-
tionless and is held in a light framework that is freely pivoted
at points A and B. The rotational inertia of the wheel about its
axis is 0.750 kg 	 m2, its mass is 15.0 kg, and its radius is 30.0
cm. The tire is placed on the surface of a conveyor belt that is
moving with a surface speed of 12.0 m/s, such that AB is hori-
zontal. (a) If the coefficient of kinetic friction between the tire
and the conveyor belt is 0.600, what time will be required for
the wheel to achieve its final angular velocity? (b) What will
be the length of the skid mark on the conveyor surface?
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Figure 9-57. Problem 2.

Figure 9-58. Problem 3.

Figure 9-59. Problem 6.

Figure 9-56. Exercise 43.

A B

PROBLEMS

1. A crate in the form of a 1.12-m cube contains a piece of ma-
chinery whose design is such that the center of gravity of the
crate and its contents is located 0.28 m above its geometrical
center. The crate rests on a ramp that makes an angle � with
the horizontal. As � is increased from zero, an angle will be
reached at which the crate will either start to slide down the
ramp or tip over. Which event  will occur if the coefficient of
static friction is (a) 0.60? (b) 0.70? In each case give the an-
gle at which the event occurs.

2. A flexible chain of weight W hangs between two fixed points,
A and B, at the same level, as shown in Fig. 9-57. Find (a) the
force exerted by the chain on each endpoint and (b) the ten-
sion in the chain at the lowest point.

ter of the sphere, as in Fig. 9-58. Find (a) the tension in the
rope and (b) the force exerted on the sphere by the wall.

4. A beam is carried by three workers, one worker at one end
and the other two supporting the beam between them on a
crosspiece so placed that the load is equally divided among
the three. Find where the crosspiece is placed. Neglect the
mass of the crosspiece.

5. A 74.6-kg window cleaner uses a 10.3-kg ladder that is 5.12 m
long. He places one end 2.45 m from a wall and rests the upper
end against a cracked window and climbs the ladder. He
climbs 3.10 m up the ladder when the window breaks. Neglect-
ing friction between the ladder and the window and assuming
that the base of the ladder does not slip, find (a) the force ex-
erted on the window by the ladder just before the window
breaks and (b) the magnitude and direction of the force exerted
on the ladder by the ground just before the window breaks.

6. Two identical uniform frictionless spheres, each of weight W,
rest as shown in Fig. 9-59 at the bottom of a fixed, rectangular
container. The line of centers of the spheres makes an angle �
with the horizontal. Find the forces exerted on the spheres (a)
by the container bottom, (b) by the container sides, and (c) by
one another.

BA

3. A uniform sphere of weight W and radius r is being held by a
rope attached to a frictionless wall a distance L above the cen-

L

r
7. A uniform sphere of weight W lies at rest wedged between

two inclined planes of inclination angles �1 and �2 (Fig. 9-60).



(a) Assume that no friction is involved and determine the
forces (directions and magnitudes) that the planes exert on the
sphere. (b) What change would it make, in principle, if friction
were taken into account?

an axis through their point of intersection perpendicular to the
plane. (b) Apply this to a circular disk to find its rotational in-
ertia about a diameter as axis.

11. Prove that the rotational inertia of a flat square about a line
drawn through the diagonal is equal to the rotational inertia
about a line drawn through the center and crossing two oppo-
site edges as a perpendicular bisector. (Hint: See Problem 10.)

12. Nine square holes have been cut in a flat square plate, as shown
in Fig. 9-62. The plate has edge length L, and the holes have
edge length a. The holes are located at the centers of the small
squares formed by dividing each side of the square into three
equal sections. Find the rotational inertia for rotations about an
axis perpendicular to the plate passing through its center.
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Figure 9-60. Problem 7.

Figure 9-61. Problem 8.

Figure 9-62. Problem 12.

Figure 9-63. Problem 15.

1

2

8. A thin horizontal bar AB of negligible weight and length L is
pinned to a vertical wall at A and supported at B by a thin
wire BC that makes an angle � with the horizontal. A weight
W can be moved anywhere along the bar as defined by the
distance x from the wall (Fig. 9-61). (a) Find the tension T in
the thin wire as a function of x. (b) Find the horizontal and the
vertical components of the force exerted on the bar by the pin
at A. (c) With N, m, and � � 32.0°, find
the maximum distance x before the wire breaks if the wire
can withstand a maximum tension of 520 N.

L � 2.76W � 315

9. A well-known problem is the following (see, for example,
Scientific American, November 1964, p. 128): Uniform bricks
are placed one upon another in such a manner as to have the
maximum offset. This is accomplished by having the center
of gravity of the top brick directly above the edge of the brick
below it, the center of gravity of the two top bricks combined
directly above the edge of the third brick from the top, and so
on. (a) Justify this criterion for maximum offset; find the
largest equilibrium offsets for four bricks. (b) Show that, if
the process is continued downward, one can obtain as large an
offset as one wants. (Martin Gardner, in the article referred to
above, states: “With 52 playing cards, the first placed so that
its end is flush with a table edge, the maximum overhang is a
little more than cardlengths . . . ”) (c) Suppose now, in-
stead, one piles up uniform bricks so that the end of one brick
is offset from the one below it by a constant fraction, 1/n, of a
brick length L. How many bricks, N, can one use in this
process before the pile will fall over? Check the plausibility
of your answer for 

10. (a) Show that the sum of the rotational inertias of a plane
laminar body about any two perpendicular axes in the plane
of the body is equal to the rotational inertia of the body about

n � �.n � 2,n � 1,

21
4

A B

L

C

W
x

13. (a) Show that for an object that can rotate about the x, y, or z
axis

where r is measured from the origin, not from the axis of rota-
tion. (b) Is invariant under rotations of the coor-
dinate system?

14. Use the results from Problem 13 to show that (a) the rota-
tional inertia of a spherical shell of radius R is given by

and (b) the rotational inertia of a solid sphere is
given by Hint: Part (a) requires no significant inte-
gration. Part (b) uses

15. In this problem we seek to compute the rotational inertia of a
disk of mass M and radius R about an axis through its center
and perpendicular to its surface. Consider a mass element dm
in the shape of a ring of radius r and width dr (see Fig. 9-63).
(a) What is the mass dm of this element, expressed as a frac-
tion of the total mass M of the disk? (b) What is the rotational
inertia dI of this element? (c) Integrate the result of part (b) to
find the rotational inertia of the entire disk.

dm

4�r 2dr
�

M

(4/3)�R3 .

I � 2
5 MR2.

I � 2
3 MR2

Ix  Iy  Iz

Ix  Iy  Iz � 2 � r 2 dm,

dr
r

R



16. In this problem, we use the result of the previous problem for
the rotational inertia of a disk to compute the rotational inertia
of a uniform solid sphere of mass M and radius R about an
axis through its center. Consider an element dm of the sphere
in the form of a disk of thickness dz at a height z above the
center (see Fig. 9-64). (a) Expressed as a fraction of the total
mass M, what is the mass dm of the element? (b) Considering
the element as a disk, what is its rotational inertia dI? (c) Inte-
grate the result of (b) over the entire sphere to find the rota-
tional inertia of the sphere.

19. A uniform disk of radius R and mass M is spinning with an-
gular speed �0 . It is placed on a flat horizontal surface; the
coefficient of kinetic friction between disk and surface is �k .
(a) Find the frictional torque on the disk. (b) How long will it
take for the disk to come to rest?

20. A hoop rolling down an inclined plane of inclination angle �
keeps pace with a block sliding down the same plane. Show
that the coefficient of kinetic friction between block and plane
is given by 

21. A uniform sphere rolls down an incline. (a) What must be the
incline angle if the linear acceleration of the center of the
sphere is to be 0.133g? (b) For this angle, what would be
the acceleration of a frictionless block sliding down the in-
cline?

22. A solid cylinder of length L and radius R has a weight W. Two
cords are wrapped around the cylinder, one near each end,
and the cord ends are attached to hooks on the ceiling. The
cylinder is held horizontally with the two cords exactly verti-
cal and is then released (Fig. 9-66). Find (a) the tension in
each cord as they unwind and (b) the linear acceleration of the
cylinder as it falls.

�k � 1
2 tan �.
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Figure 9-64. Problem 16.

Figure 9-65. Problem 17.

Figure 9-66. Problem 22.

dz

z

R

r = –R2 z2

17. Figure 9-65 shows two blocks each of mass m suspended
from the ends of a rigid weightless rod of length 
with cm and cm. The rod is held in the
horizontal position shown in the figure and then released. Cal-
culate the linear accelerations of the two blocks as they start
to move.

L2 � 80.0L1 � 20.0
L1  L2 ,

18. A wheel of mass M and radius of gyration k (see Exercise 20)
spins on a fixed horizontal axle passing through its hub. As-
sume that the hub rubs the axle of radius a at only the top-
most point, the coefficient of kinetic friction being � k . The
wheel is given an initial angular velocity �0 . Assume uniform
deceleration and find (a) the elapsed time and (b) the number
of revolutions before the wheel comes to a stop.

m m

L2L1

23. Show that a cylinder will slip on an inclined plane of inclina-
tion angle � if the coefficient of static friction between plane
and cylinder is less than 

24. A uniform disk, of mass M and radius R, lies on one side ini-
tially at rest on a frictionless horizontal surface. A constant
force F is than applied tangentially at its perimeter by means
of a string wrapped around its edge. Describe the subsequent
(rotational and translational) motion of the disk.

25. A sphere, a cylinder, and a hoop (each of radius R and mass
M) start from rest and roll down the same incline. (a) Which
object gets to the bottom first? (b) Does your answer depend
on the mass or radius of the objects? Explain.

1
3 tan �.
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10-1 ANGULAR MOMENTUM OF
A PARTICLE

We have found linear momentum to be useful in dealing
with the translational motion of single particles or of sys-
tems of particles, including rigid bodies. For example, lin-
ear momentum is conserved in collisions. For a single parti-
cle the linear momentum is (Eq. 6-1); for a system
of particles it is (Eq. 7-21), in which M is the
total system mass and is the velocity of the center of
mass. In rotational motion, the analogue of linear momen-
tum is called angular momentum, which we define below
for the special case of a single particle. Later, we broaden
the definition to include systems of particles, and we show
that angular momentum is as useful a concept in rotational
motion as linear momentum is in translational motion.

Consider a particle of mass m and linear momentum 
at a position relative to the origin O of an inertial refer-
ence frame; for convenience (see Fig. 10-1) we have chosen
the plane defined by the vectors and to be the xy plane.
We define the angular momentum of the particle with re-l

B
rBpB

rB
pB

vBcm

P
B

� M vBcm

pB � mvB

spect to the origin O to be

(10-1)

As in the case of torque, angular momentum is defined in
terms of a vector product or cross product (see Appendix
H). Note that we must specify the origin O in order to de-
fine the position vector in the definition of angular mo-
mentum.

Angular momentum is a vector. Its magnitude is given
by

(10-2)

where � is the smaller angle between and its direction
is perpendicular to the plane formed by and The sense
is given by the right-hand rule: swing the fingers of the
right hand from the direction of into the direction of 
through the smaller angle between them; the extended right
thumb then points in the direction of (parallel to the z
axis in Fig. 10-1).

We also can write the magnitude of either as

(10-3a)l � (r sin �)p � pr�

l
B

l
B

pB,rB

pB.rB
pB;rB

l � rp sin �,

rB

l
B

� rB � pB.

CHAPTER 10CHAPTER 10
ANGULAR MOMENTUM

In Chapter 9 we discussed the dynamics of the rota-

tional motion of a rigid body about an axis that is fixed in an inertial reference frame. We saw that the one-

dimensional relation in which only external torque components along the axis of rotation were

considered, was sufficient to solve dynamical problems in this special case.

In this chapter we continue this analysis and extend it to situations in which the axis of rotation may not

be fixed in an inertial reference frame. To solve these dynamical problems we develop and use a three-

dimensional vector relation for rotational motion, which is analogous to the vector form of Newton’s sec-

ond law, We also introduce angular momentum and show its importance as a dynamical prop-

erty of rotations.

Finally, we show that, for systems on which no net external torque acts, the important law of conserva-

tion of angular momentum can be applied.

F
B

� dP
B

/dt.

� �z � I�z ,



or as
(10-3b)

in which is the component of at right an-
gles to the line of action of and is the
component of at right angles to Equation 10-3b shows
that only the component of perpendicular to con-
tributes to the angular momentum. When the angle � be-
tween and is 0° or 180°, there is no perpendicular
component then the line of action of 
passes through the origin, and is also zero. In this case
both Eqs. 10-3a and 10-3b show that the angular momen-
tum l is zero.

We now derive an important relation between torque
and angular momentum for a single particle. First, we dif-
ferentiate Eq. 10-1 and obtain

(10-4)

The derivative of a vector product is taken in the same
way as the derivative of an ordinary product, except that we
must not change the order of the terms. We have

Here is the instantaneous velocity of the particle,
and equals Making these substitutions into the first
product on the right, we obtain

(10-5)

Now because the vector product of two par-
allel vectors is zero. Replacing in the second productd pB/dt

vB � mvB � 0,

d l
B

dt
� ( vB � mvB) � rB �

d pB

dt
.

mvB.pB
vBd rB/dt

d l
B

dt
�

d rB

dt
� pB � rB �

d pB

dt
.

d l
B

dt
�

d

dt
 ( rB � pB).

r�

pBp sin � � 0);(p��
pBrB

rBpB
rB.pB

p�(�p sin �)pB,
rBr� (�r sin �)

l � r(p sin �) � rp� ,

by the net force acting on the particle, we have

The right side of this equation is just the net torque 
We therefore obtain

(10-6)

which states that the net torque acting on a particle is equal
to the time rate of change of its angular momentum. Both
the torque and the angular momentum in this equation
must be defined with respect to the same origin. Equation
10-6 is the rotational analogue of Eq. 6-2,
which states that the net force acting on a particle is equal
to the time rate of change of its linear momentum.

Equation 10-6, like all three-dimensional vector equa-
tions, is equivalent to three one-dimensional equations—
namely,

(10-7)

Hence, the x component of the net external torque is given
by the change with time of the x component of the angular
momentum. Similar results hold for the y and z directions.

Sample Problem 10-1. A particle of mass m is re-
leased from rest at point P in Fig. 10-2, falling parallel to the (ver-
tical) y axis. (a) Find the torque acting on m at any time t, with re-
spect to origin O. (b) Find the angular momentum of m at any
time t, with respect to this same origin. (c) Show that the relation

(Eq. 10-6) yields a correct result when applied to
this familiar problem.
� �B � d l

B
/dt

� �x �
dlx

dt
, � �y �

dly

dt
, � �z �

dlz

dt
.

� F
B

� d pB/dt,

l
B

�B

� �B �
d l
B

dt
,

� �B.

d l
B

dt
� rB � � F

B
.

� F
B
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Figure 10-1. A particle of mass m, located at point P by the
position vector has a linear momentum (For simplic-
ity both and are assumed to lie in the xy plane.) Relative to the
origin O, the particle has an angular momentum of ,
which is parallel to the z axis in this case. The inset shows the use
of the right-hand rule to find the direction of . Note that we can
slide without changing its direction until and are tail to
tail.

pBrBpB
l
B

l
B

� rB � pB
pBrB

pB � mvB.rB,

Figure 10-2. Sample Problem 10-1. A particle of mass m
drops vertically from point P. The torque and the angular mo-
mentum with respect to the origin O are directed perpendicu-
larly into the figure, as indicated by the symbol at point O. This
is the direction of the positive z axis.

�

l
B

�B

x
Pb

y

m

O

F(= mg), p(= mv)

ττ, l

r



Solution (a) The torque is given by and its magni-
tude is

In this example r sin � � b and F � mg, so that

Note that the torque is simply the product of the force mg times
the moment arm b. The right-hand rule shows that is directed
perpendicularly into the figure (along the positive z axis).
(b) The angular momentum is given by Eq. 10-1, Its
magnitude is, from Eq. 10-2,

In this example r sin � � b and p � mv � m(gt), so that

The right-hand rule shows that is directed perpendicularly into
the figure, which means that and are parallel vectors. The
vector changes with time in magnitude only, its direction al-
ways remaining the same in this case.
(c) Writing Eq. 10-6 in terms of z components, we have

Substituting the expression for �z and lz from (a) and (b) above
gives

which is an identity. Thus the relation yields correct
results in this simple case. Indeed, if we cancel the constant b out
of the first two terms above and if we substitute for gt the equiva-
lent quantity vy , we have

Since and this is the familiar result
Thus, as we indicated earlier, relations such as

though often vastly useful, are not new basic postu-
lates or classical mechanics but are rather the reformulation of the
Newtonian laws in the case of rotational motion.

Note that the magnitudes of � and l depend on our choice of
origin— that is, on b. In particular, if then � � 0 and
l � 0.

10-2 SYSTEMS OF PARTICLES

So far we have discussed only single particles. To calculate
the total angular momentum of a system of particles
about a given point, we must add vectorially the angular
momenta of all the individual particles about this point. For
a system containing N particles we then have

(10-8)

in which the (vector) sum is taken over all particles in the
system.

L
B

� l
B

1 � l
B

2 � 			 � l
B

N � �
N

n�1
l
B

n ,

L
B

b � 0,

�B � d l
B

/dt,
Fy � dpy /dt.

mvy � py ,mg � Fy

mg �
d

dt
 (mvy).

�B � d l
B

/dt

mgb �
d

dt
 (mgbt) � mgb,

� �z �
dlz

dt
.

l
B

�Bl
B
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B

l � mgbt.

l � rp sin �.

l
B

� rB � pB.

�B

� � mgb � a constant.

� � rF sin �.

�B � rB � F
B

, As time goes on, the total angular momentum of the
system about a fixed reference point (which we choose, as
in our basic definition of in Eq. 10-1, to be the origin of
an inertial reference frame) may change. That is,

For each particle, and making this substitu-
tion we obtain

That is, the time rate of change of the total angular momen-
tum of a system of particles equals the net torque due to the
forces acting on the particles in the system.

Among the torques acting on the system will be (1)
torques exerted on the particles of the system by internal
forces between the particles and (2) torques exerted on the
particles of the system by external forces. If Newton’s third
law holds in its so-called strong form— that is, if the forces
between any two particles not only are equal and opposite
but are also directed along the line joining the two parti-
cles— then the total internal torque is zero because the
torque resulting from each internal action– reaction force
pair is zero. (We proved this result in Section 9-2 for a two-
particle system; by considering the particles in an N-parti-
cle system two at a time, we can show that it holds true in
more complex systems as well.)

Hence the first source, the torque from internal forces,
contributes nothing to the change in Only the second
source (the torque from external forces) remains, and we
can write

(10-9)

where is the sum of the external torques acting on
the system. In words, the net external torque acting on a
system of particles is equal to the time rate of change of the
total angular momentum of the system. The torque and the
angular momentum must be calculated with respect to the
same origin of an inertial reference frame. In situations in
which no confusion is likely to arise, we drop the subscript
on for convenience.

Equation 10-9 is the generalization of Eq. 10-6 to many
particles. It holds whether the particles that make up the
system are in motion relative to each other or whether they
have fixed spatial relationships, as in a rigid body.

Equation 10-9 is the rotational analogue of Eq. 7-23;
which tells us that for a system of particles

(rigid body or not) the net external force acting on the sys-
tem is equal to the time rate of change of its total linear mo-
mentum.

Let us extend further the analogy between the way a
force changes linear momentum and the way a torque
changes angular momentum. Suppose a force acts on a
particle moving with linear momentum We can resolvepB.

F
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� �Bext �
dL
B

dt
,

L
B

.

dL
B

dt
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into two components, as shown in Fig. 10-3: one compo-
nent is parallel to the (instantaneous) direction of 
and another is perpendicular to In a small interval
of time 
t, the force produces a change in momentum 
determined according to Thus is parallel
to The component gives a change in momentum 
parallel to which adds to and changes its magnitude
but not its direction (see Fig. 10-3a). The perpendicular
component on the other hand, gives an increment 
that changes the direction of but, when is small
compared with leaves the magnitude of unchanged
(see Fig. 10-3b). An example of the latter is a particle mov-
ing in a circle at constant speed subject only to a centripetal
force, which is always perpendicular to the tangential ve-
locity.

The same analysis holds for the action of a torque, as
shown in Fig. 10-4. In this case and must
be parallel to We once again resolve into two compo-
nents, parallel to and perpendicular to The
component of parallel to changes the angular momen-
tum in magnitude but not in direction (Fig. 10-4a). The
component of perpendicular to gives an increment

perpendicular to which changes the direction of 
but not its magnitude (Fig. 10-4b). This latter condition is
responsible for the motion of tops and gyroscopes, as we
discuss in Section 10-5. Comparing Figs. 10-3 and 10-4,
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you can see the similarities between translational and rota-
tional dynamics.

An example of the application of Eq. 10-9 for rotational
dynamics is shown in Fig. 10-5. In Fig. 10-5a, one end of
the axle of a spinning bicycle wheel rests freely on a post,
and the other end is supported by a student’s hand. The stu-
dent pushes tangentially on the wheel with a force at its
rim, in order to make it spin faster. Taken about the center
of the wheel, the torque exerted by the student is parallel to
the angular momentum of the wheel, both vectors and

pointing toward the student. The result of this torque is
an increase in the angular momentum of the wheel.

In Fig. 10-5b, the student has released one support of the
axle. Now we consider the torques about the remaining point
of support. There are two forces acting: a normal force at the
point of support, which gives no torque about that point, and
the wheel’s weight acting downward at the center of mass.
The torque about point O due to the weight is perpendicular
to and its effect is therefore to change the direction of 
as in Fig. 10-4b. However, since the direction of is also
the direction of the axle,* the effect of the (downward) force
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Figure 10-3. (a) When a force component acts parallel to
the linear momentum of a particle, the linear momentum
changes by , which is parallel to (b) When a force compo-
nent acts perpendicular to the linear momentum of a particle,
the linear momentum changes by which is perpendicular to

The particle now moves in the direction of the vector sum
pB � 
pB� .
pB.
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Figure 10-4. (a) When a torque component acts parallel
to the angular momentum L of a system, the angular momentum
changes by which is parallel to (b) When a torque com-
ponent acts perpendicular to the angular momentum of a
system, the angular momentum changes by which is per-
pendicular to The axis of rotation now points in the direction
corresponding to the vector sum L
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Figure 10-5. (a) A tangential force on the rim
of the wheel gives a torque (about the center of the
wheel) along the axis of rotation, increasing the mag-
nitude of the angular velocity of the wheel but leaving
its direction unchanged. (b) When the end of the axle
is released, the gravitational torque about the point O
points into the paper— that is, perpendicular to the
rotational axis—as in Fig. 10-4b. This torque
changes the direction of the rotational axis, and the
shaft of the wheel moves in the horizontal plane to-
ward the position shown by the dashed line.
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* This holds only if the axis of rotation is also an axis of symmetry of the
body; see Section 10-3.



of gravity is to turn the axle sideways in the horizontal plane.
The wheel will pivot sideways about the point of support.
Try it! (If you don’t have a freely mounted bicycle wheel
handy, a toy gyroscope works as well.)

As we have derived it, Eq. 10-9 holds when and are
measured with respect to the origin of an inertial reference
frame. We may well ask whether it still holds if we measure
these two vectors with respect to an arbitrary point (a par-
ticular particle, say) in the moving system. In general, such
a point would move in a complicated way as the body or
system of particles translated, tumbled, and changed its
configuration, and Eq. 10-9 would not apply to such a refer-
ence point. However, if the reference point is chosen to be
the center of mass of the system, even though this point
may be accelerating in our inertial reference frame, then
Eq. 10-9 does hold. (See Exercise 7.) This is another re-
markable property of the center of mass. Thus we can sepa-
rate the general motion of a system of particles into the
translational motion of its center of mass (Eq. 7-23) and the
rotational motion about its center of mass (Eq. 10-9).

10-3 ANGULAR MOMENTUM
AND ANGULAR VELOCITY

To introduce cases in which it is absolutely necessary to
consider the three-dimensional vector nature of angular ve-
locity, torque, and angular momentum, we first consider a
simple example of a rotating particle that illustrates an in-
stance in which the angular velocity and angular momen-
tum are not parallel.

Figure 10-6a shows a single particle of mass m attached
to a rigid, massless shaft by a rigid, massless arm of length

L
B

�B

r� perpendicular to the shaft. The particle moves in a circle
of radius r�, and we assume it does so at constant speed v.
We imagine this experiment to be done in a region of negli-
gible gravity, so that we need not consider the force of
gravity acting on the particle. The only force that acts on
the particle is the centripetal force exerted by the arm con-
necting the particle to the shaft.

The shaft is confined to the z axis by two thin ideal
(frictionless) bearings. We let the lower bearing define the
origin O of our coordinate system. The upper bearing, as
we shall see, is necessary to prevent the shaft from wob-
bling about the z axis, which occurs when the angular ve-
locity is not parallel to the angular momentum.

The angular velocity of the particle points upward
along (or, equivalently, parallel to) the z axis, as shown in
Fig. 10-6b. No matter where the origin is chosen along the
z axis, the angular velocity vector will be parallel to the
axis. Its magnitude is similarly independent of the location
of the origin, being given by 

The angular momentum of the particle with respect to
the origin O of the reference frame is given by Eq. 10-1, or

where and are shown in Fig. 10-6b. The vector
is perpendicular to the plane formed by and which

means that is not parallel to Note (see Fig. 10-6c) that
has a (vector) component that is parallel to but it

has another (vector) component that is perpendicular to
Here is a case in which our analogy between linear and

circular motion is not valid: is always parallel to but 
is not always parallel to If we choose our origin to lie in
the plane of the circulating particle, then is parallel to 
otherwise, it is not.

�B;l
B

�B.
l
B

vB,pB
�B.

l
B

�

�B,l
B

z ,l
B

�B.l
B

pB,rBl
B

pB (�mvB)rB
l
B

� rB � pB,

l
B
v/(r sin �) � v/r�.

�B

10-3 Angular Momentum and Angular Velocity 211

Figure 10-6. (a) A particle of mass m is attached through an arm of length r� to a shaft fixed by
two bearings (at O and A) to rotate about the z axis. (b) The particle rotates with tangential speed v
in a circle of radius r� about the z axis (the rods and bearings being omitted to simplify the drawing).
The angular momentum about the origin O is shown. (c) For the particle to move in a
circle, there must be a centripetal force acting as shown, resulting in a torque about O. For con-
venience, the angular momentum vector and its components along and perpendicular to z are
shown at the center of the circle.
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Let us now consider the relationship between and 
for the rotating particle. From Fig. 10-6c, in which we have
translated to the center of the circle, we obtain

using where � represents the magnitude of 
which points in the z direction. Substituting r� (the radius
of the circle in which the particle moves) for the product 
r sin � gives

(10-10)

Now mr�2 is the rotational inertia I of the particle with re-
spect to the z axis. Thus

(10-11)

Note that the vector relation (which is analogous
to the linear relation is not correct in this case,
because and do not point in the same direction.

Under what circumstances will the angular momentum
and angular velocity point in the same direction? To illus-
trate, let us add another particle of the same mass m to the
system, as shown in Fig. 10-7, by attaching another arm to
the central shaft of Fig. 10-6a in the same location as the
first arm but pointing in the opposite direction. The compo-
nent due to this second particle will be equal and oppo-
site to that of the first particle, and the two vectors sum
to zero. The two vectors point in the same direction,
however, and add. Thus for this two-particle system, the to-
tal angular momentum is parallel to 

We can now extend our system to a rigid body, made up
of many particles. If the body is symmetric about the axis
of rotation, by which we mean that for every mass element
in the body there must be an identical mass element diamet-
rically opposite the first element and at the same distance
from the axis of rotation, then the body can be regarded as
made up of sets of particle pairs of the kind we have been
discussing. Since and are parallel for all such pairs,�BL
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z they are also parallel for rigid bodies that possess this kind
of symmetry, which is called axial symmetry.

For such symmetrical rigid bodies and are parallel
and we can write in vector form

(10-12)

Do not forget, however, that if stands for the total an-
gular momentum, then Eq. 10-12 applies only to bodies that
have symmetry about the rotational axis. If stands for the
vector component of angular momentum along the rotational
axis (that is, for then Eq. 10-12 holds for any rigid body,
symmetrical or not, that is rotating about a fixed axis.

For symmetrical bodies (such as the two-particle system
of Fig. 10-7), the upper bearing in Fig. 10-6a may be re-
moved, and the shaft will remain parallel to the z axis. You
can verify this by noting how easy it is to spin a symmetrical
object such as a small top held only between the thumb and
forefinger of one hand. Any small asymmetry in the object
requires the second bearing to keep the shaft in a fixed di-
rection; the bearing must exert a torque on the shaft, which,
otherwise would wobble as the object rotates, as we discuss
at the end of this section. The issue of wobble is particularly
serious for objects that rotate at high speeds, such as turbine
rotors. Although designed to be symmetrical, such rotors,
because of small errors of blade placement, for example,
may be slightly asymmetrical. They may be restored to sym-
metry by the addition or removal of metal at appropriate
places; this is done by spinning the wheel in a special device
such that the wobble can be measured quantitatively and the
appropriate corrective measure computed and indicated au-
tomatically. In a similar manner, lead weights are placed at
strategic points on automobile tire rims to reduce wobble at
high speeds. In “balancing” a wheel of your car, your me-
chanic is really just verifying that the angular momentum
and angular velocity vectors of the wheel are parallel,
thereby reducing the strain on the wheel bearings.

Sample Problem 10-2. Which has greater magnitude,
the angular momentum of the Earth (relative to its center) associ-
ated with its rotation on its axis or the angular momentum of the
Earth (relative to the center of its orbit) associated with its orbital
motion around the Sun?

Solution For rotation on its axis, we treat the Earth as a uniform
sphere The angular speed is � � 2/T, where T is
the rotational period (24 h � 8.64 � 104 s). The magnitude of the
rotational angular momentum about an axis through the center of
the Earth is then

To calculate the orbital angular momentum, we need the rotational
inertia of the Earth about an axis through the Sun. For this we can

� 7.06 � 1033 kg 	m2/s. 

� 2
5(5.98 � 1024 kg)(6.37 � 106 m)2 2
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Figure 10-7. Two particles of mass m rotating as in Fig. 10-6
but at opposite ends of a diameter. The total angular momentum 
of the two particles is in this case parallel to the angular velocity �B.
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treat the Earth as a “particle,” with angular momentum 
where is the radius of the orbit and p is the linear momentum
of the Earth. The angular velocity is again given by 
where now T is the orbital period (1 y � 3.16 � 107 s). The mag-
nitude of the orbital angular momentum about an axis through the
Sun is

The orbital angular momentum is thus far greater than the rota-
tional angular momentum.

The orbital angular momentum vector points at right angles to
the plane of the Earth’s orbit (Fig. 10-8), while the rotational an-
gular momentum is inclined at an angle of 23.5° to the normal to
the plane. Neglecting the very slow precession of the rotational
axis, the two vectors remain constant in both magnitude and direc-
tion as the Earth moves in its orbit.

Sample Problem 10-3. In Sample Problem 9-10, find
the acceleration of the falling block by direct application of Eq.
10-9 

Solution The system shown in Fig. 10-9, consisting of the pulley
(assumed to be a uniform disk of mass M and radius R) and the
block of mass m, is acted on by two external forces, the downward
pull of gravity acting on m and the upward force exerted by
the bearings of the shaft of the disk, which we take as our origin.
(The tension in the cord is an internal force and does not act from
the outside on the system of disk � block.) Only the first of these
external forces exerts a torque about the origin; its magnitude is
(mg)R and its direction is along the positive z axis in Fig. 10-9.

The z component of the angular momentum of the system
about the origin O at any instant is

in which I� is the angular momentum of the (symmetrical) disk
and (mv)R is the angular momentum momentum �(� linear

Lz � I� � (mv)R,

mgB

(��B � dL
B

/dt).

� 2.67 � 1040 kg 	m2/s. 

� (5.98 � 1024 kg)(1.50 � 1011 m)2 2

3.16 � 107 s

Lorb � Rorb p � Rorb Mv � Rorb M(�Rorb) � MR orb
2 2

T

� � 2 /T,
Rorb

L � Rorb p,
moment arm) of the falling block about the origin. Both these con-
tributions to have positive z components.

Applying yields

Since and this reduces to

or

This result is identical with the result of Sample Problem 9-10 as
expected, because and are merely differ-
ent ways of stating Newton’s second law.

The Torque on a Particle Moving in a
Circular Path (Optional)
The perhaps unexpected result that and are not parallel
in the simple case shown in Fig. 10-6 may cause some con-
cern. However, this result is consistent with the general re-
lationship for the torque acting on a single parti-
cle. The vector is changing with time in that example as
the particle moves; the change is entirely in direction and
not in magnitude. As the particle revolves, remains con-
stant in both magnitude and direction, but changes its di-
rection. This change in must arise from the application
of a torque. What is the source of this torque?

For the particle to move in a circle, it must be acted on
by a centripetal force, as in Fig. 10-6c, provided by the sup-
porting arm that connects the particle to the shaft. (We have
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Figure 10-8. Sample Problem 10-2. The Earth rotates in an
(assumed circular) orbit around the Sun, and it also rotates about
its axis. The two angular momentum vectors are not parallel, be-
cause the Earth’s rotational axis is inclined at an angle of 23.5°
with respect to the normal to the plane of the orbit. The lengths of
the vectors are not drawn to scale; Lorb should be greater than Lrot

by a factor of about 4 � 106.
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Figure 10-9. Sample Problem 10-3. The angular velocity,
angular momentum, and net torque all point out of the page (in the
positive z direction), as indicated by the symbol � at O.



neglected other external forces, such as gravity.) The only
torque about O is provided by and is given by

The torque is tangent to the circle (perpendicular to the
plane formed by and and in the direction shown in
Fig. 10-6c, as you may verify from the right-hand rule.

Let us show that this torque satisfies the rotational form
of Newton’s second law, Figure 10-10a shows
a two-dimensional view of the rotating particle, looking
down along the z axis toward the xy plane. As the particle
moves through the small angle (Fig. 10-10b),
the vector changes by the small increment You can
see from Fig. 10-10b that will always be parallel to 
and so the directions of and are consistent with

We can also show that the magnitudes agree.
The torque about O is, referring again to Fig. 10-6c,

In this case, is the centripetal force and has magnitude
where r� is the radius of the circular

path so Thus

(10-13)

From Fig. 10-10b, from which we
obtain

With then The tangential velocity
v is so

and

(10-14)

Comparing Eqs. 10-13 and 10-14, we see that as
expected. �

Symmetrical Versus Asymmetrical Bodies
(Optional)
How does the situation differ for symmetrical and asym-
metrical rotating bodies? Suppose the rod connecting the
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two particles in the symmetrical body of Fig. 10-7 were in-
clined at an arbitrary angle � with respect to the central
shaft. Figure 10-11 shows the connecting rod, the shaft, and
the two bearings (assumed frictionless) that holds the shaft
along the z axis. The shaft rotates at a constant angular
speed � about this axis, the vector thus pointing along
this axis. Experience tells us that such a system is “unbal-
anced” or “lopsided,” and if the connecting rod were not
rigidly fastened to the vertical shaft near O, it would tend to
move until the angle � became 90°, in which position the
system would then be symmetrical about the shaft.

At the instant shown in Fig. 10-11, the upper particle is
moving into the page at right angles to it, and the lower par-
ticle is moving out of the page at right angles to it. The lin-
ear momentum vectors of the two particles are therefore
equal but opposite, and so are their position vectors with re-
spect to O. Hence, by application of the right-hand rule in

we find that is the same for each particle and that
their sum, the total angular momentum vector of the sys-
tem, is as shown in the figure, at right angles to the con-
necting rod and in the plane of the page. Hence and 
are not parallel at this instant. As the system rotates, the an-
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Figure 10-10. (a) A two-dimensional view of the
plane of the rotating particle of Fig. 10-6. The z component
of the angular momentum points out of the paper. (b) When
the particle rotates through an angle d�, the vector compo-
nent in the plane changes by . Note that is parallel
to .�B
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Figure 10-11. A rotating two-particle system, similar to Fig.
10-7, but with the axis of rotation making an angle � with the con-
necting rod. The angular momentum vector rotates with the sys-
tem, as do the forces and exerted by the bearings.�F
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gular momentum vector, while constant in magnitude, ro-
tates around the fixed axis of rotation.

The rotation of about the fixed axis of Fig. 10-11 is
perfectly consistent with the fundamental relation

The external torque on the entire system arises
from the unbalanced sideways forces exerted by the bearings
on the shaft and transmitted by the shaft to the connecting
rod. At the instant shown in the figure, the upper particle
would tend to move outward to the right. The shaft would be
pulled to the right against the upper bearing, which in turn
exerts a force on the shaft that points to the left. Similarly,
the lower particle tends to move outward to the left. The shaft
would be pulled to the left against the lower bearing, which
in turn exerts a force on the shaft that points to the right.
The torque about O as a result of these forces points per-
pendicularly out of the page, at right angles to the plane
formed by and and in the right direction to account for
the rotary motion of (Compare with Fig. 10-6c, in which

was also perpendicular to the plane formed by and )
Note that because is perpendicular to there is no com-
ponent of the angular acceleration in the direction of 
and so the angular velocity remains constant. In the absence
of friction, the system will spin forever. Friction in the bear-
ings would give rise to a torque directed along the shaft (par-
allel to which would have an angular acceleration com-
ponent along and thus would change the angular velocity.

The forces and lie in the plane of Fig. 10-11 at
the instant shown. As the system rotates, these forces, and
therefore the torque �, rotate with it, so that always re-
mains at right angles to the plane formed by and . The
rotating forces and cause a wobble in the upper and
lower bearings. The bearings and their supports must be
made strong enough to provide these forces. For a symmet-
rical rotating body there is no bearing wobble, and the shaft
rotates smoothly. �

10-4 CONSERVATION OF
ANGULAR MOMENTUM

In Eq. 10-9, we found that the time rate of change of the to-
tal angular momentum of a system of particles about a
point fixed in an inertial reference frame (or about the cen-
ter of mass) is equal to the net external torque acting on the
system; that is

(10-9)

If the net external torque acting on the system is zero,
then the angular momentum of the system does not change
with time Thus

(10-15)

In this case the initial angular momentum is equal to the fi-
nal angular momentum. Equation 10-15 is the mathematical
statement of the principle of conservation of angular mo-
mentum:
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If the net external torque acting on a system is zero, the
total vector angular momentum of the system remains
constant.

This is the second of the major conservation laws we have
discussed. Along with conservation of linear momentum,
conservation of angular momentum is a general result that
is valid for a wide range of systems. It holds true in both
the relativistic limit and in the quantum limit. No excep-
tions have ever been found.

Like conservation of linear momentum in a system on
which the net external force is zero, conservation of angular
momentum applies to the total angular momentum of a sys-
tem of particles on which the net external torque is zero.
The angular momentum of individual particles in a system
may change due to internal torques ( just as the linear mo-
mentum of each particle in a collision may change due to
internal forces), but the total remains constant.

Angular momentum is (like linear momentum) a vector
quantity so that Eqs. 10-15 is equivalent to three one-
dimensional equations, one for each coordinate direction
through the reference point. Conservation of angular mo-
mentum therefore supplies us with three conditions on the
motion of a system to which it applies. Any component of
the angular momentum will be constant if the correspond-
ing component of the torque is zero; it might be the case
that only one of the three components of torque is zero,
which means that only one component of the angular mo-
mentum will be constant, the other components changing as
determined by the corresponding torque components.

For a system consisting of a rigid body rotating with an-
gular speed � about an axis (the z axis, say) that is fixed in
an inertial reference frame, we have

(10-16)

where Lz is the component of the angular momentum along
the rotation axis and I is the rotational inertia for this same
axis. If no net external torque acts, then Lz must remain
constant. If the rotational inertia I of the body changes
(from Ii to If)— for example, by a change in the distance of
parts of the body from the axis of rotation— there must be
a compensating change in � from � i to �f . The principle of
conservation of angular momentum in this case is ex-
pressed as or

(10-17)

Equation 10-17 holds not only for rotation about a fixed
axis but also for rotation about an axis through the center of
mass of a system that moves so that the axis always re-
mains parallel to itself (see the discussion at the beginning
of Section 9-7).

Conservation of angular momentum is a principle that
regulates a wide variety of physical processes, from the
subatomic world to the motion of acrobats, divers, and bal-
let dancers, to the contraction of stars that have run out of
fuel, and to the condensation of galaxies. The following ex-
amples show some of these applications.

Ii�i � If�f .

Liz � Lfz

Lz � I�,
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The Spinning Skater
A spinning ice skater pulls her arms close to her body to
spin faster and extends them to spin slower. When she does
this, she is applying Eq. 10-17. Another application of this
principle is illustrated in Fig. 10-12, which shows a student
sitting on a stool that can rotate freely about a vertical axis.
Let the student extend his arms holding the weights, and we
will set him into rotation at an angular velocity � i . His an-
gular momentum vector lies along the vertical axis (z
axis) in the figure.

The system consisting of student � stool � weights is
an isolated system on which no external vertical torque
acts. The vertical component of angular momentum must
therefore be conserved.

When the student pulls his arms (and the weights)
closer to his body, the rotational inertia of his system is re-
duced from its initial value Ii to a smaller value If , because
the weights are now closer to the axis of rotation. His final
angular speed, from Eq. 10-17, is which is
greater than his initial angular velocity (because 
and the student rotates faster. To slow down, he need only
extend his arms again.

The Springboard Diver*
Figure 10-13a shows a diver leaving the springboard. As
she jumps, she pushes herself slightly forward so that she
acquires a small rotational speed, just enough to carry her
head-first into the water as her body rotates through one-
half revolution during the arc.

While she is in the air, no external torques act on her to
change her angular momentum about her center of mass.

If � Ii),
�f � �i(Ii/If),

L
B

(The only external force, gravity, acts through her center of
mass and thus produces no torque about that point. We ne-
glect air resistance, which could produce a net torque and
change her angular momentum.) When she pulls her body
into the tuck position, she lowers her rotational inertia, and
therefore according to Eq. 10-17 her angular velocity must
increase. The increased angular velocity enables her to
complete 1 revolutions where she had previously com-
pleted only one-half revolution (Fig. 10-13b). At the end of
the dive, she pulls back out into the layout position and
slows her angular speed as she enters the water.

1
2
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L

ωi

Ii

z

(a)

L

ωf

If

z

(b)

* See “The Mechanics of Swimming and Diving,” by R. L. Page, The
Physics Teacher, February 1976, p. 72; “The Physics of Somersaulting and
Twisting,” by Cliff Frohlich, Scientific American, March 1980, p. 155.

Figure 10-12. (a) In this configuration, the system (student
� weights) has a larger rotational inertia and a smaller angular ve-
locity. (b) Here the student has pulled the weights inward, giving a
smaller rotational inertia and hence a larger angular velocity. The
angular momentum has the same value in both situations.L

B

L

(a)

L

(b)

Figure 10-13. (a) A diver leaves the springboard in such a
way that the springboard imparts to her an angular momentum 
She rotates about her center of mass (indicated by the dot) by one-
half revolution as the center of mass follows the parabolic trajec-
tory. (b) By entering the tuck position, she reduces her rotational
inertia and thus increases her angular velocity, enabling her to
make revolutions. The external forces and torques on her are
the same in (a) and (b), as indicated by the constant value of the
angular momentum L

B
.

11
2

L
B

.



The Rotating Bicycle Wheel
Figure 10-14a shows a student seated on a stool that is free
to rotate about a vertical axis. The student holds a bicycle
wheel that has been set spinning. When the student inverts
the spinning wheel, the stool begins to rotate (Fig. 10-14b).

No net vertical torque acts on the system consisting of
student � stool � wheel, and therefore the vertical (z)
component of the total angular momentum of the system
must remain constant. Initially, the z component of the an-
gular momentum of the rotating wheel is �Lw . The total
initial angular momentum of the system is then 
When the wheel is turned over (as a result of an internal
torque in the system), the z component of the total angular
momentum must remain constant. The z component of the
final total angular momentum is where
Ls is the angular momentum of student � stool and �Lw is
the angular momentum of the inverted wheel. Conservation
of angular momentum (in the absence of external torque)
requires that and so the student and stool will ro-
tate with angular momentum 

We can also consider this situation from the standpoint of
two separate systems, one being the wheel and the other be-
ing the student � stool. Neither of these systems is now iso-
lated: the student’s hand forms the connection between
them. When the student attempts to invert the wheel, she
must apply a torque to change the wheel’s angular momen-
tum. The force she exerts on the wheel to produce that
torque is returned by the wheel as a reaction force on her, by
Newton’s third law. This external force on the system of stu-

Ls � �2Lw .
Liz � Lfz ,

(�Lw),Lfz � Ls �

Liz � �Lw .

dent � stool causes that system to rotate. In this view the
student exerts an external torque on the wheel to change its
angular momentum, while the wheel exerts a torque on the
student to change her angular momentum. If we consider the
complete system consisting of student � stool � wheel, as
we did above, this torque is an internal torque that did not
enter into out calculations. Whether we consider the torque
as internal or external depends on how we define our system.

The Stability of Spinning Objects
Consider again Fig. 10-3b. An object moving with linear
momentum has a directional stability; a deflect-
ing force provides the impulse, corresponding to a sideways
momentum increment and as a result the direction of
motion is changed by an angle � � tan�1 The
larger is the momentum p, the smaller is the angle �. The
same deflecting force is less effective in diverting an object
with large linear momentum than it is in diverting an object
with small linear momentum.

Angular momentum provides an object with orienta-
tional stability in much the same way. A rapidly spinning
object (as in Fig. 10-4b) has a certain angular momentum 
A torque perpendicular to changes the direction of 
and therefore the direction of the axis of rotation, by an an-
gle � � tan�1 Once again, the larger is the angular
momentum L, the less successful a given torque will be in
changing the direction of the axis of the spinning object.

When we give an object rotational angular momentum
about a symmetry axis, we in effect stabilize its orientation
and make it more difficult for external forces to change its
orientation. There are many common examples of this ef-
fect. A riderless bicycle given a slight push is able to remain
upright for a far longer distance than we might expect. In
this case it is the angular momentum of the spinning wheels
that gives the stability. Minor bumps and curves of the road-
way, which might otherwise topple or deflect a nonrotating
object balanced on so narrow a base as a bicycle tire, have
less effect in this case because of the tendency of the angular
momentum of the wheels to fix their orientation.*

A football is thrown for a long forward pass such that it
rotates about an axis that is roughly parallel to its transla-
tional velocity. This stabilizes the orientation of the football
and keeps it from tumbling, which makes it possible to throw
more accurately and catch more effectively. It also keeps the
smallest profile of the football in the forward direction,
thereby minimizing air resistance and increasing the range.

It is important to stabilize the orientation of a satellite,
particularly if it is using its thrusters to move to a specific
orbital position (Fig. 10-15). The orientation might be
changed, for example, by friction from the thin residual at-
mosphere at orbital altitudes, by the solar wind (a beam of
charged particles from the Sun), or by impacts from tiny

(
L�/L).

L
B

,L
B

�B
L
B

.

(
p�/p).

pB� ,

pB � M vB
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Figure 10-14. (a) A student holds a rotating bicycle wheel.
The total angular momentum of the system is (b) When the
wheel is inverted, the student begins to rotate. (c) The total final
angular momentum must be equal to the initial angular momen-
tum.

L
B

w .

Lw

Lw Lf = Ls + (–Lw)

= L i

–Lw

–Lw

Ls

Ls

z

(a)

(c)

(b)

Initial Final

* See “The Stability of the Bicycle,” by David E. H. Jones, Physics Today,
April 1970, p. 34.



meteoroids. To reduce the effects of such encounters, the
craft is made to spin about an axis thereby stabilizing its
orientation.

Collapsing Stars
Most stars rotate, as our Sun does. It turns once on its axis
every month or so. (The Sun is a ball of gas and does not ro-
tate quite like a rigid body; the regions near the poles have a
rotational period of about 37 days, but the equator rotates
once every 26 days.) The Sun is kept from collapsing by ra-
diation pressure, in essence the effect of impulsive colli-
sions of the emerging radiation with the atoms of the Sun.
When the Sun’s nuclear fuel is used up, the radiation pres-
sure will vanish, and the Sun will begin to collapse, its den-
sity correspondingly increasing. At some point the density
will become so great that the atoms simply cannot be

crowded any closer together, and the collapse will be halted.
This is the white dwarf stage, where the Sun will end its life.

In stars more than about 1.4 times as massive as the
Sun, however, the gravitational force is so strong that the
atoms cannot prevent further collapse. The atoms are in ef-
fect crushed by gravity, and the collapse continues until the
nuclei are touching one another. The star has in effect be-
come one giant atomic nucleus; it is called a neutron star.
The radius of a neutron star of about 1.5 solar masses is
about 11 km.

Suppose the star began its collapse like our Sun, rotat-
ing once every month. The forces during the collapse are
clearly internal forces, which cannot change the angular
momentum. The final angular speed is therefore related to
the initial angular speed by Eq. 10-17: �i(Ii/If). The
ratio of the rotational inertias will be the same as the ratio
of the squares of the radii: If the initial radius
were about the same as the Sun’s (about 7 � 105 km), then

That is, its rotational speed goes from once per month to
4 � 109 per month, or more than 1000 revolutions per
second!

Neutron stars can be observed from Earth, because (again
like the Sun) they have magnetic fields that trap electrons,
and the electrons are accelerated to very high tangential
speeds as the star rotates. Such accelerated electrons emit ra-
diation, which we see on Earth somewhat like a searchlight
beacon as the star rotates. These sharp pulses of radiation
earned rotating neutron stars the name pulsars. A sample of
the radiation observed from a pulsar is shown in Fig. 10-16.

Conservation of angular momentum applies to a wide
variety of astrophysical phenomena. The rotation of our
galaxy, for example, is a result of the much slower initial
rotation of the gas cloud from which the galaxy condensed;
the rotation of the Sun and the orbits of the planets were de-
termined by the original rotation of the material that formed
our solar system.

Sample Problem 10-4. A 120-kg astronaut, carrying out
a “space walk,” is tethered to a spaceship by a fully extended cord
180 m long. An unintended operation of the propellant pack causes
the astronaut to acquire a small tangential velocity of 2.5 m/s. To re-
turn to the spacecraft, the astronaut begins pulling along the tether
at a slow and constant rate. With what force must the astronaut pull
at distances of (a) 50 m and (b) 5 m from the spacecraft? What will
be the astronaut’s tangential speed at these points?

Ii

If
�

r i
2

r f
2 �

(7 � 105 km)2

(11 km)2 � 4 � 109.

Ii/If � r i
2/r f

2 .

�f �
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Figure 10-15. Deployment of a communications satellite
from the bay of the space shuttle. The satellite is made to spin
about its central axis (the vertical axis in this photo) to stabilize its
orientation in space as it makes its way upward to its geosynchro-
nous orbit.

Figure 10-16. Electromagnetic
pulses received on Earth from a rapidly
rotating neutron star. The vertical arrows
suggest pulses too weak to be detected.
The interval between pulses is remarkably
constant, being equal to 1.187,911,164 s.

Time, 1-s intervals

In
te

ns
ity



Solution No external torques act on the astronaut, so that conser-
vation of angular momentum holds. That is, the astronaut’s initial
angular momentum relative to the spaceship as origin (Mviri)
when beginning to pull on the tether must equal the angular mo-
mentum (Mvr) at any point in the motion. Thus

or

The centripetal force at any stage is given by

Initially, the required centripetal force is

(a) When the astronaut is 50 m from the spacecraft, the tangential
speed is

and the centripetal force is

(b) At 5 m from the ship, the speed goes up by a factor of 10 to 90
m/s, while the force increases by a factor of 103 to 1.94 � 105 N,
or about 22 tons! It is clear that the astronaut cannot exert such a
large force to return to the spacecraft. Even if the astronaut were
being pulled toward the ship by a winch from within the space-
craft, the tether could not withstand such a large tension; at some
point it would break and the astronaut would go shooting into
space with whatever the tangential speed was at the time the tether
broke. Moral: Space-walking astronauts should avoid acquiring
tangential velocity. What could the astronaut do to move safely
back to the ship?

Sample Problem 10-5. A turntable consisting of a disk
of mass 125 g and radius 7.2 cm is spinning with an angular speed
of 0.84 rev/s about a vertical axis (Fig. 10-17a). An identical, ini-
tially nonrotating disk is suddenly dropped onto the first. The fric-

F �
(120 kg)(2.5 m/s)2(180 m)2

(50 m)3 � 194 N (about 44 lb).

v �
(2.5 m/s)(180 m)

50 m
� 9.0 m/s,

F �
(120 kg)(2.5 m/s)2

180 m
� 4.2 N (about 1 lb).

F �
Mv2

r
�

Mv i
2r i

2

r 3 .

v �
viri

r
.

Mvr � Mviri

tion between the two disks causes them eventually to rotate at the
same speed. A third identical nonrotating disk is then dropped
onto the combination, and eventually all three are rotating to-
gether (Fig. 10-17b). What is the angular speed of the combina-
tion?

Solution This problem is the rotational analogue of the com-
pletely inelastic collision, in which objects stick together (see Sec-
tion 6-5). There is no net vertical external torque, so the vertical
(z) component of angular momentum is constant. The frictional
force between the disks is an internal force, which cannot change
the angular momentum. Thus Eq. 10-17 applies, and we can write

or

Without doing any detailed calculations, we know that the rota-
tional inertia of three identical disks about their common axis will
be three times the rotational inertia of a single disk. Thus 
and

10-5 THE SPINNING TOP*

A spinning top provides us with what is perhaps the most
familiar example of the phenomenon shown in Fig. 10-4b,
in which a lateral torque changes the direction but not the
magnitude of an angular momentum. Figure 10-18a shows
a top spinning about its axis. The bottom point of the top is
assumed to be fixed at the origin O of our inertial reference
frame. We know from experience that the axis of this
rapidly spinning top will move slowly about the vertical
axis. This motion is called precession, and it arises from the
configuration illustrated in Fig. 10-4b, with gravity supply-
ing the external torque.

Figure 10-18b shows a simplified diagram, with the top
replaced by a particle of mass M located at the top’s center
of mass. The gravitational force Mg gives a torque about O
of magnitude.

(10-18)

The torque, which is perpendicular to the axis of the top
and therefore perpendicular to (Fig. 10-18c), can change
the direction of but not its magnitude. The change in in
a small increment of time dt is given by

(10-19)

and is in the same direction as — that is, perpendicular to
The effect of is therefore to change to a

vector of the same length as but pointing in a slightly dif-
ferent direction.

If the top has axial symmetry, and if it rotates about its
axis at high speed, then the angular momentum will be
along the axis of rotation of the top. As changes direc-L

B

L
B

L
B

� dL
B

,L
B

�BL
B

.
�B

dL
B

� �B dt

L
B

L
B

L
B

� � Mgr sin �.

�f � (0.84 rev/s)(1
3) � 0.28 rev/s.

Ii/If � 1
3

�f � � i
Ii

If
.

Ii� i � If�f ,
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(a)

ωi ωf

(b)

z

z

Figure 10-17. Sample Problem 10-5. (a) A disk is spinning
with initial angular velocity �i . (b) Two identical disks, neither of
which is initially rotating, are dropped onto the first, and the entire
system then rotates with angular velocity �f .

* See “The Amateur Scientist: The Physics of Spinning Tops, Including
Some Far-Out Ones,” by Jearl Walker, Scientific American, March 1981,
p. 185.



tion, the axis changes direction too. The tip of the vector
and the axis of the top trace out a circle about the z axis, as
shown in Fig. 10-18a. This motion is the precession of the
top.

In a time dt, the axis rotates through an angle d� (see
Fig. 10-18d), and thus the angular speed of precession �P

is

(10-20)

From Fig. 10-18d, we see that

(10-21)

Thus

(10-22)

The precessional speed is inversely proportional to the
angular momentum and thus to the rotational angular
speed; the faster the top is spinning, the slower it will pre-
cess. Conversely, as friction slows down the rotational an-
gular speed, the precessional angular speed increases.

Equation 10-22 gives the relationship between the mag-
nitudes of , and These quantities are vectors, and
the vector relationship among them is

(10-23)

You should be able to show that this relationship is consis-
tent with the relationship between the magnitudes (Eq. 10-
22) and also with the directions of the vectors given in Fig.
10-18. Note that for precessional motion about the z axis,
the vector is in the z direction.

Precession is commonly observed for spinning tops and
gyroscopes. Even the Earth can be considered to be a spin-
ning top, and the gravitational pull of the Sun and Moon on
the tidal bulges near the equator causes a precession (called
in astronomy the “precession of the equinoxes”) in which
the Earth’s rotational axis traces out the surface of a cone

�BP

�B � �BP � L
B

.

�B.L
B

,�BP

�P �
d�

dt
�

�

L sin �
�

Mgr sin �

L sin �
�

Mgr

L
.

d� �
dL

L sin �
�

� dt

L sin �
.

�P �
d�

dt
.

L
B

(as in Fig. 10-18) with half-angle � � 23.5°, taking about
26,000 years to complete a full cycle.

There are two components to the angular momentum of
the top: its rotational angular momentum about its symme-
try axis and the precessional angular momentum. The total
angular momentum is the sum of these two vectors, which
in general does not lie along the symmetry axis of the top.
Therefore our assumption that the symmetry axis of the top
follows the direction of the angular momentum vector is
not quite correct. If, however, the precessional angular mo-
mentum is much smaller than the rotational angular mo-
mentum of the top, there is only a very small deviation be-
tween the direction of the symmetry axis and the direction
of the angular momentum. This small deviation causes a
slight oscillation, called a nutation, of the axis of the top
back and forth about the precessional circle.

10-6 REVIEW OF ROTATIONAL
DYNAMICS

In physics we can often learn about a new subject by com-
parison or analogy with a subject we have already under-
stood. For example, later in the text we will find that mag-
netic phenomena have much in common with electric
phenomena, and so we can learn about magnetism by ex-
tension of our previous knowledge of electricity.

In the past three chapters we have introduced many new
rotational quantities and pointed out their similarities with
the corresponding translational quantities. It is useful to
keep in mind these similarities, but it is also important to
recall the differences between translational and rotational
quantities and the special cases or limitations of applicabil-
ity of the rotational equations. For example, some rotational
equations apply only to rotation about an axis that is fixed
in space.

Table 10-1 shows a comparison between translational
and rotational quantities in dynamics.
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Figure 10-18. (a) A spinning top precesses about a vertical axis. (b) The weight of the top exerts a torque about the point of contact
with the floor. (c) The torque is perpendicular to the angular momentum vector. (d) The torque changes the direction of the angular momen-
tum vector, causing precession.
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Equation Equation
Translational Quantity Number Rotational Quantity Number

Velocity 2-9 Angular velocity 8-3

Acceleration 2-16 Angular acceleration 8-5

Mass m Rotational inertia 9-10

Force Torque 9-3

Newton’s second law 4-3 Newton’s second law for 9-11

rotations about a fixed axis

Equilibrium condition 9-22 Equilibrium condition 9-23

Momentum of a particle 6-1 Angular momentum of a 10-1
particle

Momentum of a system of 7-21 Angular momentum of a 10-12
particles system of particles

General form of Newton’s 7-23 General form of Newton’s 10-9
second law second law of rotations

Conservation of momentum 6-12 Conservation of angular 10-15
in a system of particles for � constant momentum in a system of � constant
which particles for which 

* Some of these equations apply only under certain special conditions. Be sure you understand the conditions before using these equations. Equations that
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� �ext,z � I�z� F
B

ext � maB

�B � rB � F
B

F
B
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�B � d�
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/dtvB � d rB/dt

Table 10-1 Review and Comparison of Translational and Rotational Dynamics*

MULTIPLE CHOICE

10-1 Angular Momentum of a Particle
1. A particle moves with position given by 

where is measured in meters when t is measured in sec-
onds. For each of the following, consider only 

(a) The magnitude of the linear velocity of this particle is

(A) increasing in time. (B) constant in time.
(C) decreasing in time. (D) undefined.

(b) The magnitude of the linear momentum of this particle is

(A) increasing in time. (B) constant in time.
(C) decreasing in time. (D) undefined.

(c) The magnitude of the angular velocity of this particle
about the origin is

(A) increasing in time. (B) constant in time.
(C) decreasing in time. (D) undefined.

(d) The magnitude of the angular momentum of this particle
about the origin is

(A) increasing in time. (B) constant in time.
(C) decreasing in time. (D) undefined.

2. A particle moves with constant velocity The angular mo-
mentum of this particle about the origin is zero

(A) always.

vB.

t � 0.
rB

rB � 3t î � 4 ĵ,

(B) at exactly one time only.
(C) only if the trajectory of the particle passes through the

origin.
(D) never.

3. A particle moves with constant momentum 
The particle has an angular momentum about the origin of

when 

(a) The magnitude of the angular momentum of this particle is

(A) decreasing. (B) constant. (C) increasing.
(D) possibly but not necessarily constant.

(b) The trajectory of this particle

(A) definitely passes through the origin.
(B) might pass through the origin.
(C) will not pass through the origin, but it is uncertain how

close it will pass to the origin.
(D) will not pass through the origin, but one can calculate

exactly how close it will pass to the origin.

10-2 Systems of Particles
4. Two particles have angular momenta and

kg 	 m2/s as measured about the origin. Originally
particle 1 moves in the xy plane and particle 2 moves in the yz
� l
B

2 � � 40
� l
B

1 � � 30 kg 	m2/s

t � 0 s.l
B

� (20 kg 	m2/s)k̂

pB � (10 kg 	m/s)î.



plane. If there are no external torques, then the total angular
momentum is a constant of magnitude

(A) (B)
(C)
(D)

5. Two independent particles are originally moving with angular
momenta and in a region of space with no external
torques. A constant external torque then acts on particle
one, but not on particle two, for a time 
t. What is the change
in the total angular momentum of the two particles?

(A) (B)
(C)
(D) 
 for the system is poorly defined because the two

particles are not connected.

10-3 Angular Momentum and Angular Velocity
6. The linear velocity and linear momentum of a body

(A) are always parallel.
(B) are never parallel.
(C) are parallel only if is constant.
(D) are parallel only if is pointing in certain directions

with respect to the body.

7. The angular velocity and angular momentum of a body
with axial symmetry

(A) are always parallel.
(B) are never parallel.
(C) are parallel only if is constant.
(D) are parallel only if is pointing in certain directions

with respect to the body.

8. A body, not necessarily rigid, is originally rotating with angu-
lar velocity of magnitude �0 and angular momentum of mag-
nitude L0 . Something happens to the body to cause �0 to
slowly decrease. Consequently

(A) L0 must also be decreasing.
(B) L0 could be constant or decreasing, but not increasing.
(C) L0 could be constant, decreasing, or increasing.
(D) L0 could be constant or increasing, but not decreasing.

10-4 Conservation of Angular Momentum
9. A solid object is rotating freely without experiencing any ex-

ternal torques. In this case
(A) both the angular momentum and angular velocity have

constant directions.
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� L
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� L
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B � � 10 kg 	m2/s

(B) the direction of the angular momentum is constant but
the direction of the angular velocity might not be con-
stant.

(C) the direction of the angular velocity is constant but the
direction of the angular momentum might not be con-
stant.

(D) neither the angular momentum nor the angular velocity
necessarily has a constant direction.

10. A physics professor is sitting on a rotating chair with her
arms outstretched, each holding a medium sized barbell. The
frictionless chair is originally rotating at a constant angular
speed. She then pulls her arms closer to her body.

(a) When she brings her arms in, her angular velocity

(A) increases. (B) remains constant. (C) decreases.
(D) changes, but whether it increases or decreases depends

on how she brings her arms in.

(b) When she brings her arms in her angular momentum

(A) increases. (B) remains constant. (C) decreases.
(D) changes, but whether it increases or decreases depends

on how she brings her arms in.

10-5 The Spinning Top
11. Two wires are attached to the ends of the axle of a bicycle

wheel so that the wheel is suspended, free to rotate in a verti-
cal plane. The wheel is spun about the axle at a high speed.
One of the wires supporting the axle is cut; the wheel as
viewed from this side of the axle is rotating in a clockwise di-
rection.

(a) Which way, as viewed from above, will the axis of the
wheel precess?

(A) Clockwise (B) Counterclockwise
(C) The wheel will not precess, because it is not a spinning

top.

(b) Before one of the two wires is cut, each wire has a ten-
sion of W/2 where W is the weight of the wheel. After
cutting one of the wires, the magnitude of the tension in
the wire that is still connected will be

(A) W/2. (B) slightly more than W/2.
(C) approximately W. (D) exactly W.

10-6 Review of Rotational Dynamics
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Figure 10-19. Question 2.

QUESTIONS

1. We have encountered many vector quantities so far, including
position, displacement, velocity, acceleration, force, momen-
tum, and angular momentum. Which of these are defined in-
dependent of the choice of the origin in the reference frame?

2. A cylinder rotates with angular speed � about an axis through
one end, as in Fig. 10-19. Choose an appropriate origin and
show qualitatively the vectors and Are these vectors
parallel? Do symmetry considerations enter here?

3. When the angular speed � of an object increases, its angular
momentum may or may not also increase. Give an example in
which it does and one in which it does not.

�B.L
B Fixed axis

Bearing



4. Is it possible for the angular momentum of an object to be
zero if the angular velocity is nonzero? Is it possible for the
angular velocity of an object to be zero if the angular momen-
tum is nonzero? Explain.

5. A student stands on a table rotating with an angular speed �
while holding two equal dumbbells at arm’s length. Without
moving anything else, the two dumbbells are dropped to the
floor. What change, if any, is there in the student’s angular
speed? Is angular momentum conserved? Explain your answers.

6. A circular turntable rotates at constant angular speed about a
vertical axis. There is no friction and no driving torque. A cir-
cular pan rests on the turntable and rotates with it; see Fig.
10-20. The bottom of the pan is covered with a layer of ice of
uniform thickness, which is, of course, also rotating with the
pan. The ice melts but none of the water escapes from the
pan. Is the angular speed now greater than, the same as, or
less than the original speed? Give reasons for your answer.

14. The mounting bolts that fasten the engine of a jet plane to the
structural framework of the plane are designed to snap apart if
the (rapidly rotating) engine suddenly seizes up because of
some mishap. Why are such “structural fuses” used?

15. A helicopter flies off, its propellers rotating. Why doesn’t the
body of the helicopter rotate in the opposite direction?

16. A single-engine airplane must be “trimmed” to fly level.
(Trimming consists of raising one aileron and lowering the
opposite one.) Why is this necessary? Is it necessary on a
twin-engine plane under normal circumstances?

17. The propeller of an aircraft rotates clockwise as seen from the
rear. When the pilot pulls upward out of a steep dive, she
finds it necessary to apply left rudder at the bottom of the dive
if she is to maintain her heading. Explain.

18. Many great rivers flow toward the equator. What effect does
the sediment they carry to the sea have on the rotation of the
Earth?

19. If the entire population of the world moved to Antarctica,
would it affect the length of the day? If so, in what way?

20. Fig. 10-21a shows an acrobat propelled upward by a trampo-
line with zero angular momentum. Can the acrobat, by ma-
neuvering his body, manage to land on his back as in Fig. 10-
21b? Interestingly, 38% of questioned diving coaches and
34% of a sample of physicists gave the wrong answer. What
do you think? (See “Do Springboard Divers Violate Angular
Momentum Conservation?”, by Cliff Frohlich, American
Journal of Physics, July 1979, p. 583, for a full discussion.)
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Figure 10-20. Question 6.

Figure 10-21. Question 20.

ω
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7. A circular turntable is rotating freely about a vertical axis.
There is no friction at the axis of rotation. (a) A bug, initially at
the center of the turntable, walks out to the rim and stops. How
will the angular momentum of the system (turntable plus bug)
change? How will the angular velocity of the turntable change?
(b) If the bug falls off the edge of the turntable (without jump-
ing), how will the angular velocity of the turntable change?

8. A famous physicist (R. W. Wood), who was fond of practical
jokes, mounted a rapidly spinning flywheel in a suitcase,
which he gave to a porter with instructions to follow him.
What happens when the porter is led quickly around a corner?
Explain in terms of 

9. An arrow turns in flight so as to be tangent to its flight path at
all times. However, a football (thrown with considerable spin
about its long axis) does not do this. Why this difference in
behavior?

10. A passer throws a spiraling football to a receiver. Is its angu-
lar momentum constant, or nearly so? Distinguish between
the cases in which the football wobbles and when it does not.

11. Can you suggest a simple theory to explain the stability of a
moving bicycle? You must explain why it is much more diffi-
cult to balance yourself on a bicycle that is at rest than on one
that is rolling. (See “The Stability of the Bicycle,” by David
E. H. Jones, Physics Today, April 1970, p. 34.)

12. Why does a long bar help a tightrope walker to keep his or
her balance?

13. You are walking along a narrow rail and you start to lose your
balance. If you start falling to the right, which way do you
turn your body to regain balance? Explain.

�B � dL
B

/dt.
(a) (b)

21. Explain, in terms of angular momentum and rotational inertia,
exactly how one “pumps up” a swing in the sitting position.
(See “How to Get the Playground Swing Going: A First Les-
son in the Mechanics of Rotation,” by Jearl Walker, Scientific
American, March 1989, p. 106.)

22. Can you “pump” a swing so that it turns in a complete circle,
moving completely around its support? Assume (if you wish)
that the seat of the swing is connected to its support by a rigid
rod rather than a rope or chain. Explain your answer.

23. Cats usually land on their feet if dropped, even if dropped up-
side down. How?

24. A massive spinning wheel can be used for a stabilizing effect
on a ship. If mounted with its axis of rotation at right angles
to the ship deck, what is its effect when the ship tends to roll
from side to side?
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25. If the top of Fig. 10-18 were not spinning, it would tip over. If
its spin angular momentum is large compared to the change
caused by the applied torque, the top precesses. What happens
in between when the top spins slowly?

26. A Tippy-Top, having a section of a spherical surface of large
radius on one end and a stem for spinning it on the opposite
end, will rest on its spherical surface with no spin but slips
over when spun, so as to stand on its stem. Explain. (See “The
Tippy-Top,” by George D. Freier, The Physics Teacher, Janu-
ary 1967, p. 36.) If you cannot find a Tippy-Top, use a hard-
boiled egg; the “standing-on-end” behavior of the spinning

egg is most easily followed if you put an ink mark on the
“pointed” end of the egg.

27. A bicycle wheel spinning in a vertical plane can be supported
from one end of the axle; the axle simply precesses. What
“holds up” the other end of the axle? In other words, why
doesn’t the bicycle wheel fall?

28. Assume that a uniform rod rests in a vertical position on a
surface of negligible friction. The rod is then given a horizon-
tal blow at its lower end. Describe the motion of the center of
mass of the rod and of its upper endpoint.

EXERCISES

10-1 Angular Momentum of a Particle
1. A particle of mass 13.7 g is moving with a constant velocity

of magnitude 380 m/s. The particle, moving in a straight line,
passes within 12 cm of the origin. Calculate the angular mo-
mentum of the particle about the origin.

2. If we are given r, p, and �, we can calculate the angular mo-
mentum of a particle from Eq. 10-2. Sometimes, however, we
are given the components (x, y, z) of and (vx , vy , vz) of 
instead. (a) Show that the components of along the x, y,
and z axes are then given by

(b) Show that if the particle moves only in the xy plane, the
resultant angular momentum vector has only a z component.

3. Show that the angular momentum about any point of a single
particle moving with constant velocity remains constant
throughout the motion.

4. (a) Use the data given in the appendices to compute the total
angular momentum of all the planets due to their revolution
about the Sun. (b) What fraction of this is associated with the
planet Jupiter?

5. Calculate the angular momentum, about the Earth’s center, of
an 84.3-kg person on the equator of the rotating Earth.

10-2 Systems of Particles
6. The total angular momentum of a system of particles relative

to the origin O of an inertial reference frame is given by
where and are measured with respect

to O. (a) Use the relations and �
to express in terms of the positions andrBi�L

B
miv

B
cm � pBi�

pBirBi � rBcm � rBi�
pBirBiL

B
� � (rBi � pBi ),

lz � m(xvy � yvx).

ly � m(zvx � xvz),

lx � m(yvz � zvy),

l
B

vBrB

momenta relative to the center of mass C; see Fig. 10-22.
(b) Use the definition of center of mass and the definition of
angular momentum with respect to the center of mass to
obtain (c) Show how this result can
be interpreted as regarding the total angular momentum to be
the sum of spin angular momentum (angular momentum rela-
tive to the center of mass) and orbital angular momentum (an-
gular momentum of the motion of the center of mass C with
respect to O if all the system’s mass were concentrated at C).

7. Let be the position vector of the center of mass C of a
system of particles with respect to the origin O of an inertial
reference frame, and let be the position vector of the ith
particle, of mass mi , with respect to the center of mass C.
Hence (see Fig. 10-22). Now define the total
angular momentum of the system of particles relative to the
center of mass C to be where

(a) Show that 
(b) Show next that 

(c) Combine the results of (a) and (b) and,
using the definition of center of mass and Newton’s third law,
show that where is the sum of all the ex-
ternal torques acting on the system about its center of mass.

10-3 Angular Momentum and Angular Velocity
8. The time integral of a torque is called the angular impulse. (a)

Starting from show that the resultant angular im-
pulse equals the change in angular momentum. This is the ro-
tational analogue of the linear impulse-momentum relation.
(b) For rotation around a fixed axis, show that

where r is the moment arm of the force, is the average
value of the force during the time it acts on the object, and �i

and �f are the angular velocities of the object just before and
just after the force acts.

9. A sanding disk with rotational inertia 1.22 � 10�3 kg 	 m2 is
attached to an electric drill whose motor delivers a torque of
15.8 N 	 m. Find (a) the angular momentum and (b) the angu-
lar speed of the disk 33.0 ms after the motor is turned on.

10. A wheel of radius 24.7 cm, moving initially at 43.3 m/s, rolls
to a stop in 225 m. Calculate (a) its linear acceleration and (b)
its angular acceleration. (c) The wheel’s rotational inertia is
0.155 kg 	 m2. Calculate the torque exerted by rolling friction
on the wheel.

Fav

� � dt � Favr (
t) � I(�f � �i),

�B � dL
B

/dt,

�B�ext�B�ext � d L
B

�/dt,

� (rBi� � d pBi� /dt).
dL
B

�/dt �mi d rBcm /dt � pBi � miv
B

cm .
pBi� � mi d rBi /dt �pBi� � mi d rB�i /dt.

L
B

� � � (rBi� � pBi�),

rBi � rBcm � rB�i

rB�i

rBcm

L
B

� L
B

� � rBcm � M vBcm .
L
B

�

pBi�

Figure 10-22. Exercises 6 and 7.
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11. Show that for the two-particle system of Fig. 10-7.

12. Fig. 10-23 shows a symmetrical rigid body rotating about a
fixed axis. The origin of coordinates is fixed for convenience
at the center of mass. Prove, by summing over the contribu-
tions made to the angular momentum by all the mass ele-
ments mi into which the body is divided, that where

is the total angular momentum.L
B

L
B

� I�B,

L
B

� I�B

13. A uniform stick has a mass of 4.42 kg and a length of 1.23 m.
It is initially lying flat at rest on a frictionless horizontal sur-
face and is struck perpendicularly by a puck imparting a hori-
zontal impulsive force of impulse 12.8 N 	 s at a distance of
46.4 cm from the center. Determine the subsequent motion of
the stick.

14. A cylinder rolls down an inclined plane of angle �. Show, by
direct application of Eq. 10-9 that the accel-
eration of its center of mass is sin �. Compare this method
with that used in Sample Problem 9-11.

15. Two cylinders having radii R1 and R2 and rotational inertias I1

and I2 , respectively, are supported by axes perpendicular to
the plane of Fig. 10-24. The large cylinder is initially rotating
with angular velocity �0 . The small cylinder is moved to the
right until it touches the large cylinder and is caused to rotate
by the frictional force between the two. Eventually, slipping
ceases, and the two cylinders rotate at constant rates in oppo-
site directions. Find the final angular velocity �2 of the small
cylinder in terms of I1 , I2 , R1 , R2 , and �0 . (Hint: Angular mo-
mentum is not conserved. Apply the angular impulse equation
to each cylinder. See Exercise 8.)

2
3g

(� �Bext � dL
B

/dt)

corresponding fractional change in the Earth’s angular veloc-
ity resulted? (b) Suppose that the cause of this change was a
shift of molten material in the Earth’s core. What resulting
fractional change in the Earth’s rotational inertia could ac-
count for the answer to part (a)?

17. Suppose that the Sun runs out of nuclear fuel and suddenly
collapses to form a so-called white dwarf star, with a diameter
equal to that of the Earth. Assuming no mass loss, what
would then be the new rotation period of the Sun, which cur-
rently is about 25 days? Assume that the Sun and the white
dwarf are uniform spheres.

18. In a lecture demonstration, a toy train track is mounted on a
large wheel that is free to turn with negligible friction about a
vertical axis; see Fig. 10-25. A toy train of mass m is placed
on the track and, with the system initially at rest, the electrical
power is turned on. The train reaches a steady speed v with
respect to the track. What is the angular velocity � of the
wheel, if its mass is M and its radius R? (Neglect the mass of
the spokes of the wheel.)

Figure 10-23. Exercise 12.

Figure 10-24. Exercise 15.

Figure 10-25. Exercise 18.
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10-4 Conservation of Angular Momentum
16. Astronomical observations show that from 1870 to 1900 the

length of the day increased by about 6.0 � 10�3 s. (a) What

19. The rotor of an electric motor has a rotational inertia
about its central axis. The motor is

mounted parallel to the axis of a space probe having a rota-
tional inertia about its axis. Calculate the
number of revolutions of the motor required to turn the probe
through 25.0° about its axis.

20. A man stands on a frictionless platform that is rotating with
an angular speed of 1.22 rev/s; his arms are outstretched and
he holds a weight in each hand. With his hands in this posi-
tion the total rotational inertia of the man, the weights, and
the platform is 6.13 kg 	 m2. If by moving the weights the man
decreases the rotational inertia to 1.97 kg 	 m2, what is the re-
sulting angular speed of the platform?

21. A wheel with rotational inertia 1.27 kg 	 m2 is rotating with an
angular speed of 824 rev/min on a shaft whose rotational iner-
tia is negligible. A second wheel, initially at rest and with ro-
tational inertia 4.85 kg 	 m2, is suddenly coupled to the same
shaft. What is the angular speed of the resultant combination
of the shaft and two wheels?

22. Show that the value of in Fig. 10-6c is given by mvh,
where h is the distance along the z axis from O to the point of
connection of the radial arm to the vertical shaft.

23. With center and spokes of negligible mass, a certain bicycle
wheel has a thin rim of radius 36.3 cm and mass 3.66 kg; it
can turn on its axle with negligible friction. A man holds the
wheel above his head with the axis vertical while he stands on
a turntable free to rotate without friction; the wheel rotates

l�

Ip � 12.6 kg 	m2

Im � 2.47 � 10�3 kg 	m2
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clockwise, as seen from above, with an angular speed of
57.7 rad/s, and the turntable is initially at rest. The rotational
inertia of wheel-plus-man-plus-turntable about the common
axis of rotation is 2.88 kg 	 m2. (a) The man’s hand suddenly
stops the rotation of the wheel (relative to the turntable). De-
termine the resulting angular velocity (magnitude and direc-
tion) of the system. (b) The experiment is repeated with no-
ticeable friction introduced into the axle of the wheel, which,
starting from the same initial angular speed (57.7 rad/s), grad-
ually comes to rest (relative to the turntable) while the man
holds the wheel as described above. (The turntable is still free
to rotate without friction.) Describe what happens to the sys-
tem, giving as much quantitative information as the data per-
mit.

24. A girl of mass 50.6 kg stands on the edge of a frictionless
merry-go-round of mass 827 kg and radius 3.72 m that is not
moving. She throws a 1.13-kg rock in a horizontal direction
that is tangent to the outer edge of the merry-go-round. The
speed of the rock, relative to the ground, is 7.82 m/s. Calcu-
late (a) the angular speed of the merry-go-round and (b) the
linear speed of the girl after the rock is thrown. Assume that
the merry-go-round is a uniform disk.

25. In a playground there is a small merry-go-round of radius
1.22 m and mass 176 kg. The radius of gyration (see Exercise
9-20) is 91.6 cm. A child of mass 44.3 kg runs at a speed of
2.92 m/s tangent to the rim of the merry-go-round when it is
at rest and then jumps on. Neglect friction between the bear-
ings and the shaft of the merry-go-round and find the angular
speed of the merry-go-round and child.

10-5 The Spinning Top
26. A top is spinning at 28.6 rev/s about an axis making an angle

of 34.0° with the vertical. Its mass is 492 g and its rotational
inertia is 5.12 � 10�4 kg 	 m2. The center of mass is 3.88 cm
from the pivot point. The spin is clockwise as seen from
above. Find the magnitude (in rev/s) and direction of the an-
gular velocity of precession.

27. A gyroscope consists of a rotating disk with a 48.7-cm radius
suitably mounted at the midpoint of a 12.2-cm-long axle so
that it can spin and precess freely. Its spin rate is 975 rev/min.
The mass of the disk is 1.14 kg and the mass of the axle is
130 g. Find the time required for one precession if the axle is
supported at one end and is horizontal.

10-6 Review of Rotational Dynamics

Figure 10-26. Problem 1.

Figure 10-27. Problem 4.

Figure 10-28. Problem 5.

PROBLEMS

1. A particle P with mass 2.13 kg has position and velocity 
as shown in Fig. 10-26. It is acted on by the force All three
vectors lie in a common plane. Presume that m,

m/s, and N. Compute (a) the angular mo-
mentum of the particle and (b) the torque, about the origin,
acting on the particle. What are the directions of these two
vectors?

F � 1.88v � 4.18
r � 2.91
F
B

.
vBrB 4. The axis of the cylinder in Fig. 10-27 is fixed. The cylinder is

initially at rest. The block of mass M is initially moving to the
right without friction and with speed v1. It passes over the
cylinder to the dashed position. When it first makes contact
with the cylinder, it slips on the cylinder, but the friction is
large enough so that slipping ceases before M loses contact
with the cylinder. The cylinder has a radius R and a rotational
inertia I. Find the final speed v2 , in terms of v1 , M, I, and R.
This can be done most easily by using the relation between
impulse and change in momentum.

P

26°

33°

49°

y

x

r

F

v

2. Two particles, each of mass m and speed v, travel in opposite
directions along parallel lines separated by a distance d. Find
an expression for the total angular momentum of the system
about any origin.

3. To get a billiard ball to roll without sliding from the start, the
cue must hit the ball not at the center (that is, a height above
the table equal to the ball’s radius R) but exactly at a height
2R/5 above the center. Prove this result. [See Arnold Sommer-
feld, Mechanics, Volume 2 of Lectures on Theoretical Physics,
Academic Press, Orlando (1964 paperback edition), pp.
158–161, for a supplement on the mechanics of billiards.]

v2

R

M

v1

5. A billiard ball, initially at rest, is given a sharp impulse by a
cue. The cue is held horizontally a distance h above the cen-
terline as in Fig. 10-28. The ball leaves the cue with a speed
v0	 and, because of its “forward English,” eventually acquires
a final speed of 9v0/7. Show that where R is the ra-
dius of the ball.

h � 4R/5,

h

F

R
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6. In Problem 5, imagine to be applied below the centerline.
(a) Show that it is impossible, with this “reverse English,” to
reduce the forward speed to zero, without rolling having set
in, unless (b) Show that it is impossible to give the
ball a backward velocity unless has a downward vertical
component.

7. A bowler throws a bowling ball of radius cm down
the lane with initial speed m/s. The ball is thrown
in such a way that it skids for a certain distance before it
starts to roll. It is not rotating at all when it first hits the lane,
its motion being pure translation. The coefficient of kinetic
friction between the ball and the lane is 0.210. (a) For what
length of time does the ball skid? (Hint: As the ball skids, its
speed v decreases and its angular speed � increases; skidding
ceases when (b) How far down the lane does it
skid? (c) How many revolutions does it make before it starts
to roll? (d) How fast is it moving when it starts to roll?

8. A uniform flat disk of mass M and radius R rotates about a
horizontal axis through its center with angular speed �0 . (a)
What is its angular momentum? (b) A chip of mass m breaks
off the edge of the disk at an instant such that the chip rises
vertically above the point at which it broke off (Fig. 10-29).
How high above the point does it rise before starting to fall?
(c) What is the final angular speed of the broken disk?

v � R�.)

v0 � 8.50
R � 11.0

F
B

h � R.

F
B

10. The Earth was formed about 4.5 billion years ago, probably
as a sphere of roughly uniform density. Shortly thereafter,
heat from the decay of radioactive elements caused much of
the Earth to melt. This allowed the heavier material to sink to-
ward the center of the Earth, forming the core. Today, we can
picture the Earth as made up of a core of radius 3570 km
and density 10.3 g/cm3 surrounded by a mantle of density
4.50 g/cm3 extending to the surface of the Earth (radius
6370 km). We ignore the crust of the Earth. Calculate the
fractional change in the length of the day due to the forma-
tion of the core.

11. A cockroach, mass m, runs counterclockwise around the rim
of a lazy Susan (a circular dish mounted on a vertical axle)
of radius R and rotational inertia I with frictionless bearings.
The cockroach’s speed (relative to the Earth) is v, whereas
the lazy Susan turns clockwise with angular speed �. The
cockroach finds a bread crumb on the rim and, of course,
stops. Find the angular speed of the lazy Susan after the
cockroach stops.

12. Two skaters, each of mass 51.2 kg, approach each other along
parallel paths separated by 2.92 m. They have equal and op-
posite velocities of 1.38 m/s. The first skater carries a long
light pole 2.92 m long, and the second skater grabs the end of
it as he passes; see Fig. 10-30. Assume frictionless ice. (a)
Describe quantitatively the motion of the skaters after they
are connected by the pole. (b) By pulling on the pole, the
skaters reduce their separation to 0.940 m. Find their angular
speed then.

Figure 10-30. Problem 12.

Figure 10-29. Problem 8.

m

9. If the polar ice caps of the Earth were to melt and the water
returned to the oceans, the oceans would be made deeper by
about 30 m. What effect would this have on the Earth’s rota-
tion? Make an estimate of the resulting change in the length
of the day. (Concern has been expressed that warming of the
atmosphere resulting from industrial pollution could cause the
ice caps to melt.)
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11-1 WORK AND ENERGY

Figure 11-1 shows a wheelchair rider pushing his chair up-
hill. As he pushes down on the wheel with a force a
torque is exerted about the instantaneous point of
contact between the wheel and the ground. This torque
causes the wheel to rotate forward. Another way of looking
at the problem is to consider the frictional force exerted
on the ground by the wheel (due to the rider’s effort); the
reaction force exerted on the wheel by the ground,
pushes the chair forward. A similar figure might be drawn
for a person riding a bicycle.

Eventually the arms of the rider or the legs of the bicy-
clist become tired, and the rider is unable to maintain the
original speed up the hill. Perhaps they become so tired that
he stops completely. We can analyze the forces exerted in
this problem based on Newton’s laws, but those laws can-
not explain why the rider’s ability to exert a force to move
forward becomes used up. That is, we cannot regard the
rider’s body as “containing” a quantity of force that is de-
pleted by the effort.

�f
B

,

f
B

rB � F
B

F
B

,

For this analysis, we must introduce the new concepts
of work and energy. As for so many other words that we use
to describe physics concepts, we must be careful not to
confuse their everyday meanings with the precise defini-
tions we give them as physical quantities. The physics con-
cept of work involves a force that is exerted as the point of

fF

FIGURE 11-1. A wheelchair rider pushes the chair uphill.
The force , exerted on the wheel by the rider, gives a torque
about the point where the wheel contacts the ground.

F
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CHAPTER 11CHAPTER 11
ENERGY 1: WORK AND

KINETIC ENERGY

We have seen how Newton’s laws are useful in un-

derstanding and analyzing a wide variety of problems in mechanics. In this and the following two chapters

we consider a different approach based on one of the truly fundamental and universal concepts in physics:

energy.

There are many kinds of energy. In this chapter we consider one particular form—kinetic energy, the

energy associated with a body because of its motion. We also introduce the concept of work, which is re-

lated to kinetic energy through the work–energy theorem. This theorem, derived from Newton’s laws, pro-

vides new and different insight into the behavior of mechanical systems. In Chapter 12 we introduce a sec-

ond kind of energy—potential energy—and begin developing a conservation law for energy. In Chapter 13

we discuss energy in a more comprehensive way and generalize the law of conservation of energy, which is

one of the most useful laws of physics.



application moves through some distance, and one way to
define the energy of a system is a measure of its capacity to
do work. In the case of the wheelchair rider, he does work
because he exerts a force as the wheelchair moves forward
through some distance. For him to do work, he must ex-
pend some of his supply of energy— that is, the chemical
energy stored in his muscle fibers—which can be replen-
ished from his body’s store of energy through resting and
which ultimately comes from the food he eats.

The energy stored in a system may take many forms: for
example, chemical, electrical, gravitational, or mechanical.
In this chapter we study the relationship between work and
one particular type of energy— the energy of motion of a
body, which we call kinetic energy.

11-2 WORK DONE BY A
CONSTANT FORCE

Figure 11-2a shows a block of mass m being lifted through a
vertical distance h by a winch that is turned by a motor. The
block is raised at a constant velocity; since its acceleration is
equal to zero, the net force acting on it is, by Newton’s sec-
ond law, also equal to zero. The magnitude of the upward
force exerted by the motor and winch must thus equal the
magnitude of the downward force m due to gravity.

In Fig. 11-2b, a conveyor belt is operated by a motor to
move an identical block a distance L up an incline that
makes an angle � with the horizontal. If the block moves at
a constant velocity, the net force is again zero, and so the
magnitude of the force up the incline exerted by the belt
must equal the component of the weight mg sin � that acts
down the incline.

In both cases, the final result is the same— the block
has been raised a distance h. If we release the block and al-

F
B

gB
T
B

low it to fall, it will reach the ground with a certain speed v.
We could use the falling block to accomplish some objec-
tive, such as driving a spike into the ground or launching a
projectile from a catapult. The outcome would be the same,
no matter how the block was originally raised.

Once the block has been raised, we can turn the two
motors off and the block will remain in place. That is, it
costs some fuel or electrical power to run the motors only to
lift the block, not to hold it in place. The investment in this
process is in the lifting, not in the holding.

We define the work W done by a constant force that
moves a body through a displacement in the direction of
the force as the product of the magnitudes of the force and
the displacement:

(constant force, (11-1)

In Fig. 11-2a the motor exerts a force of magnitude T �
mg in moving the block a distance h. Since the force is in
the direction of the motion, the work done by the motor is,
according to Eq. 11-1, W � Th � mgh. In Fig. 11-2b the
motor exerts a force of magnitude F � mg sin � in moving
the block a distance L, so the work done by the motor is
W � (mg sin �)(L) � mgh with h � L sin �. It is no acci-
dent that the same amount of work is done by the motor in
both processes— in each case the motor invested the same
amount of effort (work) in raising the block, as evidenced
by the identical outcomes that resulted from using the
falling block to perform some other task.

In both Figs. 11-2a and 11-2b the force was exerted
parallel to the direction of motion of the block. Suppose
that instead a worker exerts a horizontal force on the
block to push it up the incline. Now the force and the mo-
tion are in different directions (Fig. 11-3). The force com-
ponent F sin � perpendicular to the plane has no effect in
raising the block. Only the component F cos � in the direc-
tion of motion does any work in raising the block.

Consider the arbitrary case illustrated in Fig. 11-4. A
bead slides without friction along a thin horizontal rod. The
bead moves from A to B, which we represent by the dis-
placement vector . A constant force is exerted on the
bead by an external agent; makes an angle � with
the displacement vector. Only the component of the force
F cos � along the displacement vector contributes to the
work, so the work done by the force is

(11-2)W � (F cos �)s � Fs cos � (constant force).
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FIGURE 11-2. (a) A motor-driven winch raises a weight mg
a distance h. (b) A motor turns a conveyor belt that moves an iden-
tical weight along an incline until it has been raised a distance h.

(a) (b)

h h

F = mg sin

T = mg

L

FIGURE 11-3. A worker (not shown) exerts a horizontal
force on a block, pushing it along the incline.F
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Equation 11-2 gives the work done by the particular force
. There may be several forces acting on the object; for ex-

ample, in Fig. 11-3, in addition to the force there is the
normal force , the force of gravity m , and perhaps also a
frictional force . We must calculate the work separately
for each force that acts.

Note several features of Eq. 11-2:
1. If F � 0, then W � 0. For work to be done, a force

must be exerted.
2. If s � 0, then W � 0. For work to be done by a

force, there must be movement of the point of application
of that force through some distance.

3. If � � 90°, then W � 0. For work to be done by a
force, a component of the force must act in the direction of
the displacement (or in the opposite direction). If a force is
always perpendicular to the direction of motion, then the
work done by that particular force is zero.

4. When � � 0°, then W � Fs. If the force and the dis-
placement are in the same direction, Eq. 11-2 reduces to
Eq. 11-1.

5. When � � 180°, then W � � Fs. If the force acts
opposite to the direction of the displacement, then that
force does negative work. In Fig. 11-2a, for example, a
gravitational force mg (not shown) acts downward on the
block. As the block moves upward a distance h, the work
done by this force is � mgh.

As an example of these concepts, consider Fig. 11-5. In
Fig. 11-5a, a block is sliding down a plane. The gravita-
tional force m does positive work, the frictional force 
does negative work, and the normal force does zero
work. In Fig. 11-5b, the tension in the cord is not a con-
stant force, because its direction changes even if its magni-
tude remains constant. However, if we imagine the circular
path to be divided into a series of infinitesimal displace-
ments, then each small displacement (which is tangent to
the circle) is perpendicular to (which acts in the radial di-
rection). Thus the work done by the tension is zero.

Note that we can write Eq. 11-2 either as (F cos �)(s)
or (F )(s cos �). This suggests that the work can be calcu-
lated in two different ways, which give the same result: ei-
ther we multiply the magnitude of the displacement by the
component of the force in the direction of the displacement,
or we multiply the magnitude of the force by the compo-
nent of the displacement in the direction of the force. Each
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way reminds us of an important part of the definition of
work: there must be a component of in the direction of 
and there must be a component of in the direction of 
(Fig. 11-6).

As we have defined it (Eq. 11-2), work proves to be a
very useful concept in physics. Our special definition of the
word “work” does not correspond to the colloquial usage of
the term. This may be confusing. A person holding a heavy
weight at rest in the air (Fig. 11-7) may be working hard in
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FIGURE 11-4. A bead slides along a thin rod from A to B. A
constant force which makes an angle � with the wire, acts on
the bead at every point between A and B.
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FIGURE 11-5. (a) A block slides down a plane, acted upon
by three forces: gravity due to the Earth, friction due to
the plane, and the normal force also due to the plane. (b) A
body attached to a cord revolves in a horizontal circle, acted upon
only by the tension due to the cord.(T
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FIGURE 11-6. (a) The work W done on the particle by the
force interpreted as W � (F cos �)(s). (b) The work W inter-
preted as W � (F )(s cos �).
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the physiological sense, but from the point of view of
physics that person is not doing any work on the weight.
We say this because the weight does not move.

Why, then, does the weightlifter become tired and even-
tually lose his ability to support the weights? If we examine
his muscles, we find that work is being done microscopi-
cally even when the weight does not move. A muscle is not
a solid support and cannot sustain a load in a static manner.
The individual muscle fibers repeatedly relax and contract,
and work is done in each contraction. This microscopic
work depletes his internal supply of energy, and gradually
he becomes too tired to hold the weights. In this chapter we
do not consider this “internal” form of work. We use work
only in the strict sense of Eq. 11-2, so that it does indeed
vanish when there is no motion of the body on which the
force acts.

Note that work, unlike properties such as mass, volume,
or temperature, is not an intrinsic property of a body. We
cannot say, for example, that a body gains, loses, or con-
tains a certain amount of work when it moves through a
distance as a force acts on it. Work is associated with the
force that acts on the body, or with the agent that exerts that
force.

The unit of work is determined from the work done by a
unit force in moving a body a unit distance in the direction
of the force. The SI unit of work is the newton-meter, called
the joule (abbreviation J). In the British system the unit of
work is the foot-pound. In cgs systems the unit of work is
the dyne-centimeter, called the erg. Using the relations be-
tween the newton, dyne, and pound, and between the meter,
centimeter, and foot, we obtain 1 joule � 107 ergs �
0.7376 ft� lb.

A convenient unit of work when dealing with atomic or
subatomic particles is the electron-volt (abbreviation eV),
where 1 eV � 1.60 � 10�19 J. The work required to re-

move an outer electron from an atom has a typical magni-
tude of several eV. The work required to remove a proton or
a neutron from a nucleus has a typical magnitude of several
MeV (106 eV). The work required to accelerate an electron
in the 2-mile-long linear accelerator at Stanford is several
GeV (109 eV). The work required to accelerate a proton in
the Fermilab accelerator is about 1012 eV (1 TeV).

Sample Problem 11-1. A block of mass m � 11.7 kg
is to be pushed a distance of s � 4.65 m along an incline so that it
is raised a distance of h � 2.86 m in the process (Fig. 11-8a). As-
suming frictionless surfaces, calculate how much work you would
do on the block if you applied a force parallel to the incline to
push the block up at constant speed.

Solution A free-body diagram of the block is given in Fig. 11-8b.
We must first find F, the magnitude of the force pushing the block
up the incline. Because the motion is not accelerated (we are
given that the speed is constant), the net force parallel to the plane
must be zero. We choose our x axis parallel to the plane, with its
positive direction up the plane. The net force along the plane is
then � Fx � F � mg sin �. With ax � 0, Newton’s second law
gives F � mg sin � � 0, or

Then the work done by , from Eq. 11-2 with � � 0°, is

Note that the angle � used in this expression is the angle
between the applied force and the displacement of the block, both
of which are parallel to the incline. The angle � must not be con-
fused with the angle � of the incline.

If you were to raise the block vertically at constant speed
without using the incline, the work you do would be the vertical
component of the force you exert on the block, which is equal to
mg, times the vertical distance h, or

the same as before. The only difference is that the incline permits
a smaller force (F � 70.5 N) to raise the block than would be re-
quired without the incline (mg � 115 N). On the other hand, the

W � mgh � (11.7 kg)(9.80 m/s2)(2.86 m) � 328 J,

(�0	)

W � Fs cos 0	 � (70.5 N)(4.65 m) � 328 J.

F
B

F � mg sin � � (11.7 kg)(9.80 m/s2)� 2.86 m

4.65 m � � 70.5 N.
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FIGURE 11-7. A weightlifter is holding a weight above his
head. In this configuration, the weightlifter is doing no work, as
we have defined it.

FIGURE 11-8. Sample Problem 11-1. (a) A force moves a
block up a plane through a displacement (b) A free-body dia-
gram for the block.
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distance you must push the block up the incline (4.65 m) is
greater than the distance you would move it if you raised it di-
rectly (2.86 m).

Sample Problem 11-2. A child pulls a 5.6-kg sled a
distance of s � 12 m along a horizontal surface at a constant
speed. What work does the child do on the sled if the coefficient
of kinetic friction 
k is 0.20 and the rope makes an angle of � �
45° with the horizontal?

Solution The situation is shown in Fig. 11-9a and the forces act-
ing on the sled are shown in the free-body diagram of Fig. 11-9b.

is the child’s pull, m the sled’s weight, the frictional force,
and the normal force exerted by the surface on the sled. To eval-
uate the work, we must first find the magnitude of force F. With
the choice of x and y axes shown on the free-body diagram of Fig.
11-9b, the components of the net force are � Fx � F cos � � f
and � Fy � F sin � � N � mg. With both ax � 0 and ay � 0,
Newton’s second law gives

The frictional force is related to the normal force by f � 
kN.
Combining these three equations, we can eliminate f and N to find
an expression for F:

With 
k � 0.20, mg � (5.6 kg)(9.8 m/s2) � 55 N, and � � 45°
we obtain

Then with s � 12 m, the work done by the child on the sled is, us-
ing Eq. 11-2,

The vertical component of the pull does no work on the
sled. Note, however, that it reduces the normal force between the
sled and the surface (N � mg � F sin �) and thereby reduces the
magnitude of the force of friction ( f � 
kN ).

F
B

W � Fs cos � � (13 N)(12 m)(cos 45	) � 110 J.

F �
(0.20)(55 N)

cos 45	 � (0.20)(sin 45	)
� 13 N.

F �

kmg

cos � � 
k sin �
.

F cos � � f � 0 and F sin � � N � mg � 0.
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Would the child do more work, less work, or the same amount
of work on the sled if were applied horizontally instead of at
45° from the horizontal? Do any of the other forces acting on the
sled do work on it?

Work as a Dot Product
Work is a scalar quantity; it is characterized only by a mag-
nitude and a sign. It is computed, however, by combining
two vectors ( and ). In Chapters 8–10, we often found
the need to multiply two vectors to obtain another vector,
which we expressed in compact form as the vector or cross
product (for example, Here
we are multiplying two vectors to obtain a scalar. A com-
pact way of writing this is in terms of the scalar or dot
product of the two vectors.

Consider two vectors and (Fig. 11-10) separated by
an angle �. The dot product of and is defined in terms
of the magnitudes A and B as

(11-3)

which is read as “A dot B.” Clearly we can write this either
as A(B cos �) or as B(A cos �), which suggests that the dot
product can be regarded as the product of the magnitude of
one vector and the component of the other in the direction of
the first, as Fig. 11-10 suggests. The magnitudes A and B are
always positive, but the dot product may be positive, nega-
tive, or zero depending on the value of the angle �. If and

are perpendicular to one another (� � 90°), the dot prod-
uct is zero. Unlike the cross product, the order of the vectors
in the dot product is unimportant; that is,
Also, note that the dot product of a vector with itself is just
the squared magnitude of the vector: � � A2.

These properties of the dot product exactly match the
properties of the work, as we have defined it in terms of the
vectors and This suggests that we may write Eq. 11-2
as

(constant force). (11-4)

If we write the vectors and in terms of their com-
ponents ( and 

, then the dot product is

(11-5)A
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B
B

A
B

W � F
B

� sB

sB.F
B

A
B

A
B

A
B

�B
B

� B
B

�A
B

.

B
B

A
B

A
B

�B
B

� AB cos �,

B
B

A
B
B
B

A
B

�B � rB � F
B

 or l
B

� rB � pB).

sBF
B

F
B

11- 2 Work Done by a Constant Force 233

FIGURE 11-9. Sample Problem 11-2. (a) A child displaces a
sled an amount by pulling with a force on a rope that makes
an angle � with the horizontal. (b) A free-body diagram for the
sled.
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FIGURE 11-10. The dot product of two vectors and can
be regarded as the product of the magnitude of one vector and the
component of the other vector in the direction of the first.
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To derive this expression, we use Eq. 11-3 to find the dot
products of the unit vectors:

If the force and displacement
vectors lie in the xy plane (Fig. 11-11), we can write the
work in the form of Eq. 11-5; with

we have

(11-6)

The two terms on the right side of this equation cannot be
interpreted as the components of work. Work is a scalar,
and scalars do not have components. It may appear from
Eq. 11-6 that the value of the work depends on where we
draw the coordinate axes; however, Eq. 11-2 shows that this
is not true. In general, the value of the dot product is inde-
pendent of the choice of coordinate axes.

Although the force is an invariant (it has the same
magnitude and direction for any choice of inertial reference
frame), the displacement of a particle over a given time
interval is not invariant. Observers in different inertial refer-
ence frames all measure the same but measure different
values for the magnitude and direction of the displacement

As a result, the value determined for the work will de-
pend on the inertial reference frame of the observer. Differ-
ent observers might find the work to be positive, negative,
or zero. We discuss this point further in Section 11-6.

11-3 POWER

In designing a mechanical system, it is often necessary to
consider not only how much work must be done but also
how rapidly the work is to be done. The same amount of
work is done in raising a given body through a given height
whether it takes 1 second or 1 year to do so. However, the
rate at which work is done is very different in the two
cases.

We define power as the rate at which work is done.
(Here we consider only mechanical power, which results
from mechanical work. A more general view of power as
energy delivered per unit time permits us to broaden the
concept of power to include electrical power, solar power,

sB.
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W � Fx�x � Fy�y (constant force).
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� Fxî � Fy ĵ and sB � �xî � �yĵ,

1 and î � ĵ � î � k̂ � ĵ � k̂ � 0.
î � î � ĵ � ĵ � k̂ � k̂ �

and so on.) If a certain force performs work W on a body in
a time t, the average power due to the force is

(11-7)

The instantaneous power P is

(11-8)

where dW is the small amount of work done in the infini-
tesimal time interval dt. If the power is constant in time,
then P � Pav and

(11-9)

The SI unit of power is the joule per second, which is
called the watt (abbreviation W):

This unit is named in honor of James Watt (1736–1819),
who made major improvements to the steam engines of his
day. In the British system, the unit of power is 1 ft � lb/s, al-
though a more common practical unit, the horsepower (hp),
is generally used to describe the power of such devices as
electric motors or automobile engines. One horsepower is
defined to be 550 ft � lb/s, which is equivalent to about
746 W.

Work can also be expressed in units of power � time.
This is the origin of the term kilowatt-hour, which the elec-
trical company uses to measure how much work (in the
form of electrical energy) it has delivered to your house.
One kilowatt-hour is the work done in 1 hour by an agent
working at a constant rate of 1 kW.

We can also express the power delivered to a body in
terms of the velocity of the body and the force that acts on
it. In a short interval of time dt, the body moves a distance
d and the work done on the body is We can
rewrite Eq. 11-8 as

which becomes, after substituting the velocity for d

(11-10)

If and are parallel to one another, this can be written

(11-11)

Note that the power can be negative if and are antipar-
allel. Delivering negative power to a body means doing
negative work on it: the force exerted on the body by the
external agent is in a direction opposite to its displacement
d and therefore opposite to 

Sample Problem 11-3. An empty elevator has a weight
of 5160 N (1160 lb). It is designed to carry a maximum load of 20
passengers from the ground floor to the 25th floor of a building in a
time of 18 seconds. Assuming the average weight of a passenger to

vB.sB

vBF
B

P � Fv.

vBF
B

P � F
B

� vB.

sB/dt,vB

P �
dW

dt
�

F
B

�d sB

dt
� F

B
�

d sB

dt
,

dW � F
B

�d sB.sB

1 W � 1 J/s.

W � Pt.

P �
dW

dt
,

Pav �
W

t
.

234 Chapter 11 / Energy 1: Work and Kinetic Energy

x

y

s

f

Fx

Fy F

i ∆x

∆y

O
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be 710 N (160 lb) and the distance between floors to be 3.5 m 
(11 ft), what is the average power that must be supplied by the ele-
vator motor? (Assume that all the work that lifts the elevator comes
from the motor and that the elevator has no counterweight.)

Solution We assume that the elevator ascends at constant veloc-
ity, and that the distances traveled during acceleration and deceler-
ation can be neglected. At constant velocity, the net force is zero
and so the upward force exerted by the motor is in magni-
tude equal to the total weight of the elevator and passengers: F �
5160 N � 20(710) N � 19,400 N. The work that must be done is

The average power is therefore

This is the same as 126 hp, roughly the power delivered by the en-
gine of an automobile. Of course, frictional losses and other ineffi-
ciencies will increase the power that the motor must provide to lift
the elevator.

In practice, an elevator usually has a counterweight that falls
as the elevator cab rises. Gravity does positive work on the falling
counterweight and negative work on the rising elevator. The work
that must be provided by the motor, which is equal to the magni-
tude of the net work done by gravity, is therefore greatly reduced.

11-4 WORK DONE BY A
VARIABLE FORCE

So far we have considered only the work done by a con-
stant force. Many of the forces we have previously consid-
ered do not change in magnitude or direction as a body
moves; gravity near the Earth’s surface is a good example.
However, many other forces do change in magnitude with
the displacement of the body, and so we must consider how
to evaluate the work done by such forces. We assume a one-
dimensional situation: the force has only an x component,
and the particle moves only in the (positive or negative) x
direction. We will first discuss the general procedure for an-
alyzing the work done by a variable force, and then we will
apply that method to the analysis of an important type of
force that we have not yet considered—namely, the force
exerted by a spring when it is stretched or compressed.

Let a body move along the x axis from xi to xf as a force
Fx(x) is applied to it. By writing the force as Fx(x) we indi-
cate that the force varies in magnitude (and possibly in di-
rection) as the displacement of the body changes. Our strat-
egy for this analysis will be to divide the interval from xi to
xf into a large number of smaller intervals. Within each
small interval we regard the force as being approximately
constant (although the force may be different for different
intervals), so that the work in any interval can be calculated
using the methods for constant forces developed previously
in this chapter. Eventually we will make the intervals infi-
nitely numerous and vanishingly small, which leads us to
the methods of calculus.

Pav �
W

t
�

1.7 � 106 J

18 s
� 94 kW.

W � Fs � (19,400 N)(25 � 3.5 m) � 1.7 � 106 J.

The smooth curve in Fig. 11-12 shows an arbitrary force
Fx(x) that acts on a body that moves from xi to xf . We di-
vide the total displacement into a number N of small inter-
vals of equal width x (Fig. 11-12a). Consider the first in-
terval, in which there is a small displacement x from xi to
xi � x. We make this interval so small that the x compo-
nent of the force is approximately constant at the value F1 .
We can then use Eq. 11-6 to find the work W1 done by the
force in that interval: W1 � F1 x. Similarly, in the second
interval, in which the body moves from xi � x to xi �
2x, the force is nearly constant with x component F2 , and
the work done by the force in that interval is W2 � F2 x.
Continuing on for all the N intervals, we can find the total
work as the sum of all such terms:

or

(11-12)

To make a better approximation we can divide the total
displacement from xi to xf into a larger number of intervals,
as in Fig. 11-12b, so that x is smaller and the value of Fn

W � �
N

n�1
Fn x.

� F1 x � F2 x � F3 x � ���
W � W1 � W2 � W3 � ���

11- 4 Work Done by a Variable Force 235

FIGURE 11-12. (a) The area under the curve of the variable
one-dimensional force Fx(x) is approximated by dividing the re-
gion between the limits x i and x f into a number of intervals of
width x. The sum of the areas of the rectangular strips is approxi-
mately equal to the area under the curve. (b) A better approxima-
tion is obtained using a larger number of narrower strips. (c) In the
limit the actual area is obtained.x : 0,
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in each interval is more typical of the force within the inter-
val. It is clear that we can obtain better and better approxi-
mations by taking x smaller and smaller so as to have a
larger and larger number of intervals. We can obtain an ex-
act result for the work done by Fx if we let x go to zero
and the number of intervals N go to infinity. Hence the ex-
act result is

(11-13)

The relation

defines the integral of Fx with respect to x from xi to xf . Nu-
merically, this quantity is exactly equal to the area between
the force curve and the x axis between the limits xi and xf

(Fig. 11-12c). Hence, an integral can be interpreted graphi-
cally as an area. We can write the total work done by Fx in
displacing a body from xi to xf as

(11-14)

The sign of W is automatically determined in Eq. 11-14
by the sign of Fx and by the endpoints of the interval, xi and
xf . For example, if Fx is always positive and if the particle
moves in the positive x direction (xf � xi), then W will be
positive.

Work Done by the Spring Force
As an example of a one-dimensional variable force, we
consider the force exerted by a spring when it is stretched
or compressed. Figure 11-13 shows a body attached to a

W � �xf
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x:0

�
N

n�1
Fn x � �xf

xi

Fx(x) dx

W � lim
x :0

�
N
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spring. With no force applied, the spring is unstretched and
the body is located at x � 0. We call this the relaxed state
of the spring. Suppose an external force is applied to
the body, which either stretches (Fig. 11-13a) or com-
presses (Fig. 11-13b) the spring. The spring exerts a force

that opposes the applied force. The spring force is some-
times called a restoring force, because it always acts in a di-
rection to restore the body to its location at x � 0. We will
assume that the body moves slowly, so that we can regard it
as being in equilibrium at all times. In this case,

What is the nature of the force that the spring exerts on
the body as the spring is stretched or compressed? From ex-
periments we learn that this force is not constant— the
more we change the length of a spring, the greater the force
exerted by the spring (equivalently, we might say the
greater the external force that must be exerted to change its
length). We also learn that, for most springs, to a good ap-
proximation the magnitude of this force varies linearly with
the distance the spring is stretched or compressed from its
relaxed length. In one dimension, we can write the x com-
ponent of the force exerted by the spring on the body at-
tached to it as

(11-15)

which is known as Hooke’s law. The constant k in Eq. 11-
15 is called the force constant of the spring (or sometimes
the spring constant) and its SI unit is newtons per meter
(N/m). It is a measure of the force necessary to stretch a
spring by a given amount; stiffer springs have larger values
of k. Equation 11-15 is valid as long as we do not stretch
the string beyond a limited range.

The minus sign in Eq. 11-15 reminds us that the direc-
tion of the force exerted by the spring is always opposite to

Fs � �kx,

F
B

ext � � F
B

s .

F
B

s

F
B

ext
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FIGURE 11-13. A body attached to a spring is at x � 0 when the spring is relaxed. An external force moves 
the body from initial displacement x i to final displacement x f . The x axis is positive to the right. (a) Stretching. 
(b) Compression.
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the displacement of the body from its position when the
spring is in its relaxed state (which we define as x � 0).
When the spring is stretched, using the coordinate system
of Fig. 11-13a, then x � 0 and so Fs is negative, indicating
that the spring force acts to the left. When the spring is
compressed, as in Fig. 11-13b, then x � 0 and Fs � 0.

Equation 11-14 can be applied to calculate the work
done by the spring force in Fig. 11-13a. Let us stretch the
spring from its initial state (where x � xi) to its final state
(where x � xf). The work done on the body by the spring
force during this displacement is:

(11-16)

Equation 11-16 shows that the work done by the spring is
negative when xf � xi , as is the case in Fig. 11-13a; the di-
rection of is opposite to the displacement, so the nega-
tive value of W agrees with the discussion following Eq.
11-2.

If the external force acts to compress the spring, as in
Fig. 11-13b, both xi and xf are negative. However,

and again Eq. 11-16 shows that the work done
on the body by the spring is negative. Thus Eq. 11-16 re-
mains valid no matter how the body moves under the action
of the spring force. Note that, according to Eq. 11-16, the
work done by the spring force is zero if the body moves
from a positive displacement � x to a negative displace-
ment � x of equal magnitude. Can you explain this in terms
of the force exerted by the spring?

If we begin stretching or compressing at the relaxed po-
sition (xi � 0) and move the body through a distance x,
then

(11-17)

Because x is squared in Eq. 11-17, the work done by the
spring on the body is the same in both magnitude and sign
for stretching and compression by the same distance x.

With the work done on the body by the ex-
ternal force is positive when the work done by the spring

F
B

ext � � F
B

s ,

Ws � � 1
2kx2.

� xf � � � xi �

F
B

s

Ws � �xf

xi

Fs dx � �xf

xi

 (�kx) dx � � 1
2k(x 2

f � x 2
i ).

force is negative. Thus Wext � 0 for both cases shown in
Fig. 11-13.

Figure 11-14 shows how Fig. 11-12 would look for the
spring force. The shaded regions represent the negative
work done on the body by the spring force for the two cases
in Fig. 11-13. By a geometrical calculation, you should be
able to show that the shaded areas correspond to the work
given in Eq. 11-16 and that the signs are also given cor-
rectly.

Sample Problem 11-4. A spring hangs vertically in its
relaxed state. A block of mass m � 6.40 kg is attached to the
spring, but the block is held in place so that the spring at first does
not stretch. Now the hand holding the block is slowly lowered
(Fig. 11-15a), so that the block descends at constant speed until it
reaches the point at which it hangs at equilibrium with the hand
removed. At this point the spring is measured to have stretched a
distance d � 0.124 m from its previous relaxed length. Find the
work done on the block in this process by (a) gravity, (b) the
spring, and (c) the hand.

Solution (a) We can find the force constant of the spring, which is
not given in this problem, from the condition at equilibrium. Tak-
ing the y axis to be positive upward, the net force in the y direction
at equilibrium (Fig. 11-15b) is At equilibrium,

so kd � mg, or

To find the work done by gravity, Wg , we note that gravity is a
constant force, and the force and the displacement are parallel, so
we can use Eq. 11-1:

This is positive, because the force and displacement are in the
same direction.
(b) To find the work Ws done by the spring, we use Eq. 11-17 with
x � �d:

Ws � � 1
2 kd 2 � � 1

2(506 N/m)(0.124 m)2 � �3.89 J.

Wg � Fs � mgd � (6.40 kg)(9.80 m/s2)(0.124 m) � �7.78 J.

k � mg/d � (6.40 kg)(9.80 m/s2) / (0.124 m) � 506 N/m.

� Fy � 0
� Fy � kd � mg.
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FIGURE 11-14. The work done by the spring force on the
body as it moves from x i to x f is equal to the area under the graph
of Fs � � kx between x i and x f . The shaded areas represent the
negative work done by the spring in Figs. 11-13a and 11-13b.

FIGURE 11-15. Sample Problem 11-4. (a) A hand lowers a
block attached to a spring. (b) The free-body diagram of the block
at its equilibrium position. (c) The free-body diagram of the block
as it is lowered.
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This is negative, because the force and displacement are in oppo-
site directions.
(c) To find the work done by the hand, we need the upward force
Fh exerted by the hand. As the block is lowered at constant speed,
ay � 0. Based on the free-body diagram of Fig. 11-15c, the net
force during this process is so Fh � mg �
Fs . Note that, until the block reaches its equilibrium position,
mg � Fs so that Fh � 0 as we should expect (Fh has a positive y
component, because it acts upward). We can find the work done
by the hand from an integral of the form of Eq. 11-14:

with Fh � mg � (� ky):

Note that Ws � Wg � Wh � 0. Can you explain this?

11-5 WORK DONE BY A
VARIABLE FORCE: TWO-
DIMENSIONAL CASE (Optional)

The force acting on a particle may vary in direction as
well as in magnitude, and the particle may move along a
curved path. To compute the work in this general case we
divide the path into a large number of small displacements
 each tangent to the path and pointing in the direction of
motion. Figure 11-16 shows two selected displacements for
a particular situation; it also shows the force and the an-
gle � between and  at each location. We can find the
amount of work W done on the particle during a displace-
ment  from

(11-18)

Here is the force at the location of  The work done by
the variable force on the particle as the particle moves
from i to f in Fig. 11-16 is found approximately by adding
up (summing) the elements of work done over each of the

F
B

sB.F
B

W � F
B

� sB � F cos � s.

sB

sBF
B

F
B

sB,

F
B

Wh � ��d

0
 (mg � ky)dy � mg(�d ) � 1

2k(�d )2 � �3.89 J.

Wh � � Fh(y) dy,

� Fy � Fs � Fh � mg,

line segments that make up the path from i to f. If the line
segments  become infinitesimally small, they may be re-
placed by differentials d and the sum over the line seg-
ments may be replaced by an integral, as in Eq. 11-14. The
work is then found from

(11-19)

We cannot evaluate this integral until we are able to say
how F and � in Eq. 11-19 vary from point to point along
the path; both are functions of the x and y coordinates of the
particle in Fig. 11-16.

We can obtain an expression equivalent to Eq. 11-19 by
writing and d in terms of their components. Thus

and so that 
In this evaluation recall that 

and Substituting this result
into Eq. 11-19, we obtain

(11-20)

This result is similar to Eq. 11-6, which was derived for
constant forces. Equation 11-20 reduces to Eq. 11-6 when
the force is constant. Integrals such as those in Eqs. 11-19
and 11-20 are called line integrals; to evaluate them we
must know how F cos � or Fx and Fy vary as the particle
moves along a particular line (or curve) of a specified func-
tional form y(x). The extension of Eq. 11-20 to three di-
mensions is straightforward.

Sample Problem 11-5. A small object of mass m is
suspended from a string of length L. The object is pulled sideways
by a force F that is always horizontal, until the string finally
makes an angle �m with the vertical (Fig. 11-17a). The displace-
ment is accomplished at a small constant speed. Find the work
done by all the forces that act on the object.

Solution The motion is along an arc of radius L, and the displace-
ment is always along the arc. At an intermediate point in the
motion, the string makes an angle � with the vertical, and from

d sB

W � �f

i
 (Fx dx � Fy dy).

î � ĵ � ĵ � î � 0.
î � î � ĵ � ĵ � 1Fx dx � Fy dy.

F
B

�d sB �d sB � dx î � dy ĵ,F
B

� Fx î � Fy ĵ
sBF

B

W � �f

i
F
B

�d sB � �f

i
F cos � ds.

sB
sB
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FIGURE 11-16. A particle moves from point i to point f
along the path shown. During its motion it is acted on by a force

that varies in both magnitude and direction. As we re-
place the interval by which is in the direction of the instanta-
neous velocity and therefore tangent to the path. The path is di-
vided into many small intervals  sB.

d sB,
 sB : 0,F

B
FIGURE 11-17. Sample Problem 11-5. (a) A particle is sus-
pended from a string of length L and is pulled aside by a horizon-
tal force . The maximum angle reached is �m . (b) A free-body
diagram for the particle.

F
B

y

x
O

Path of
particle

F

F

i

f
δs

δs

h

L

(a) (b)

x

x

y

xm

y

F
ds mg

F

T

m



the free-body diagram of Fig. 11-17b we see by applying New-
ton’s second law, with ax � 0 and ay � 0, that

x component:

y component:

Combining these two equations to eliminate T, we find

Since F acts only in the x direction, we can use Eq. 11-20 with
Fx � F and Fy � 0 to find the work done by F. Thus

To carry out the integral over �, we must have a single integration
variable; we choose to define x in terms of �. At an arbitrary inter-
mediate position, when the horizontal coordinate is x, we see that
x � L sin � and thus dx � L cos � d�. Substituting for dx, we
can now carry out the integration:

From Fig. 11-17a, we can see that h � L(1 � cos �m), and thus

The work Wg done by the (constant) gravitational force mg
can be evaluated using a similar technique based on Eq. 11-20
(taking Fx � 0, Fy � � mg) to give Wg � � mgh (see Exercise
25). The minus sign enters because the direction of the vertical
displacement is opposite to the direction of the gravitational force.
The work WT done by the tension in the string is zero, because 
is perpendicular to the displacement d at every point of the mo-
tion. Now you can see that the total work is zero:

Can you explain this?
Note that in this problem the (positive) work done by the hori-

zontal force in effect cancels the (negative) work done by the
vertical force m This can occur because work is a scalar: it has
no direction or components. The motion of the particle depends
on the total work done on it, which is the scalar sum of the values
of the work associated with each of the individual forces.

11-6 KINETIC ENERGY AND
THE WORK–ENERGY THEOREM

As we learned in Chapter 3, when we apply a net external
force to a body, the body accelerates according to Newton’s
second law. If we apply that force over a measured interval
of distance or time, the velocity of the body changes from
its initial value to its final value 

In this chapter we develop a different way of describing
the same situation using the language of work and energy
instead of force and acceleration. We have already intro-
duced work and discussed how to calculate the work done
by a force in a variety of situations. We now complete this

vBf .vBi

gB.
F
B

WF � Wg � WT � mgh � mgh � 0 � 0.
Wnet �

sB
T
B

WF � mgh.

� mgL(1 � cos �m).

� mgL ��m

0
 sin � d� � mgL(�cos �) ��m

0

WF � ��m

0
mg tan � (L cos � d�)

WF � � F dx � ��m

0
mg tan � dx.

F � mg tan �.

T cos � � mg � 0.

F � T sin � � 0,

analysis by introducing one form of energy, the kinetic en-
ergy or energy of motion, and showing how the kinetic en-
ergy of a body is related to the work done on it.

So far we have been discussing the work done by any
single force that may act on a body. Now we want to con-
sider the combined effect of all the forces that act on the
body. For the time being we will make one simplifying as-
sumption—we assume that only constant forces act on the
body. Later in this section we show that the same result can
be obtained when variable forces act.

Our first goal is to find the net work due to all the forces
that act on the body. We can find the net work in either of
two ways: (1) find the net force and then com-
pute the work done by that force on the
body as it moves through displacement or (2) find the
work done on the body by each individual force

etc.) and then add to find the net
work: The two methods give iden-
tical results, and the choice between them is a matter of
convenience.

According to Newton’s second law, As the
body moves through displacement this net force causes
its velocity to change from to For constant forces,
the acceleration is constant, and so we can use the relation-
ships of Section 4-1 between velocity and acceleration.
From Eq. 4-1 we can obtain where �t is
the time interval for the body to move through the displace-
ment Combining Eqs. 4-1 and 4-2, we obtain

which can also be obtained from Eq.
2-7 and the three-dimensional generalization of Eq. 2-27:

We therefore have

(11-21)

Multiplying the dot products, we have 
One of the properties of

the dot product of any two vectors is that the order of the
vectors does not matter; that is, (This is not
true for the cross product.) Thus the first and fourth terms
in the sum cancel. Furthermore, the dot product of any vec-
tor with itself is simply the square of the magnitude of the
vector, as Eq. 11-3 shows, and so and

Making these substitutions in Eq. 11-21, we
obtain

(11-22)

We define the quantity as the kinetic energy K of a
body of mass m moving with speed v:

(11-23)

Kinetic energy has the same dimensions as work, and we
measure it in the same units as work ( joules, ergs, foot-
pounds, electron-volts). Like work, kinetic energy is a
scalar quantity. In fact, we can represent it as a dot product
between two vectors: just as we have repre-
sented the scalars work and power as dot products (see Eqs.

K � 1
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11-4 and 11-10). Using Eq. 11-5, we can also write the dot
product in terms of the components of the vectors, so

However, the individual terms
on the right-hand side do not represent components of ki-
netic energy. Because kinetic energy is a scalar quantity,
there is no direction associated with kinetic energy and it
has no components. Note also that, unlike work, kinetic en-
ergy can never be negative.

In terms of the initial and final kinetic energies
and we can rewrite Eq. 11-23 as

(11-24)

Equation 11-24 is the mathematical representation of an
important result called the work–energy theorem:

The net work done by the forces acting on a body is
equal to the change in the kinetic energy of the body.

Although we have derived the work–energy theorem for
constant forces, it holds in general for nonconstant forces as
well. Later in this section we give a more general proof of
this theorem. Like Newton’s second law, which we used in
its derivation, the work–energy theorem applies only to
particles or to bodies that behave like particles. This restric-
tion is discussed in greater detail at the end of this section.

The work–energy theorem is similar in form to the
impulse–momentum theorem (Eq. 6-5),

even though one deals with scalar quantities (W
and K ) and the other with vectors and Each is based
on Newton’s second law, and each is just another way of
stating that a property of the body related to its velocity (ki-
netic energy or momentum) changes as a result of a net
force acting on the body. Each also leads to an important
conservation law: the momentum of a system of particles
remains constant if the net impulse is zero, and the kinetic
energy of a system of particles remains constant if the net
work is zero.

Kinetic energy is but one of many forms of energy that
can be associated with a body. Usually a form of energy is
associated with a state or condition of a body: its state of
motion, its location (for example, its height in the Earth’s
gravity), its temperature, the electrical current flowing
through it, and so forth. Later in the text we will discuss
these and other forms of energy, along with a law for con-
servation of energy that is more general than Eq. 11-24.

Energy can be transferred from one body to another or
transformed from one form to another. One way of transfer-
ring or transforming energy is by doing work. When we do
work on a body, we may increase its kinetic energy. Where
does this energy come from? If we push on it with our
hand, it comes from the internal store of energy in our
body; if we use a motor, the energy comes from electrical
energy, which in turn comes from fuel at the power plant.
So we have an alternative definition of work:

Work is a way of transferring energy to or from a body
due to a force that acts on it.

pB).(J
B

pBf � pBi ,
J
B

net � �pB �

Wnet � �K � Kf � Ki .

Kf � 1
2mv 2

f ,Ki � 1
2mv 2

i

K � 1
2mv 2

x � 1
2mv 2

y � 1
2mv 2

z .

There is one other way of transferring energy between ob-
jects, which arises from a temperature difference between
them. This energy transfer is called heat and is discussed in
Chapter 13.

When the magnitude of the velocity of a body is con-
stant, there is no change in kinetic energy, and therefore the
resultant force does no work. In uniform circular motion,
for example, the resultant force acts toward the center of
the circle and is always at right angles to the direction of
motion. Such a force does no work on the body: it changes
the direction of the velocity of the body but not its magni-
tude. Only when the resultant force has a component in the
direction of motion does it do work on the particle and
change its kinetic energy.

The work–energy theorem does not represent a new, in-
dependent law of classical mechanics. We have simply de-
fined work (Eq. 11-2, for instance) and kinetic energy (Eq.
11-23) and derived the relation between them from New-
ton’s second law. The work–energy theorem is useful, how-
ever, for solving problems in which the net work done on a
body by external forces is easily computed and in which we
are interested in finding the body’s speed at certain posi-
tions. Of even more significance is the work–energy theo-
rem as a starting point for a broad generalization of the con-
cept of energy and how energy can be stored or shared
among the parts of a complex system. The principle of con-
servation of energy is the subject of the next two chapters.

General Proof of the Work–Energy
Theorem
The following calculation gives a proof of Eq. 11-24 in the
case of nonconstant forces in one dimension, which we take
to be the x direction. We let Fnet,x represent the net force
acting on the body. The net work done by all the external
forces that act on the body is Because
the velocity changes with location and the location changes
with time, we can use the chain rule of calculus to write

The net force can then be written
as

Thus

The variable of integration is now the velocity vx . Let us in-
tegrate from initial velocity vix to final velocity vfx :

� 1
2mv 2

fx � 1
2mv 2

ix .

Wnet � �vf x

vi x

mvx dvx � m�vfx

vi x

vx dvx � 1
2m(v2

fx � v2
ix)

Wnet � �Fnet, x dx � �mvx

dvx

dx
dx � �mvx dvx .

� m
dvx

dx
vx � mvx

dvx

dx
.

Fnet, x � max � m
dvx

dt
� m

dvx

dx

dx

dt

dvx /dt � (dvx /dx)(dx/dt).

Wnet � � Fnet,x dx.
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This is identical with Eq. 11-24 when the motion is only in
the x direction and shows that the work–energy theorem
holds even for nonconstant forces. The same result,

follows in a straightforward way for noncon-
stant forces in two or three dimensions.

Sample Problem 11-6. One method of determining
the kinetic energy of neutrons in a beam, such as from a nuclear
reactor, is to measure how long it takes a particle in the beam to
pass two fixed points a known distance apart. This technique is
known as the time-of-flight method. Suppose a neutron travels a
distance of d � 6.2 m in a time of t � 160 
s. What is its kinetic
energy? The mass of a neutron is 1.67 � 10�27 kg.

Solution We find the speed from

From Eq. 11-23, the kinetic energy is

In nuclear reactors, neutrons are produced in nuclear fission with
typical kinetic energies of a few MeV. Negative work has been
done on the neutrons in this example by an external agent (called
a moderator), thereby reducing their kinetic energies by a consid-
erable factor from a few MeV to a few eV.

Sample Problem 11-7. A body of mass m � 4.5 g is
dropped from rest at a height h � 10.5 m above the Earth’s sur-
face. Neglecting air resistance, what will its speed be just before it
strikes the ground?

Solution We assume that the body can be treated as a particle. We
could solve this problem using a method based on Newton’s laws,
such as we considered in Chapter 3. We choose instead to solve it
here using the work–energy theorem. The gain in kinetic energy
is equal to the work done by the resultant force, which here is the
force of gravity. This force is constant and directed along the line
of motion, so that the work done by gravity is

Initially, the body has a speed v0 � 0 and finally a speed v. The
gain in kinetic energy of the body is

According to the work–energy theorem, W � �K and so

The speed of the body is then

Note that this result is independent of the mass of the object, as
we have previously deduced using Newton’s laws.

Sample Problem 11-8. A block of mass m � 3.63 kg
slides on a horizontal frictionless table with a speed of v � 1.22
m/s. It is brought to rest in compressing a spring in its path. By
how much is the spring compressed if its force constant k is
135 N/m?

v � √2gh � √2(9.80 m/s2)(10.5 m) � 14.3 m/s.

mgh � 1
2mv 2.

�K � 1
2mv 2 � 1

2mv 2
0 � 1

2mv 2 � 0.

W � F
B

� sB � mgh.

� 1.26 � 10�18 J � 7.9 eV.

K � 1
2mv2 � 1

2(1.67 � 10�27 kg)(3.88 � 104 m/s)2

v �
d

t
�

6.2 m

160 � 10�6 s
� 3.88 � 104 m/s.

Wnet � �K,

Solution The change in kinetic energy of the block is

The work W done by the spring on the block when the spring is
compressed from its relaxed length through a distance d is, ac-
cording to Eq. 11-17,

Using the work–energy theorem, W � �K, we obtain

or

The Work–Energy Theorem and
Reference Frames
Newton’s laws are valid only in inertial frames of reference.
(In fact, Newton’s first law helps us to test whether a frame
is inertial or not.) If we find Newton’s second law to hold in
one frame of reference, then it holds in all inertial frames.
If two observers in different inertial frames move at con-
stant velocity relative to one another and observe the
same experiment, they measure identical values for the
forces, masses, and accelerations, and so they agree com-
pletely in their analysis using Newton’s second law.

Because we derived the work–energy theorem from
Newton’s second law, we might suspect that, as in the case
of Newton’s second law, observers in different inertial
frames will agree on the results of applying the work–
energy theorem. However, unlike forces and accelerations,
displacements and velocities measured by observers in dif-
ferent inertial frames will in general be different, and so
they will deduce different values for the work and kinetic
energies in the experiment.

Even though the two observers obtain different numeri-
cal values for the work and kinetic energy in their respec-
tive reference frames, they both agree that W � �K. The
work–energy theorem is an example of an invariant law of
physics. An invariant law is one that has the same form in
all inertial reference frames. The measured values of the
physical quantities, such as W and K, might be different in
the two reference frames, but the laws involving those
quantities have the same form for both observers (and for
observers in all other inertial frames).

Sample Problem 11-9. A worker is exerting a force
F � 5.63 N in pushing a crate of mass 12.0 kg that moves without
friction on a flatbed railroad car (Fig. 11-18a). The train is moving
at a constant speed of 15.0 m/s in the same direction that the
worker is pushing the crate. According to observer O, who is also
riding on the flatbed car, the crate starts from rest and is pushed by
the worker for a distance of s � 2.4 m. (a) Find the final speed of
the crate according to observer O. (b) Find the work W� and the
change in kinetic energy �K� according to observer O� who is at

vB

d � v√ m

k
� (1.22 m/s)√ 3.63 kg

135 N/m
� 0.200 m � 20.0 cm.

� 1
2kd 2 � � 1

2mv 2

W � � 1
2 kd2.

�K � Kf � Ki � 0 � 1
2mv 2.
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rest on the ground, and show that the work–energy theorem is
valid for this observer.

Solution (a) All displacements, velocities, and forces are to the right
in Fig. 11-18, which we take to be the positive x direction. According
to O, the work done is W � Fs � (5.63 N)(2.4 m) � 13.5 J. The
work–energy theorem then gives Kf � Ki � W � 13.5 J. Since 
Ki � 0 according to the observer on the car, Kf � 13.5 J, and so

(b) The situation according to O� is shown in Fig. 11-18b. We first
calculate how far the railroad car moves in the time it takes the
worker to push the crate forward. From the impulse–momentum
theorem (Jx � �px , written in terms of x components; see Eq. 6-
5), as applied by O, we have

Both observers agree on the measurement of this time interval. 
In 3.20 s, the railroad car moves forward a distance of 
(15.0 m/s)(3.20 s) � 48.0 m, so according to O� the crate moves a
total distance of s� � 48.0 m � 2.4 m � 50.4 m. Both observers
agree on the value of the force exerted by the worker, so according
to O� the work is

According to O�, the initial speed of the crate is 
(the speed of the railroad car) and its final speed is

so the change in kinetic en-
ergy according to O� is

Thus according to observer O�. Note that O and O�
measure different values for the work and the change in kinetic
energy, but both agree that the work equals the change in kinetic
energy. For these two inertial observers, the work–energy theo-
rem has the same form.

W� � �K�,

� 284 J.

� 1
2(12.0 kg)(16.5 m/s)2 � 1

2(12.0 kg)(15.0 m/s)2

�K� � K�f � K�i � 1
2mv�2

f � 1
2mv�2

i

v�f � 15.0 m/s � 1.5 m/s � 16.5 m/s,

v�i � 15.0 m/s

W� � F�s� � (5.63 N)(50.4 m) � 284 J.

�t �
�px

Fx

�
mvx

Fx

�
(12.0 kg)(1.50 m/s)

5.63 N
� 3.20 s.

vf � √ 2Kf

m
� √ 2(13.5 J)

12.0 kg
� 1.50 m/s.

Limitation of the Work–Energy Theorem
We derived the work–energy theorem, Eq. 11-24, directly
from Newton’s second law, which, in the form in which we
have stated it, applies only to particles. Hence the
work–energy theorem, as we have presented it so far, like-
wise applies only to bodies that can be regarded as parti-
cles. Previously, we considered an object to behave like a
particle if all parts of the object move in exactly the same
way. In the use of the work–energy theorem, we can treat
an extended object as a particle if the only kind of energy it
has is kinetic energy.

Consider, for example, a test car that is crashed head-on
into a heavy, rigid concrete barrier. The kinetic energy of
the car certainly decreases as the car hits the barrier, crum-
ples up, and comes to rest. However, there are forms of en-
ergy other than kinetic energy that enter into this situation.
There is internal energy associated with the bending and
crumpling of the body of the car; some of this internal en-
ergy may appear, for instance, as an increase in the temper-
ature of the car, and some may be transferred to the sur-
roundings as heat. Note that, even though the barrier may
exert a large force on the car during the crash, the force
does no work because the point of application of the force
on the car does not move. (Recall our original definition of
work—given by Eq. 11-1 and illustrated in Fig. 11-1— the
force must act through some distance to do work.) Thus in
this case �K � 0, but W � 0; clearly, Eq. 11-24 does not
hold. The car does not behave like a particle: every part of
it does not move in exactly the same way.

For similar reasons, from the work–energy standpoint,
we cannot treat a sliding block acted on by a frictional
force as a particle (even though we can continue to treat it
as a particle, as we did in Chapter 5, when analyzing its be-
havior using Newton’s laws). The frictional force, which
we represented as a constant force is in reality quite
complicated, involving the making and breaking of many
microscopic welds (see Section 5-3), which deform the sur-

f
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,
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FIGURE 11-18. Sample Prob-
lem 11-9. A worker on a flatbed rail-
road car pushing a crate forward, as
viewed by (a) an observer O on the
train and (b) an observer O� on the
ground.



faces and result in changes in internal energy of the sur-
faces (which may in part be revealed as an increase in the
temperature of the surfaces). Because of the difficulty of
accounting for these other forms of energy, and because the
objects do not behave as particles, it is generally not correct
to apply the particle form of the work–energy theorem to
objects subject to frictional forces.

In these examples, we must view the crashing car and
the sliding block not as particles but as systems containing
large numbers of particles. Although it would be correct to
apply the work–energy theorem to each individual particle
in the system, it would be hopelessly complicated to do so.
In Chapter 13 we begin to develop a simpler method for
dealing with complex systems of particles, and we show
how to extend the work–energy theorem so that we may
apply it in such cases.

11-7 WORK AND KINETIC
ENERGY IN ROTATIONAL MOTION

So far in this chapter we have considered only translational
motion. In this section we extend our discussion of work
and kinetic energy to rotating bodies.

We begin by calculating the work done on a rigid body
that rotates about a fixed axis, just as we started out in this
chapter by considering the work done on a body that moves
in one dimension. Figure 11-19 shows an arbitrary rigid
body to which an external agent applies a force at point
P, a distance r from the rotational axis. As the body rotates
through a small angle d� about the axis, point P moves
through a distance ds � r d�. The component of the force
in the direction of motion of P is F sin �, and so the work
dW done by the force is

Noting that rF sin � is also the component of the torque of
the force about the z axis, we have dW � �z d�, and for a
rotation from angle �i to angle �f the work is

(11-25)W � ��f

�1

�z d�.

F
B

dW � (F sin �) ds � (F sin �)(r d�) � (rF sin �) d�.

F
B

Note that Eq. 11-25 is the rotational analogue of Eq. 11-14,
with the force replaced by the torque and the linear coordi-
nate replaced by the angular coordinate.

If the torque is constant as the body rotates through an
angle � � �f � �i , the work done on the body by this
torque is

(11-26)

which is analogous to Eq. 11-1 for the constant force.
The instantaneous power expended in rotational motion

can be obtained from Eq. 11-8:

(11-27)

where �z � d�/dt is the rotational velocity about the z axis.
This is the rotational analogue of Eq. 11-11. Note that the
directions of and are parallel in the geometry of Fig.
11-19 (both out of the page, along the z axis). The average
power for rotational motion in which a total amount of
work W is done in a time t is given by Eq. 11-7, Pav � W/t.

In Eqs. 11-25, 11-26, and 11-27, as in all equations that
mix angular and nonangular quantities, the angular quanti-
ties must be expressed in radian measure.

Rotational Kinetic Energy
Figure 11-20 shows a rigid body rotating about a fixed axis
with angular speed �. We can consider the body as a collec-
tion of N particles m1 , m2 , . . . moving with tangential
speeds v1 , v2 , . . . . If rn indicates the distance of particle mn

from the axis of rotation, then vn � rn� and its kinetic en-
ergy is 

The total kinetic energy of the entire rotating body is the
sum of the kinetic energies of all of the N particles:

(11-28)

or, in terms of the rotational inertia 

(11-29)

This expression, which gives the kinetic energy of a rigid
body of rotational inertia I rotating with angular speed �, is
exactly analogous to Eq. 11-23 for the translational kinetic

K � 1
2 I�2.

I � �mnr 2
n ,

K � 1
2 m1r2

1�
2 � 1

2 m2r2
2�

2 � ��� � 1
2��mnr2

n�� 2

1
2 mnv2

n � 1
2 mnr2

n�2.

�B�B

P �
dW

dt
�

�z d�

dt
� �z�z

W � �z�,
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FIGURE 11-19. A rigid body rotates counterclockwise about
an axis perpendicular to the page (the z axis). An external force 
(in the plane of the page) is applied to point P of the body, a dis-
tance r from the axis of rotation.
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FIGURE 11-20. A rigid body rotates about a fixed axis.
Every particle has the same angular speed �, but the tangential
speeds vary with the distance r from the axis of rotation.
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energy, The mass in Eq. 11-23 is replaced by the
rotational inertia and the linear speed by the angular speed.

The rotational kinetic energy given by Eq. 11-29 is not a
new kind of kinetic energy. It is simply the sum of the ordi-
nary translational kinetic energies of all the particles of the
body. Even though the entire body may not be in transla-
tional motion, each particle has a tangential velocity, and
thus each particle has a kinetic energy. The instantaneous
direction of each particle’s velocity changes as the body ro-
tates, but kinetic energy depends on v2 and is a scalar, so
there is no direction associated with it. It is therefore quite
proper to add the kinetic energies of the particles of the ro-
tating body. The rotational kinetic energy is merely a
convenient way of expressing the total kinetic energy of all
the particles in the rigid body.

The rotational form of the work–energy theorem is ex-
actly the same as the translational form: W � �K, with the
rotational work given by Eq. 11-25 or 11-26 and the rota-
tional kinetic energy by Eq. 11-29. In general, the work
done on a body could be accompanied by both rotational
and translational motion. In this case W represents the total
work done on the body, and �K must include the sum of
the translational and rotational terms. We consider the ki-
netic energy in combined translational and rotational mo-
tion in Chapter 12.

In Table 10-1 we presented a comparison between trans-
lational and rotational quantities for kinematics and dynam-
ics. Table 11-1 shows an additional comparison of the
energy-related quantities for translational and rotational
motion.

Sample Problem 11-10. A space probe coasting in a
region of negligible gravity is rotating with an angular speed of
2.4 rev/s about an axis that points in its direction of motion (Fig.
11-21). The spacecraft is in the form of a thin spherical shell of ra-

1
2 I�2

K � 1
2 mv 2. dius 1.7 m and mass 245 kg. It is necessary to reduce the rota-

tional speed to 1.8 rev/s by firing tangential thrusters along the
“equator” of the probe. What constant force must the thrusters ex-
ert if the change in angular speed is to be accomplished as the
probe rotates through 3.0 revolutions? Assume the fuel ejected by
the thrusters is a negligible fraction of the mass of the probe.

Solution For a thin spherical shell we find the rotational inertia
about a central axis from Fig. 9-15:

The change in rotational kinetic energy is

According to Eq. 11-26, the rotational work for a constant torque
is W � �z�, where �z � � RF if the thruster force F is applied tan-
gentially. The minus sign indicates that the torque points in the
negative z direction. Using the work–energy theorem W � �K
with W � � RF�, we solve for the thruster force F:

This problem could also be solved by using the formulas for rota-
tional kinematics to find the (constant) angular acceleration, fol-
lowed by �z � I�z to find the force.

11-8 KINETIC ENERGY IN
COLLISIONS

In Chapter 6 we analyzed collisions between two bodies by
applying the law of conservation of linear momentum. It is
also instructive to consider the kinetic energies of the col-
liding bodies.

We consider a collision between two bodies that move
along the x axis. Line 1 of Fig. 11-22a shows the velocities
before the collision in the laboratory frame of reference,
and Fig. 11-22b shows the same collision as viewed from
the center-of-mass frame of reference.

We first discuss an elastic collision, which we defined in
Section 6-5 as a collision in which, in the center-of-mass
reference frame, the momenta of the colliding bodies are

� 833 N.

F �
W

�R�
�

�K

�R�
�

�2.67 � 104 J

� (1.7 m)[(2� rad/rev)(3.0 rev)]

� �2.67 � 104 J.

� 1
2 (472 kg �m2)[(2� rad/rev)(2.4 rev/s)]2

� 1
2 (472 kg �m2)[(2� rad/rev)(1.7 rev/s)]2

�K � 1
2I�2

f � 1
2 I�2

i

I � 2
3 MR2 � 2

3(245 kg)(1.7 m)2 � 472 kg �m2.
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Equation Equation
Translational Quantity Number Rotational Quantity Number

Work* 11-14 Work 11-25
Power* 11-11 Power 11-27
Kinetic energy 11-23 Rotational kinetic energy 11-29
Work–energy theorem 11-24 Work–energy theorem 11-24

* To emphasize the symmetry between the translational and rotational quantities, these equations are written in one-dimensional form.

W � �KW � �K
K � 1

2 I�2K � 1
2 mv2

P � �z�zP � Fxvx

W � ��z d�W � �Fx dx

Table 11-1 Comparison of Energy-Related Translational and Rotational Quantities

F

v
ω

z

FIGURE 11-21. Sample Problem 11-10.



simply reversed in direction. If the momenta are reversed,
the directions of the velocities of the colliding bodies must
also be reversed (see Fig. 11-22b, lines 1 and 2). Because
the velocities for each body before and after the collision
are equal in magnitude and it is clear
that in the center-of-mass frame we must have 
for m1 and for m2 . The total initial kinetic en-
ergy, is thus equal to the total final kinetic
energy, in this reference frame.

In the laboratory frame of reference (which we describe
using unprimed coordinates), it is not true that the individ-
ual kinetic energies are unchanged in the collision; that is,
in general v1i � v1f and so K1i � K1f , and similarly for m2 .
What about the total kinetic energy of m1 and m2 in this
frame? Before the collision, the total initial kinetic energy
is and after the collision, the total
final kinetic energy is If we use
Eqs. 6-24 and 6-25 for the final velocities in the expression
for Kf , after doing the necessary algebra we find

(11-30)

The individual kinetic energies of the colliding bodies may
change; that is, in general K1i � K1f and K2i � K2f , but their
sum does remain constant (K1i � K2i � K1f � K2f).

We therefore have an alternative definition of an elastic
collision:

In an elastic collision, the total kinetic energy of the two
bodies remains constant; that is, the total kinetic energy
before the collision equals the total kinetic energy after
the collision.

We see that in at least two frames of reference (the cen-
ter-of-mass frame and the laboratory frame) the total initial
and final kinetic energies of the two-body system are equal.
In fact, because the laboratory frame is an arbitrarily chosen
frame, the total kinetic energy remains constant in all iner-
tial frames of reference. We can understand this result by
imagining that there is a spring at its relaxed length between
the two bodies. As the bodies collide, they compress the
spring, and some of their kinetic energy is lost due to the

Ki � Kf (elastic).

Kf � 1
2 m 1v 1f

2 � 1
2 m 2v 2f

2 .
Ki � 1

2 m 1v2
1i � 1

2 m 2v2
2i ,

K�f � K�1f � K�2f ,
K�i � K�1i � K�2i ,

K�2i � K�2f

K�1i � K�1f

v�2i � v�2f),(v�1i � v�1f

work done by the spring. When the spring expands again, it
does an equal amount of work on the bodies, which in-
creases their kinetic energy. If the spring returns to its re-
laxed length, there is no net work done on the system con-
sisting of the two bodies, and so the total final kinetic energy
of the system must equal the total initial kinetic energy.

Of course, there are no springs in collisions between
real bodies— it is the colliding objects themselves that be-
have elastically, just like springs. The interatomic forces of
the objects can be regarded as elastic; the objects do work
on one another in changing each other’s kinetic energy, but
the net work done by the entire system of the two objects is
zero, so the change in kinetic energy of the system is zero.

On the other hand, imagine a spring between the two
bodies in an inelastic collision (compare lines 1 and 3 in
Fig. 11-22b). The spring will be compressed in the colli-
sion, but it does not return to its full relaxed length after the
collision. (Perhaps there is a ratchet mechanism that keeps
the spring somewhat compressed.) The two bodies do work
on the spring in compressing it, but the spring does less
work on the bodies when it expands again, so the final ki-
netic energy is less than the initial kinetic energy. All ob-
servers, no matter what their inertial frame of reference,
will agree that the spring remains somewhat compressed af-
ter the collision, so all observers will agree that some ki-
netic energy has been lost (though the amount of the loss
will vary with the reference frame of the observer). So we
can characterize an inelastic collision in terms of the kinetic
energy:

In an inelastic collision, the total final kinetic energy is
less than the total initial kinetic energy.

Even though the total kinetic energy decreases, the total lin-
ear momentum remains constant.

All collisions between extended bodies are to some ex-
tent inelastic. If you drop a golf ball or a tennis ball on a
hard surface, it does not quite bounce to its original height.
The height difference between successive bounces is a mea-
sure of the loss in kinetic energy in each collision with the
Earth.
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FIGURE 11-22. A one-dimensional collision between two objects as viewed from (a) the labora-
tory frame and (b) the center-of-mass frame. In the laboratory frame, m2 is initially at rest.



In collisions between real bodies (without springs),
where does this kinetic energy go? It may go into the work
done in deforming one of the bodies or changing its shape,
as for example in a collision involving a ball of clay. Real
objects do not compress like ideal springs—often there are
dissipative forces similar to friction. Some of the energy
might go into creating a shock wave or raising the tempera-
ture of the objects.

If the two bodies stick together, we have a completely
inelastic collision (compare lines 1 and 4 of Fig. 11-22b).
This type of collision loses the maximum amount of kinetic
energy, consistent with the conservation of momentum.

Finally, imagine a collision in which the spring between
the two bodies is compressed before the collision, but is re-
leased as the bodies collide. The colliding bodies may fur-
ther compress the spring, but as the spring expands to its re-
laxed length it delivers more kinetic energy to the bodies
than they started with. The two bodies may do work on the
spring in compressing it, but the spring does a greater
amount of work on the two bodies as it expands. This is an
explosive or energy-releasing collision.

In an explosive collision, the total final kinetic energy is
greater than the total initial kinetic energy.

Once again, linear momentum remains constant even
though the kinetic energy increases.

Energy-releasing collisions often occur in nuclear reac-
tions when internal energy stored in the colliding nuclei is
converted into kinetic energy. The resulting nuclei after the
collision have less internal nuclear energy but greater total
kinetic energy than the original nuclei.

Sample Problem 11-11. In a nuclear reactor, neutrons
lose energy by making collisions with nuclei of atoms of the ma-
terials that may be present in the core of the reactor. If a neutron
of mass mn has initial kinetic energy of 5.0 MeV, how much ki-
netic energy will it lose if it makes a head-on elastic collision with
a nucleus of lead (mPb � 206mn), carbon (mC � 12mn), or hydro-
gen (mH � mn)?

Solution We may take the struck atoms to be initially at rest (ac-
tually, they have small “thermal” speeds that are negligible com-
pared with the speed of the neutron). The final speed of the inci-
dent neutron in a head-on elastic collision with a nucleus at rest is
given by Eq. 6-24 with 
The final kinetic energy of the neutron is

For a collision with lead, the final neutron kinetic energy is

corresponding to a loss of 5.0 MeV � 4.9 MeV � 0.1 MeV. A
similar calculation for carbon gives K1f � 3.6 MeV (a loss of 

� (5.0 MeV)� m n � 206m n

m n � 206m n
�

2

� 4.9 MeV,

K1f � (5.0 MeV)� m n � mPb

m n � mPb
�

2

K1f � 1
2 m 1v 2

1f � 1
2 m 1� m 1 � m 2

m 1 � m 2
�

2

v2
1i � K1i� m 1 � m 2

m 1 � m 2
�

2

.

v2i � 0: v1f � [(m 1 � m 2)/(m 1 � m 2)]v1i .

1.4 MeV) and for hydrogen, K1f � 0 (a loss of 5.0 MeV, all of its
initial energy). A neutron thus loses the most energy in a collision
with a hydrogen nucleus, whose mass is closest to the neutron
mass.

These results show why a hydrogen-rich material, such as wa-
ter or paraffin, is far more effective in slowing down or “moderat-
ing” neutrons than a heavy material such as lead. Even though we
have oversimplified the problem by assuming a one-dimensional
“head-on” collision, the same basic conclusion follows if we con-
sider a two-dimensional glancing collision: a neutron will lose
more energy in hydrogen-rich materials.

Neutrons released in the fission of uranium in reactors typi-
cally have kinetic energies in the MeV range. However, reactor
operation requires those neutrons to initiate new fission events,
which occurs with high probability only if the neutrons are slowed
down to kinetic energies in the eV range. For this reason, the ura-
nium fuel elements must be mixed with the lighter material that
will serve as the moderator for the neutrons.

Sample Problem 11-12. A ballistic pendulum (Fig.
11-23) is a device that was used to measure the speeds of bullets
before electronic timing devices were available. It consists of 
a large block of wood of mass M, hanging from two long pairs 
of cords. A bullet of mass m is fired into the block, and the 
block � bullet combination swings upward, its center of mass
rising a vertical distance h before the pendulum comes momen-
tarily to rest at the end of its arc. Take the mass of the block to 
be M � 5.4 kg and the mass of the bullet to be m � 9.5 g. (a)
What is the initial speed of the bullet if the block rises to a height
of h � 6.3 cm? (b) What fraction of the initial kinetic energy is
lost in this collision?

Solution (a) Let us divide the problem into two parts: (1) The
bullet moving with speed vi enters the block and comes to rest rel-
ative to the block, after which the bullet � block combination
moves with a common speed vf . We assume this happens very
quickly. (2) The combination, now moving with speed vf , swings
upward until it comes to rest. Part 1 is an example of a completely
inelastic collision, in which the two colliding objects stick to-
gether after the collision. Momentum is conserved in the collision,
so Eq. 6-20 gives, with v2i � 0 (the block is initially at rest),
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FIGURE 11-23. Sample Problem 11-12. A ballistic pendu-
lum is used to measure the speed of a bullet.
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mvi � (m � M )vf . Part 2 of the problem can be analyzed using
the work–energy theorem. The net work on the block � bullet
combination is that done by gravity: Wnet � Wg � � (m � M )gh,
and as it swings upward and comes to rest the change in the ki-
netic energy of the combination is �K � 0 � The
work–energy theorem, Wnet � �K, then gives

where the last result follows from substituting for vf from the mo-
mentum conservation result of part 1. Solving for vi , we find

� � 5.4 kg � 0.0095 kg

0.0095 kg �√(2)(9.8 m/s2)(0.063 m) � 630 m/s.

vi � � M � m

m �√2gh

� (m � M )gh � � 1
2 (m � M )v2

f � � 1
2 (m � M )� mvi

m � M �
2

,

1
2 (m � M )v2

f .

We can look at the ballistic pendulum as a kind of transformer, ex-
changing the high speed of a light object (the bullet) for the low—
and thus more easily measureable— speed of a massive object
(the block).
(b) We can write the final kinetic energy as

Kf �

The ratio between the initial and final kinetic energies is

Only 0.18% of the initial kinetic energy remains after the colli-
sion. The remaining 99.82% is stored inside the pendulum as in-
ternal energy (perhaps in part as a temperature increase) or trans-
ferred to the environment— for example, as heat or sound waves.

Kf

Ki
�

m

m � M
�

9.5 g

9.5 g � 5.4 kg
� 0.0018.

1
2 (m � M )v 2

f � 1
2 (m � M )� mvi

m � M �
2

� 1
2 mv2

i� m

m � M �.
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MULTIPLE CHOICE

11-1 Work and Energy

11-2 Work Done by a Constant Force
1. A student picks a box off the table and puts it on the floor. Let

the total work done by the student be W. One can conclude
(A) W � 0. (B) W � 0. (c) W � 0.
(D) nothing about the sign of W.

2. An object of mass 2.0 kg moves in uniform circular motion
on a horizontal frictionless table. The radius of the circle is
0.75 m and the centripetal force is 10.0 N.
(a) The work done by this force when the object moves
through one-half of a complete revolution is

(A) 0 J. (B) 3.75 J.
(C) 10.0 J. (D) 7.5� J.

(b) The work done by this force when the object moves
through one complete revolution is

(A) 0 J. (B) 7.5 J.
(C) 20.0 J. (D) 15� J.

3. Which of the following quantities are independent of the
choice of inertial frame? (There may be more than one cor-
rect answer.)

(A) Velocity (B) Acceleration
(C) Force (D) Work

4. Naval guns on battleships are sometimes rated in energy units
of ton-feet. What (approximately) is this in metric units?

(A) 3 � 101 J (B) 3 � 102 J
(C) 3 � 103 J (D) 3 � 104 J

11-3 Power
5. An engine with constant power output drives an automobile.

When the auto approaches a hill the driver shifts from high
gear to low gear. The driver does this

(A) to increase the force pushing the car forward.
(B) to increase the power output from the tires.
(C) Both (A) and (B) are correct.
(D) Neither (A) nor (B) is correct.

6. Assume the aerodynamic drag force on a car is proportional
to the speed. If the power output from the engine is doubled,
then the maximum speed of the car

(A) is unchanged.
(B) increases by a factor of 
(C) is also doubled.
(D) increases by a factor of four.

7. An engineer wants to design an improved elevator for a build-
ing. The original design used a motor that could lift 1000 kg
through a distance of 20 meters in 30 seconds. The engineer
wants a motor that can lift 800 kg through a distance of 30
meters in 20 seconds. Compared to the old motor, the new
motor

(A) should exert a force of the same magnitude, but must
provide a larger power output.

(B) should exert a force of a larger magnitude, and must
provide a larger power output.

(C) can exert a force of a smaller magnitude, and can pro-
vide a smaller power output.

(D) can exert a force of a smaller magnitude, but must pro-
vide the same power output.

(E) can exert a force of a smaller magnitude, but must pro-
vide a larger power output.

11-4 Work Done by a Variable Force
8. The force exerted by a special compression device is given by

Fx(x) � kx(x � l) for 0 � x � l, where l is the maximum
possible compression and k is a constant.
(a) The force required to compress the device a distance d is
a maximum when

(A) d � 0. (B) d � l/4. (C)
(D) d � l/2. (E) d � l.

(b) The work required to compress the device a distance d is
a maximum when

(A) d � 0. (B) d � l/4. (C)
(D) d � l/2. (E) d � l.

d � l/√2.

d � l/√2.

√2.



11-5 Work Done by a Variable Force: Two-Dimensional
Case

11-6 Kinetic Energy and the Work–Energy Theorem
9. A particle has a constant kinetic energy K. Which of the fol-

lowing quantities must also be constant?
(A) Position (B) Speed
(C) Velocity (D) Momentum

10. A 0.20-kg puck slides across a frictionless floor with a speed
of 10 m/s. The puck strikes a soft wall and stops.
(a) The magnitude of the impulse on the puck is

(A) 0 kg � m/s. (B) 1 kg � m/s.
(C) 2 kg � m/s. (D) 4 kg � m/s.

(b) The net work done on the puck is

(A) � 20 J. (B) � 10 J.
(C) 0 J. (D) 20 J.

11. A 0.20-kg puck slides across a frictionless floor with a speed
of 10 m/s. The puck strikes a wall and bounces off with a
speed of 10 m/s in the opposite direction.
(a) The magnitude of the impulse on the puck is

(A) 0 kg � m/s. (B) 1 kg � m/s.
(C) 2 kg � m/s. (D) 4 kg � m/s.

(b) The net work done on the puck is

(A) � 20 J. (B) � 10 J.
(C) 0 J. (D) 20 J.

12. Two cars are at a stop light. When the light turns green the car
of mass m begins to move with acceleration a; the car of mass
2m moves in the same direction with acceleration a/2. Which
car engine delivers the most power?

(A) The car of mass m
(B) The car of mass 2m
(C) The power is the same for both cars.

11-7 Work and Kinetic Energy in Rotational Motion
13. Four solid objects, each with the same mass and radius, are

spinning freely with the same angular speed. Which object re-
quires the most work to stop it?

(A) A solid sphere spinning about a diameter
(B) A hollow sphere spinning about a diameter
(C) A solid disk spinning about an axis perpendicular to

the plane of the disk and through the center
(D) A hoop spinning about an axis along a diameter
(E) The work required is the same for all four objects.

14. Four solid objects, each with the same mass and radius, are
spinning freely with the same angular momentum. Which ob-
ject requires the most work to stop it?

(A) A solid sphere spinning about a diameter
(B) A hollow sphere spinning about a diameter
(C) A solid disk spinning about an axis perpendicular to

the plane of the disk and through the center
(D) A hoop spinning about an axis along a diameter
(E) The work required is the same for all four objects.

15. Four solid objects, each with the same mass, are spinning
freely with the same angular momentum and the same angu-
lar speed. Which object requires the most work to stop it?

(A) A solid sphere spinning about a diameter
(B) A hollow sphere spinning about a diameter
(C) A solid disk spinning about an axis perpendicular to

the plane of the disk and through the center
(D) A hoop spinning about an axis along a diameter
(E) The work required is the same for all four objects.

11-8 Kinetic Energy in Collisions
16. A considerable amount of the initial kinetic energy is “lost” in

the ballistic pendulum (Sample Problem 11-12). Taking this
into consideration we can conclude

(A) that the calculated speed of the bullet is probably too
low.

(B) that the calculated speed of the bullet is probably too
high.

(C) that the calculated speed of the bullet is probably cor-
rect only if the collision was elastic.

(D) that the calculated speed of the bullet is probably cor-
rect because the collision conserved momentum.
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QUESTIONS

1. Can you think of other words like work whose colloquial
meanings are often different from their scientific meanings?

2. Explain why you become physically tired when you push
against a wall, fail to move it, and therefore do no work on
the wall.

3. Suppose that three constant forces act on a particle as it
moves from one position to another. Prove that the work done
on the particle by the resultant of these three forces is equal to
the sum of the work done by each of the three forces calcu-
lated separately.

4. The inclined plane (Sample Problem 11-1) is a simple “ma-
chine” that enables us to do work with the application of a
smaller force than is otherwise necessary. The same statement
applies to a wedge, a lever, a screw, a gear wheel, and a pulley
combination (Problem 3). Far from saving us work, however,
such machines in practice require that we do a little more
work with them than without them. Why is this so? Why do
we use such machines?

5. In a tug of war, one team is slowly giving way to the other.
What work is being done and by whom?

6. Why can you much more easily ride a bicycle for a mile on
level ground than run the same distance? In each case, you
transport your own weight for a mile and in the first you must
also transport the bicycle and, moreover, do so in a shorter
time! (See The Physics Teacher, March 1981, p. 194.)

7. Suppose that the Earth revolves around the Sun in a perfectly
circular orbit. Does the Sun do any work on the Earth?

8. You slowly lift a bowling ball from the floor and put it on a
table. Two forces act on the ball: its weight, of magnitude mg,
and your upward force, also of magnitude mg. These two
forces add to zero so that it would seem that no work is done.
On the other hand, you know that you have done some work.
What is wrong?

9. Why can a car so easily pass a loaded truck when going up-
hill? The truck is heavier, of course, but its engine is more



powerful in proportion (or is it?). What considerations enter
into choosing the design power of a truck engine and of a car
engine?

10. Does the power needed to raise a box onto a platform depend
on how fast it is raised?

11. You lift some library books from a lower to a higher shelf in
time �t. Does the work that you do depend on (a) the mass of
the books, (b) the weight of the books, (c) the height of the
upper shelf above the floor, (d ) the time �t, and (e) whether
you lift the books sideways or directly upward?

12. We hear a lot about the “energy crisis.” Would it be more ac-
curate to speak of a “power crisis”?

13. You cut a spring in half. What is the relation of the force con-
stant k for the original spring to that for either of the half-
springs?

14. Springs A and B are identical except that A is stiffer than B;
that is, kA � kB . On which spring is more work expended if
they are stretched (a) by the same amount and (b) by the same
force?

15. In picking up a book from the floor and putting it on a table,
you do work. However, the kinetic energy of the book does
not change. Is there a violation of the work–energy theorem
here? Explain why or why not.

16. Does the work–energy theorem hold if friction acts on an ob-
ject? Explain your answer.

17. The work done by the net force on a particle is equal to the
change in kinetic energy. Can it happen that the work done by
one of the component forces alone will be greater than the
change in kinetic energy? If so, give examples.

18. The world record for the pole vault is about 5.5 m. Could the
record be raised to, say, 8 m by using a pole long enough? If
not, why not? How high might an athlete get?

19. A light object and a heavy object have equal kinetic energies
of translation. Which one has the larger momentum?

20. Can a body have kinetic energy without having momentum?
Can a body have momentum without having kinetic energy?

21. An object of mass m is traveling with an initial speed v. The
object is brought to a rest by a variable force that acts over a
distance d for a time t. There are two ways to calculate the
magnitude of the “average” force,

or
Fav � mv2/2d.

Fav � mv/t

Are the two methods equivalent? Under what conditions, if
any, will they yield the same average? Will one method tend
to produce a larger result, and, if so, which method?

22. Comment on these statements: In a car collision, the force the
car exerts on being stopped can be determined either from its
momentum or its kinetic energy. In one case the time of stopping
and in the other the distance of stopping also need to be known.

23. Steel is more elastic than rubber. Explain what this means.

24. Discuss the possibility that, if only we could take into account
internal motions of atoms in objects, all collisions are elastic.

25. We have seen that the conservation of momentum may apply
whether kinetic energy is conserved or not. What about the
reverse; that is, does the conservation of kinetic energy imply
the conservation of momentum in classical physics? (See
“Connection Between Conservation of Energy and Conserva-
tion of Momentum,” by Carl G. Adler, American Journal of
Physics, May 1976, p. 483.)

26. The following statement was taken from an exam paper: “The
collision between two helium atoms is perfectly elastic, so
that momentum is conserved.” What do you think of this
statement?

27. Two clay balls of equal mass and speed strike each other
head-on, stick together, and come to rest. Kinetic energy is
certainly not conserved. What happened to it? How is mo-
mentum conserved?

28. Consider a one-dimensional elastic collision between a mov-
ing object A and an object B initially at rest. How would you
choose the mass of B, in comparison to the mass of A, in or-
der that B should recoil with (a) the greatest speed, (b) the
greatest momentum, and (c) the greatest kinetic energy?

29. In commenting on the fact that kinetic energy is not con-
served in a totally inelastic collision, a student observed that
kinetic energy is not conserved in an explosion and that a to-
tally inelastic collision is merely the reverse of an explosion.
Is this a useful or valid observation?

30. Does kinetic energy depend on the direction of the motion in-
volved? Can it be negative? Does its value depend on the ref-
erence frame of the observer?

31. Does the work done by the net force acting on a particle de-
pend on the (inertial) reference frame of the observer? Does
the change in kinetic energy so depend? If so, give examples.

32. A man rowing a boat upstream is at rest with respect to the
shore. (a) Is he doing any work? (b) If he stops rowing and
moves down with the stream, is any work being done on him?
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EXERCISES

11-1 Work and Energy

11-2 Work Done by a Constant Force
1. To push a 52-kg crate across a floor, a worker applies a force

of 190 N, directed 22° below the horizontal. As the crate
moves 3.3 m, how much work is done on the crate by (a) the
worker, (b) the force of gravity, and (c) the normal force of
the floor on the crate?

2. A 106-kg object is initially moving in a straight line with a
speed of 51.3 m/s. (a) If it is brought to a stop with a decelera-

tion of 1.97 m/s2, what force is required, what distance does the
object travel, and how much work is done by the force? (b) An-
swer the same questions if the object’s deceleration is 4.82 m/s2.

3. To push a 25-kg crate up a 27° incline, a worker exerts a force
of 120 N, parallel to the incline. As the crate slides 3.6 m,
how much work is done on the crate by (a) the worker, (b) the
force of gravity, and (c) the normal force of the incline?

4. A worker pushed a 58.7-lb block (m � 26.6 kg) a distance of
31.3 ft along a level floor at constant speed with a(� 9.54 m)



force directed 32.0° below the horizontal. The coefficient of
kinetic friction is 0.21. How much work did the worker do on
the block?

5. A 52.3-kg trunk is pushed 5.95 m at constant speed up a
28.0° incline by a constant horizontal force. The coefficient of
kinetic friction between the trunk and the incline is 0.19. Cal-
culate the work done by (a) the applied force and (b) the force
of gravity.

6. A 47.2-kg block of ice slides down an incline 1.62 m long
and 0.902 m high. A worker pushes up on the ice parallel to
the incline so that it slides down at constant speed. The coeffi-
cient of kinetic friction between the ice and the incline is
0.110. Find (a) the force exerted by the worker, (b) the work
done by the worker on the block of ice, and (c) the work done
by gravity on the ice.

7. Use Eqs. 11-3 and 11-5 to calculate the angle between the
two vectors 

8. A vector of magnitude 12 units and another vector of
magnitude 5.8 units point in directions differing by 55°. Find
the scalar product of the two vectors.

9. Two vectors, and , lie in the xy plane. Their magnitudes
are 4.5 and 7.3 units, respectively, whereas their directions are
320° and 85° measured counterclockwise from the positive x
axis. What is the value of � ?

10. (a) Calculate where 
and . (b) Calculate

the angle between and the � z axis. (c) Find the angle be-
tween and .

11-3 Power
11. A 57-kg woman runs up a flight of stairs having a rise of 

4.5 m in 3.5 s. What average power must she supply?

12. In a 100-person ski lift, a machine raises passengers averag-
ing 667 N in weight a height of 152 m in 55.0 s, at constant
speed. Find the power output of the motor, assuming no fric-
tional losses.

13. A swimmer moves through the water at a speed of 0.22 m/s.
The drag force opposing this motion is 110 N. How much
power is developed by the swimmer?

14. The hydrogen-filled airship Hindenburg (see Fig. 11-24) could
cruise at 77 knots with the engines providing 4800 hp. Calcu-
late the air drag force in newtons on the airship at this speed.
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B
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sBrB

sBrB

b
B
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aB � 3î � 3ĵ � 3k̂ and b

B
� 2î � ĵ � 3k̂.

16. The motor on a water pump is rated at 6.6 hp. From how far
down a well can water be pumped up at the rate of 220
gal /min?

17. Suppose that your car averages 30 mi/gal of gasoline. (a)
How far could you travel on 1 kW� h of energy consumed? (b)
If you are driving at 55 mi/h, at what rate are you expending
energy? The heat of combustion of gasoline is 140 MJ/gal.

18. What power is developed by a grinding machine whose wheel
has a radius of 20.7 cm and runs at 2.53 rev/s when the tool to
be sharpened is held against the wheel with a force of 180 N?
The coefficient of friction between the tool and the wheel is
0.32.

19. A fully loaded freight elevator has a total mass of 1220 kg. It
is required to travel downward 54.5 m in 43.0 s. The counter-
weight has a mass of 1380 kg. Find the power output, in hp, of
the elevator motor. Ignore the work required to start and stop
the elevator; that is, assume that it travels at constant speed.

20. A jet airplane is traveling 184 m/s. In each second the engine
takes in 68.2 m3 of air having a mass of 70.2 kg. The air is used
to burn 2.92 kg of fuel each second. The energy is used to com-
press the products of combustion and to eject them at the rear of
the engine at 497 m/s relative to the plane. Find (a) the thrust of
the jet engine and (b) the delivered power (horsepower).

11-4 Work Done by a Variable Force
21. A 10-kg object moves along the x axis. Its acceleration as a

function of its position is shown in Fig. 11-25. What is the net
work performed on the object as it moves from x � 0 to x �
8.0 m?
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FIGURE 11-24. Exercise 14.

FIGURE 11-26. Exercise 22.

FIGURE 11-25. Exercise 21.

15. How much power, in horsepower, must be developed by the
engine of a 1600-kg car moving at 26 m/s on a
level road if the forces of resistance total 720 N?

(�  94 km/h)
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22. A 5.0-kg block moves in a straight line on a horizontal fric-
tionless surface under the influence of a force that varies with
position as shown in Fig. 11-26. How much work is done by
the force as the block moves from the origin to x � 8.0 m?
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23. Figure 11-27 shows a spring with a pointer attached, hanging
next to a scale graduated in millimeters. Three different
weights are hung from the spring, in turn, as shown. (a) If all
weight is removed from the spring, which mark on the scale
will the pointer indicate? (b) Find the weight W.

proton is accelerated along a straight line at 3.60 � 1015 m/s2.
If a proton enters such a stage moving initially with a speed
of 2.40 � 107 m/s and the stage is 3.50 cm long, compute (a)
its speed at the end of the stage and (b) the gain in kinetic en-
ergy resulting from the acceleration. The mass of the proton is
1.67 � 10�27 kg. Express the energy in electron-volts.

30. A single force acts on a particle in rectilinear motion. A plot of
velocity versus time for the particle is shown in Fig. 11-28. Find
the sign (positive or negative) of the work done by the force on
the particle in each of the intervals AB, BC, CD, and DE.

Exercises 251

FIGURE 11-27. Exercise 23.

FIGURE 11-28. Exercise 30.
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24. A spring has a force constant of 15.0 N/cm. (a) How much
work is required to extend the spring 7.60 mm from its re-
laxed position? (b) How much work is needed to extend the
spring an additional 7.60 mm?

11-5 Work Done by a Variable Force: Two-Dimensional
Case
25. By integrating along the arc, show that the work done by

gravity in Sample Problem 11-5 is equal to � mgh.

26. An object of mass 0.675 kg on a frictionless table is attached
to a string that passes through a hole in the table at the center
of the horizontal circle in which the object moves with con-
stant speed. (a) If the radius of the circle is 0.500 m and the
speed is 10.0 m/s, compute the tension in the string. (b) It is
found that drawing an additional 0.200 m of the string down
through the hole, thereby reducing the radius of the circle to
0.300 m, has the effect of multiplying the original tension in
the string by 4.63. Compute the total work done by the string
on the revolving object during the reduction of the radius.

11-6 Kinetic Energy and the Work–Energy Theorem
27. A conduction electron in copper near the absolute zero of

temperature has a kinetic energy of 4.2 eV. What is the speed
of the electron?

28. Calculate the kinetic energies of the following objects moving
at the given speeds: (a) a 110-kg football linebacker running
at 8.1 m/s; (b) a 4.2-g bullet at 950 m/s; (c) the aircraft carrier
Nimitz, 91,400 tons at 32.0 knots.

29. A proton (nucleus of the hydrogen atom) is being accelerated
in a linear accelerator. In each stage of such an accelerator the

A t
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–

B C

D

E

v

31. A force acts on a 2.80-kg particle in such a way that the posi-
tion of the particle as a function of time is given by x �
(3.0 m/s)t � (4.0 m/s2)t 2 � (1.0 m/s3)t3. (a) Find the work
done by the force during the first 4.0 s. (b) At what instanta-
neous rate is the force doing work on the particle at the in-
stant t � 3.0 s?

32. The Earth circles the Sun once a year. How much work would
have to be done on the Earth to bring it to rest relative to the
Sun? See Appendix C for numerical data and ignore the rota-
tion of the Earth about its own axis.

33. A 3700-lb automobile (m � 1600 kg) starts from rest on a
level road and gains a speed of 45 mi/h in 33 s.
(a) What is the kinetic energy of the auto at the end of the 
33 s? (b) What is the average net power delivered to the car
during the 33-s interval? (c) What is the instantaneous power
at the end of the 33-s interval assuming that the acceleration
was constant?

11-7 Work and Kinetic Energy in Rotational Motion
34. A molecule has a rotational inertia of 14,000 u � pm2 and is

spinning at an angular speed of 4.30 � 1012 rad/s. (a) Ex-
press the rotational inertia in kg � m2. (b) Calculate the rota-
tional kinetic energy in eV.

35. The oxygen molecule has a total mass of 5.30 � 10�26 kg and
a rotational inertia of 1.94 � 10�46 kg � m2 about an axis
through the center perpendicular to the line joining the atoms.
Suppose that such a molecule in a gas has a mean speed of
500 m/s and that its rotational kinetic energy is two-thirds 
of its translational kinetic energy. Find its average angular 
velocity.

36. Delivery trucks that operate by making use of energy stored
in a rotating flywheel have been used in Europe. The trucks
are charged by using an electric motor to get the flywheel up
to its top speed of 624 rad/s. One such flywheel is a solid, ho-
mogeneous cylinder with a mass of 512 kg and a radius of
97.6 cm. (a) What is the kinetic energy of the flywheel after
charging? (b) If the truck operates with an average power re-
quirement of 8.13 kW, for how many minutes can it operate
between chargings?

(�  72 km/h)



37. A 31.4-kg wheel with radius 1.21 m is rotating at 283
rev/min. It must be brought to a stop in 14.8 s. Find the re-
quired average power. Assume the wheel to be a thin hoop.

38. Two wheels, A and B, are connected by a belt as in Fig. 11-
29. The radius of B is three times the radius of A. What would
be the ratio of the rotational inertias IA/IB , if (a) both wheels
have the same angular momenta and (b) both wheels have the
same rotational kinetic energy? Assume that the belt does not
slip.

41. A 35.0-ton railroad freight car collides with a stationary ca-
boose car. They couple together and 27.0% of the initial ki-
netic energy is dissipated as heat, sound, vibrations, and so
on. Find the weight of the caboose.

42. A body of mass 8.0 kg is traveling at 2.0 m/s under the influ-
ence of no external force. At a certain instant an internal ex-
plosion occurs, splitting the body into two chunks of 4.0 kg
mass each; 16 J of translational kinetic energy are imparted to
the two-chunk system by the explosion. Neither chunk leaves
the line of the original motion. Determine the speed and di-
rection of motion of each of the chunks after the explosion.

43. Show that a slow neutron (called a thermal neutron) that is
scattered through 90° in an elastic collision with a deuteron,
that is initially at rest, loses two-thirds of its initial kinetic en-
ergy to the deuteron. (The mass of a neutron is 1.01 u; the
mass of a deuteron is 2.01 u.)

44. A certain nucleus, at rest, spontaneously disintegrates into
three particles. Two of them are detected; their masses and
velocities are as shown in Fig. 11-30. (a) What is the momen-
tum of the third particle, which is known to have a mass of
11.7 � 10�27 kg? (b) How much kinetic energy in MeV ap-
pears in the disintegration process?
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FIGURE 11-30. Exercise 44.

FIGURE 11-29. Exercise 38.

FIGURE 11-31. Problem 3.

B A

39. Assume the Earth to be a sphere of uniform density. (a) Cal-
culate its rotational kinetic energy. (b) Suppose that this en-
ergy could be harnessed for our use. For how long could the
Earth supply 1.00 kW of power to each of the 6.17 � 109 per-
sons on the Earth?

11-8 Kinetic Energy in Collisions
40. The last stage of a rocket is traveling at a speed of 7600 m/s.

This last stage is made up of two parts that are clamped to-
gether—namely, a rocket case with a mass of 290.0 kg and a
payload capsule with a mass of 150.0 kg. When the clamp is
released, a compressed spring causes the two parts to separate
with a relative speed of 910.0 m/s. (a) What are the speeds of
the two parts after they have separated? Assume that all ve-
locities are along the same line. (b) Find the total kinetic en-
ergy of the two parts before and after they separate and ac-
count for the difference, if any.

16.7 x 10–27 kg

8.35 x 10–27 kg

6.22 x 106 m/s

7.85 x 106 m/s

PROBLEMS

1. Electric fields can be used to pull electrons out of metals. To
remove an electron from tungsten, the electric field must do
4.5 eV of work. Suppose that the distance over which the
electric field acts is 3.4 nm. Calculate the minimum force that
the field must exert on the electron being removed.

2. A cord is used to lower vertically a block of mass M a dis-
tance d at a constant downward acceleration of g/4. (a) Find
the work done by the cord on the block. (b) Find the work
done by the force of gravity.

3. Figure 11-31 shows an arrangement of pulleys designed to fa-
cilitate the lifting of a heavy load L. Assume that friction can
be ignored everywhere and that the pulleys to which the load
is attached weigh a total of 20.0 lb. An 840-lb load is to be
raised 12.0 ft. (a) What is the minimum applied force F that
can lift the load? (b) How much work must be done against
gravity in lifting the 840-lb load 12.0 ft? (c) Through what
distance must the applied force be exerted to lift the load 
12.0 ft? (d ) How much work must be done by the applied
force F to accomplish this task?

F

L

4. A worker can lift a 75-kg block directly off the ground on to a
loading dock, or can push the block up a frictionless incline



from the ground to the loading dock. Lifting the block re-
quires 680 J of work to be done. Pushing the block up the in-
cline requires a minimum applied force of 320 N. Find the
angle the incline makes with the horizontal.

5. A horse pulls a cart with a force of 42.0 lb at an angle of
27.0° with the horizontal and moves along at a speed of 
6.20 mi/h. (a) How much work does the horse do in 12.0
min? (b) Find the power output of the horse, in hp of course.

6. A 1380-kg block of granite is dragged up an incline at a con-
stant speed of 1.34 m/s by a steam winch (Fig. 11-32). The co-
efficient of kinetic friction between the block and the incline is
0.41. How much power must be supplied by the winch?

3 m. Refine your method to see how close you can come to
the exact answer of 6 J. (b) The curve is given analytically by
Fx � A/x2, where A � 9 N � m2. Show how to calculate the
work by the rules of integration.
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FIGURE 11-32. Problem 6.

FIGURE 11-33. Problem 12.

FIGURE 11-34. Problem 14.

FIGURE 11-35. Problem 15.

39.4 m

28.2 m

7. Show that the speed v reached by a car of mass m that is dri-
ven with constant power P is given by

where x is the distance traveled from rest.

8. (a) Show that the power output of an airplane cruising at con-
stant speed v in level flight is proportional to v3. Assume that
the aerodynamic drag force is given by D � bv2. (b) By what
factor must the engines’ power be increased to increase the air
speed by 25.0%?

9. An escalator joins one floor with another one 8.20 m above.
The escalator is 13.3 m long and moves along its length at
62.0 cm/s. (a) What power must its motor deliver if it is re-
quired to carry a maximum of 100 persons per minute, of aver-
age mass 75.0 kg? (b) An 83.5-kg man walks up the escalator
in 9.50 s. How much work does the motor do on him? (c) If
this man turned around at the middle and walked down the es-
calator so as to stay at the same level in space, would the mo-
tor do work on him? If so, what power does it deliver for this
purpose? (d) Is there any (other?) way the man could walk
along the escalator without consuming power from the motor?

10. The power output from a motor on a trolley is a function of
velocity and is given by P(v) � av(b � v2), where a and b are
constants and P � 0 for v2 � b. (a) At what speed is the max-
imum power output from the motor? (b) At what speed is
maximum force exerted by the motor? (c) At v � 0 the power
output is zero. Does this mean that the motor will be unable
to move the trolley if it is originally at rest? Explain.

11. The force exerted on an object is Find
the work done in moving the object from x � 0 to x � 3x0 (a)
by plotting Fx(x) and finding the area under the curve, and (b)
by evaluating the integral analytically.

12. (a) Estimate the work done by the force shown on the graph
(Fig. 11-33) in displacing a particle from x � 1 m to x �

F
B

� F0(x /x 0 � 1)î.

v � (3xP/m)1/3,

1 432
x (m)

2

F
x 

(N
)

0

4

6

8

10

12

13. A “stiff” spring has a force law given by F � � kx3. The
work required to stretch the spring from the relaxed state x �
0 to the stretched length x � l is W0 . In terms of W0 , how
much work is required to extend the spring from the stretched
length l to the length 2l?

14. Two springs, each with force constant k and unstretched
length l0 , are connected in a straight line as shown in Fig. 11-
34. (a) Find an expression for the work required to move the
point of attachment between the two springs a perpendicular
distance x from the equilibrium point. (b) Use the binomial
expansion to find the first nonvanishing term in the expression
for the work when x �� l0.

x

l0

15. Four springs, each with force constant k and unstretched
length l0 , are connected as shown in Fig. 11-35. The springs
obey Eq. 11-15 for both stretching and compression. Show

O

y

x

(x,y)

l0



that the work required to move the point of attachment from
the equilibrium position in a straight line to the point x,y
(with x �� l0 and y �� l0) is W � kd 2, where d 2 � x2 � y2.

16. An 1100-kg car is traveling at 46 km/h on a level road. The
brakes are applied long enough to remove 51 kJ of kinetic en-
ergy. (a) What is the final speed of the car? (b) How much
more kinetic energy must be removed by the brakes to stop
the car?

17. A running man has half the kinetic energy that a boy of half
his mass has. The man speeds up by 1.00 m/s and then has
the same kinetic energy as the boy. What were the original
speeds of man and boy?

18. A 0.550-kg projectile is launched from the edge of a cliff with
an initial kinetic energy of 1550 J and at its highest point is
140 m above the launch point. (a) What is the horizontal com-
ponent of its velocity? (b) What was the vertical component of
its velocity just after launch? (c) At one instant during its flight
the vertical component of its velocity is found to be 65.0 m/s.
At that time, how far is it above or below the launch point?

19. A comet having a mass of 8.38 � 1011 kg strikes the Earth at
a relative speed of 30 km/s. (a) Compute the kinetic energy of
the comet in “megatons of TNT”; the detonation of 1 million
tons of TNT releases 4.2 � 1015 J of energy. (b) The diameter
of the crater blasted by a large explosion is proportional to the
one-third power of the explosive energy released, with 1
megaton of TNT producing a crater about 1 km in diameter.
What is the diameter of the crater produced by the impact of
the comet? (In the past, atmospheric effects produced by im-
pacts of comets may have been the cause of mass extinctions
of many species of animals and plants; it is thought by many
that dinosaurs became extinct by this mechanism.)

20. A 263-g block is dropped onto a vertical spring with force con-
stant k � 2.52 N/cm (Fig. 11-36). The block sticks to the
spring, and the spring compresses 11.8 cm before coming mo-
mentarily to rest. While the spring is being compressed, how
much work is done (a) by the force of gravity and (b) by the
spring? (c) What was the speed of the block just before it hit
the spring? (d) If this initial speed of the block is doubled, what
is the maximum compression of the spring? Ignore friction.

(b) As a function of time t, what is the instantaneous power
delivered to the object?

22. A uniform steel rod of length 1.20 m and mass 6.40 kg has at-
tached to each end a small ball of mass 1.06 kg. The rod is
constrained to rotate in a horizontal plane about a vertical axis
through its midpoint. At a certain instant, it is observed to be
rotating with an angular speed of 39.0 rev/s. Because of axle
friction, it comes to rest 32.0 s later. Compute, assuming a
constant frictional torque, (a) the angular acceleration, (b) the
retarding torque exerted by axle friction, (c) the kinetic en-
ergy lost due to the axle friction, and (d ) the number of revo-
lutions executed during the 32.0 s. (e) Now suppose that the
frictional torque is known not to be constant. Which, if any, of
the quantities (a), (b), (c), or (d) can still be computed with-
out requiring any additional information? If any exists, give
its value.

23. A 1040-kg car has four 11.3-kg wheels. What fraction of the
total kinetic energy of the car is due to rotation of the wheels
about their axles? Assume that the wheels have the same rota-
tional inertia as disks of the same mass and size. Explain why
you do not need to know the radius of the wheels.

24. A man stands on a platform that is rotating with an angular
speed of 1.22 rev/s; his arms are outstretched and he holds a
weight in each hand. With his hands in this position the total
rotational inertia of the man, the weights, and the platform is
6.13 kg � m2. If by moving the weights the man decreases the
rotational inertia to 1.97 kg � m2, (a) what is the resulting an-
gular speed of the platform and (b) what is the ratio of the
new kinetic energy to the original kinetic energy? Assume the
platform rotates without friction.

25. In Chapter 10, Exercise 21, the final angular speed of two
coupled wheels was found. What fraction of the original ki-
netic energy was lost when the wheels were coupled?

26. In Chapter 10, Problem 11, a cockroach running on a lazy Su-
san stops to eat a bread crumb. How much kinetic energy is
lost?

27. In Chapter 10, Problem 12, two skaters holding onto a pole
(a) originally skated in a circle of diameter 2.92 m, but (b) the
diameter of the circle decreased to 0.940 m when the skaters
pulled on the pole. Calculate the kinetic energy of the system
in parts (a) and (b). From where does the change come?

28. A 2500-kg unmanned space probe is moving in a straight line
at a constant speed of 300 m/s. A rocket engine on the space
probe executes a burn in which a thrust of 3000 N acts for
65.0 s. What is the change in kinetic energy of the probe if
the thrust is (a) backward, (b) forward, or (c) sideways? As-
sume that the mass of the ejected fuel is negligible compared
to the mass of the space probe. (See also Exercise 13 of
Chapter 6.)

29. A force exerts an impulse J on an object of mass m, changing
its speed from vi to vf. The force and the object’s motion are
along the same straight line. Show that the work done by the
force is J(vi � vf).

30. Suppose that the blades on a helicopter push vertically down
the cylindrical column of air they sweep out as they rotate.
The total mass of the helicopter is 1820 kg and the length of
the blades is 4.88 m. Find the minimum power needed to
keep the helicopter airborne. Assume that the density of air is
1.23 kg/m3.

1
2
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FIGURE 11-36. Problem 20.

21. An object of mass m accelerates uniformly from rest to a
speed vf in time tf . (a) Show that the work done on the object
as a function of time t, in terms of vf and tf , is

W �
1

2
m

v2
f

t 2
f

t 2.



31. A ball of mass m is projected with speed vi into the barrel of a
spring gun of mass M initially at rest on a frictionless surface;
see Fig. 11-37. The ball sticks in the barrel at the point of
maximum compression of the spring. No energy is lost in
friction. (a) What is the speed of the spring gun after the ball
comes to rest in the barrel? (b) What fraction of the initial ki-
netic energy of the ball is lost through work done on the
spring?

34. Consider two observers, one whose frame is attached to the
ground and another whose frame is attached, say, to a train
moving with uniform velocity u with respect to the ground.
Each observes that a particle, initially at rest with respect to
the train, is accelerated by a constant force applied to it for
time t in the forward direction. (a) Show that for each ob-
server the work done by the force is equal to the gain in ki-
netic energy of the particle, but that one observer measures
these quantities to be whereas the other observer mea-
sures them to be Here a is the common accel-
eration of the particle of mass m. (b) Explain the differences
in work done by the same force in terms of the different dis-
tances through which the observers measure the force to act
during the time t. Explain the different final kinetic energies
measured by each observer in terms of the work the particle
could do in being brought to rest relative to each observer’s
frame.

35. A particle of mass m1, moving with speed v1i , collides head-
on with a particle of mass m2 , initially at rest, in a completely
inelastic collision. (a) What is the kinetic energy of the sys-
tem before collision? (b) What is the kinetic energy of the
system after collision? (c) What fraction of the original ki-
netic energy was lost? (d ) Let vcm be the velocity of the center
of mass of the system. View the collision from a primed refer-
ence frame moving with the center of mass so that �
vli � vcm and v2i � � vcm . Repeat parts (a), (b), and (c), as
seen by an observer in this reference frame. Is the kinetic en-
ergy lost the same in each case? Explain.

36. Consider a situation such as that in Chapter 6, Problem 16
(Fig. 6-32) but in which the collisions now may be either all
elastic, all inelastic, or some elastic and some inelastic; also,
the masses are now m, m�, and M. Show that to transfer the
maximum kinetic energy from m to M, the intermediate body
should have a mass — that is, the geometric mean
of the adjacent masses. (It is interesting to note that this same
relationship exists between masses of successive layers of air
in the exponential horn in acoustics. (See “Energy Transfer in
One-Dimensional Collisions of Many Objects,” by John B.
Hart and Robert B. Herrmann, American Journal of Physics,
January 1968, p. 46.)

m� � √mM

v�1i

1
2 ma2t2 � maut.

1
2 ma2t2,
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FIGURE 11-37. Problem 31.

FIGURE 11-38. Problem 32.

vi mM

32. A block of mass m1 � 1.88 kg slides along a frictionless table
with a speed of 10.3 m/s. Directly in front of it, and moving
in the same direction, is a block of mass m2 � 4.92 kg mov-
ing at 3.27 m/s. A massless spring with a force constant k �
11.2 N/cm is attached to the backside of m2 , as shown in Fig.
11-38. When the blocks collide, what is the maximum com-
pression of the spring? (Hint: At the moment of maximum
compression of the spring, the two blocks move as one; find
the velocity by noting that the collision is completely inelastic
to this point.)

v1i v2i

m2

k
m1

33. Two objects, A and B, collide. A has mass 2.0 kg, and B has
mass 3.0 kg. The velocities before the collisions are

and 
After the collision,

How much kinetic energy was gained or lost in the
collision? (See Chapter 6, Exercise 25.)
(30 m/s) ĵ.

vBfA � (�6.0 m/s)î �(5.0 m/s) ĵ.
vBiB � (�10 m/s)î �vBi A � (15 m/s)î � (30 m/s)ĵ

COMPUTER PROBLEM

1. The power output from the motor on a 2.0-kg radio-controlled
car is dependent on the velocity of the car and is given by

P � v(5 � v)/3

where P is measured in watts when v is measured in m/s. As-
sume the car starts from rest, and numerically generate a
graph of position as a function of time and velocity as a func-
tion of time for the car.
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ENERGY 2:
POTENTIAL ENERGY

In the last chapter we began our study of energy with

an introduction to work and kinetic energy. In this chapter we introduce another kind of energy, potential

energy, which is energy that can be stored in a system when certain types of forces act between its compo-

nents.

Taking into account the kinetic and potential energies of a system, we have the law of conservation of

mechanical energy, which provides a way of understanding mechanical problems that is based on Newton’s

laws but often provides new or different insights. Based on this conservation law, we can re-analyze a num-

ber of problems in translational and rotational motion that we have previously solved with Newton’s laws.

The next chapter continues to broaden and expand our concepts of energy into a more general form of en-

ergy conservation law.

12-1 CONSERVATIVE FORCES

Potential energy is defined only for a certain class of forces
called conservative forces. Before we define what we mean
by a conservative force, let us consider examples of the be-
havior of three different forces: the spring force, Fx �
� kx; the gravitational force, Fy � mg; and the frictional
force, f � �N. Our goal is to examine the work done by
each force as a particle acted upon by that force moves
along a path and returns to its starting point.

1. The spring force. Figure 12-1 shows a block of mass
m attached to a spring of force constant k; the block slides
without friction across a horizontal surface. Initially (Fig.
12-1a) an external agent has compressed the spring so that
the block is displaced to x � �d from its position at x � 0
when the spring is relaxed. The external agent is suddenly
removed at t � 0, and the spring begins to do work on the
block. As the block moves from x � �d to x � 0, the
spring does work (Eq. 11-16). According to the
work–energy theorem, this work appears as kinetic energy
of the block.

� 1
2 kd 2

As the block passes through x � 0 (see Fig. 12-1b), the
direction of the spring force reverses, and the spring now
acts to slow down the block, doing negative work on it.
When the block has been brought momentarily to rest at
x � � d, as in Fig. 12-1c, the amount of this negative work
done by the spring force between x � 0 and x � � d is

Similarly, from x � � d to x � 0, the spring force
does work and from x � 0 back to x � � d, it
does work The block is now back in its original
position (compare Figs. 12-1a and 12-1e), and we see from
adding the four separate contributions that the total work
done on the block by the spring force in the complete cycle
is zero.

2. The force of gravity. Figure 12-2 shows an example
of a system consisting of a ball acted on by the Earth’s
gravity. The ball is projected upward by an external agent
that gives it an initial speed v0 and thus an initial kinetic en-
ergy As the ball rises, the Earth does work on it and
eventually brings it momentarily to rest at y � h. The work
done by the Earth as the ball rises from y � 0 to y � h is
� mgh (the constant force mg times the distance h, negative

1
2 mv2

0 .

� 1
2 kd 2.

� 1
2 kd 2,

� 1
2 kd 2.
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because the force and displacement are in opposite direc-
tions as the ball rises). As the ball falls from y � h to y �
0, the force of gravity does work � mgh. The total work
done on the ball by the force of gravity during the round
trip is zero.

3. The frictional force. For our third example, consider
a disk of mass m on the end of a thin but rigid rod of length
R. The disk is given an initial speed v0 , and the rod con-
strains it to move in a circle of radius R over a horizontal
surface that exerts a frictional force on the disk (see Fig.
12-3). The only force that does work on the disk is the fric-
tional force, exerted by the surface on the bottom of the
disk. This force always acts in a direction opposite to the
direction in which the disk is moving, so that the work done
on the disk by the frictional force is always negative. After
the disk has returned to its starting point, the work done by
the frictional force is definitely not zero; the total work for
the “round trip” is, in fact, a negative quantity.

Note the differences between these three examples. In
the first two (the spring force and gravity), the object re-
turned to its starting point after a round trip with no total
work done on it. In the third example (the frictional force),
there was total work done on the object during the round
trip. We find it useful to attach labels to forces in order to
identify this basic difference in behavior. Specifically,

Consider the total work done by a force that acts on a
particle as the particle moves around a closed path and
returns to its starting point. If this total work is zero, we
call the force a conservative force. If the total work for
the round trip is not zero, we call the force a nonconser-
vative force.

The elastic restoring force (spring force) and gravity are
two examples of conservative forces. Friction is an example
of a nonconservative force.

A second way to identify a force as conservative or non-
conservative is based on a comparison of the work done
when the object on which the force acts moves from one lo-
cation to another by several different paths. For example,
suppose you are moving packages of mass m from the base-
ment to the first floor in a building that has several floors,
each of height h. If you move a package directly from the
basement to the first floor, the (conservative) gravitational
force acting on the package does work Wg � � mgh. If in-
stead you first move it to the fifth floor (Wg � � 5mgh) and
then return it to the first floor (Wg � � 4mgh), the total
work done by gravity for the entire process is Wg � � mgh,
exactly the same as if you had carried the package directly.
No matter how many intermediate stopping points or how
many times you go back and forth over the same path,
when you finally deliver the package to the first floor, the
total work done by gravity between the original location of
the package (the basement) and its final location (the first
floor) will be �mgh.

On the other hand, consider the behavior of the noncon-
servative frictional force for the system illustrated in Fig.
12-3 as the disk moves along two different paths from posi-
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FIGURE 12-1. A block moves under the action of a spring
force from (a) x � � d to (b) x � 0, moving left, to (c) x � � d,
to (d ) x � 0, moving right, and (e) back to x � � d. The work
done by the spring force between each pair of successive positions
is shown in the boxes at the left. Note that the total work done by
the spring force on the block is zero for the round trip.

FIGURE 12-2. A ball is thrown upward against the Earth’s
gravity. In (a) it is just leaving its starting point, in (b) it has
reached the top of its trajectory, and in (c) it has returned to its
original height. The work done by the Earth’s gravity between the
pairs of successive positions is shown in the boxes at the bottom.
Note that the total work done by the force of gravity on the ball is
zero for the round trip.

y

y = h

W = +mghW = –mgh

y = 0
(a) (b) (c)
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tion A to position B. In one case, the disk moves through
one-half revolution from A to B, and in the second case it
moves through revolutions. Although calculating the
work done by the frictional force requires some care (see
Section 13-3) it seems clear that the magnitude of the (neg-
ative) work done by friction is larger in the second case
than in the first, because the frictional force acts over a
larger distance. For the frictional force, the work done de-
pends on the path taken between the initial and the final po-
sitions of the object on which that force acts.

This leads to our second way of distinguishing conserv-
ative forces.

Consider the work done by a force that acts on an ob-
ject as the object moves from an initial position to a fi-
nal position along any arbitrarily chosen path. If this
work is the same for all such paths, we call the force a
conservative force. If the work is not the same for all
paths, we call the force a nonconservative force.

With the help of Fig. 12-4, we can show that the two
criteria we have developed for identifying conservative
forces are precisely equivalent. In Fig. 12-4a, a particle
moves around a closed path from a to b and back again. If
only a conservative force acts on the particle, the total
work done on the particle by that force during the cycle
must be zero. That is,

or

(12-1)

where Wab,1 means “the work done by the force when the
particle moves from a to b along path 1” and Wba,2 means

�b

a
path 1

F
B

�d sB � �a

b
path 2

F
B

�d sB � 0,

Wab,1 � Wba,2 � 0

F
B

11
2

“the work done by the force when the particle moves from
b to a along path 2.” Equation 12-1 is the mathematical
statement equivalent to the first criterion for a conservative
force.

Reversing the direction in which we travel any particu-
lar path interchanges the limits of integration and changes
the sign of the displacement; that is, the work in going from
a to b is related to the work in going from b to a:

or, in the case of path 2,

(12-2)

Combining Eqs. 12-1 and 12-2 gives

or

(12-3)

This is the mathematical representation of the second defin-
ition of a conservative force: the work done by the force is
the same for any arbitrary path between a and b. Thus the
first definition leads directly to the second and (by a similar
argument) the second leads to the first, so that the two defi-
nitions are equivalent.

12-2 POTENTIAL ENERGY

In the previous section we discussed two systems in which
conservative forces act. These systems have some common
characteristics: they consist of at least two objects (the
block and the spring or the ball and the Earth) interacting
through a force (the elastic force or gravity) that does work
and transfers energy between the parts of the system as they
move relative to one another.

In situations in which a conservative force acts between
objects in a system, it is convenient and useful to define an-
other kind of energy: the potential energy. The potential en-
ergy U is energy associated with the configuration of a sys-
tem. Here “configuration” means how the parts of a system

�b

a
path 1

F
B

�d sB � �b

a
path 2

F
B

�d sB.

Wab,1 � Wab,2

Wab,2 � �Wba,2 .

�b

a
F
B

�d sB � ��a

b
F
B

�d sB (any particular path)
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FIGURE 12-3. A disk moves with
friction in a circle on a horizontal sur-
face. The positions shown represent (a)
an arbitrary starting point A, (b) one-
half revolution later (at B), and (c) an-
other half revolution later (back at A).
The work done by friction between suc-
cessive positions is indicated in the
boxes at the bottom. Note that the total
work done by the frictional force on the
disk is not zero for the round trip, but
instead has the negative value �2� Wf �.

B

(a) (b) (c)

B B

A
R

B A B AB

– Wf – Wf

1

2

b

a

1

2

b

a
(a) (b)

FIGURE 12-4. (a ) A particle, acted on by a conservative
force, moves in a round trip starting at point a, passing through
point b, and returning to point a. (b) A particle starts from point a
and travels to point b following either of two possible paths.



are located or arranged with respect to one another (for ex-
ample, the compression or stretching of the spring in the
block– spring system or the height of the ball in the
ball–Earth system).

When work is done in a system by a conservative force,
the configuration of its parts changes, and so the potential
energy changes from its initial value Ui to its final value Uf .
We define the change in potential energy associated with a
single force as

(12-4)

in which W is the work done by that force as the system
moves from a specified initial configuration to a specified
final configuration.

It is very important to remember that potential energy is
characteristic of the system and not of any of the individual
objects within the system. We should properly speak of “the
elastic potential energy of the block– spring system” or “the
gravitational potential energy of the ball–Earth system”
(not “the elastic potential energy of the spring” or “the
gravitational potential energy of the ball”). However, the
change in the configuration of the block– spring system
comes about because of the stretching and compression of
the spring. The block, taken to be rigid, does not change its
shape as it moves. Thus we often associate the potential en-
ergy of the block– spring system with the spring alone.
Similarly, the change in the configuration of the ball–Earth
system comes about largely because of the motion of the
ball, so we often associate the potential energy of this sys-
tem with the ball alone. It is true that the Earth recoils when
the ball is projected upward but, because of its much
greater mass, the Earth’s displacement is negligibly small
compared with that of the ball.

Let us therefore consider the case in which it is neces-
sary to consider the work done on only one object in the
system. If the object moves only in the x direction, its x co-
ordinate is all that is required to specify the configuration of
the system. Using Eq. 11-14 for the work done by a force in
one dimension, we obtain

(12-5)

Equation 12-5 allows us to calculate the difference in
potential energy between any two locations xi and xf for a
particle on which force Fx(x) acts. However, we are often
interested in knowing the potential energy associated with
an arbitrary location or configuration x relative to a particu-
lar reference location x0 :

(12-6)

Because only differences or changes in potential energy are
significant, we are free to choose the reference point at any
convenient location, and we are free to define the potential
energy U(x0) at the reference point to have any convenient
value. The function U(x) can then be used to find the poten-

U(x) � U(x 0) � ��x

x0

Fx(x) dx.

�U � U(x f) � U(x i) � �W � ��xf

xi

Fx(x) dx.

�U � Uf � Ui � �W,

tial energy at any arbitrary location in the system— for ex-
ample, at x1 , x2 , and so forth. If we choose a different refer-
ence point or a different value for U(x0), then U(x1) and
U(x2) will both change, but the physically important quanti-
ties, such as U(x1) � U(x2), are unchanged. The analysis of
the dynamical behavior is thus independent of the choice of
U(x0).

It may be that the initial and final states of the system
are the same— that is, the force is acting on a particle that
is making a “round trip.” If potential energy is to have any
meaning in such cases, we must have �U � Uf � Ui � 0,
because i and f represent the same location. Equation 12-4
then requires that W must be zero. As we have seen, this
can be true only for conservative forces. Thus we can asso-
ciate potential energy only with conservative forces. In par-
ticular, because W � 0 for a round trip, we cannot associate
potential energy with the force of friction.

The inverse of Eq. 12-6 allows us to calculate the force
from the potential energy:

(12-7)

Equation 12-7 gives another way of looking at the potential
energy: the potential energy is a function of position whose
negative derivative gives the force.

We now illustrate the calculation of potential energy
with the two examples of conservative forces we consid-
ered in Section 12-1, the block– spring system and the
ball–Earth system.

The Spring Force
We choose the reference position x0 of the block in the
block– spring system of Fig. 12-1 to be that in which the
spring is in its relaxed state (x0 � 0), and we declare the
potential energy of the system to be zero when the block is
at that location The potential energy of the
block– spring system can be found by substituting these
values into Eq. 12-6 and evaluating the integral for the
spring force, Fx(x) � � kx:

or

(12-8)

Whenever the block is displaced a distance x from its refer-
ence position, the potential energy of the system is 
The same result is obtained whether x is positive or nega-
tive; that is, whether the spring is stretched or compressed
by a given amount x, the stored energy is the same.

Differentiating Eq. 12-8, we see that Eq. 12-7 is satis-
fied:

�
dU

dx
� �

d

dx
 ( 1

2 kx2) � �kx � Fx .

1
2 kx2.

U(x) � 1
2 kx2.

U(x) � 0 � ��x

0
(�kx) dx

[U(x 0) � 0].

Fx(x) � �
dU(x)

dx
.
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The Force of Gravity
For the ball–Earth system, we represent the vertical coordi-
nate by y rather than x, and we take the upward direction to
be positive. We choose the reference point y0 � 0 at the
surface of the Earth, and we define U(y0) � 0 at that point.
We can now evaluate the potential energy U(y) of the sys-
tem from Eq. 12-6 with Fy(y) � � mg:

(12-9)

Note that Eq. 12-7 is satisfied for this potential energy:
� dU/dy � � mg � Fy .

Sample Problem 12-1. An elevator cab of mass m �
920 kg moves from street level to the top of the World Trade Cen-
ter in New York, a height of h � 412 m above ground. What is the
change in the gravitational potential energy of the cab–Earth sys-
tem?

Solution From Eq. 12-9, we obtain

This is almost exactly 1 kW � h; the equivalent quantity of electri-
cal energy costs a few cents.

Using Eq. 12-4, we see that the gravitational force acting on
the cab does work in the amount of � 3.7 MJ as the cab rises. The
negative sign is appropriate, because the gravitational force acting
on the cab and the displacement of the cab are in opposite direc-
tions.

Sample Problem 12-2. At the end of the track in a
certain train terminal, trains are prevented from crashing into the
platform by a bumper mounted on a stiff spring of force constant
1.25 � 108 N/m. One day a train hits the bumper and compresses
the spring by a distance of 5.6 cm when it is brought to rest.
What is the potential energy stored in the spring at that compres-
sion?

Solution We take U � 0 when the spring is relaxed (x � 0). Then
from Eq. 12-8 we have

12-3 CONSERVATION OF
MECHANICAL ENERGY

Now that we have introduced the concept of potential en-
ergy, we can combine it with the concept of kinetic energy
and develop a law of conservation of mechanical energy
that will permit fresh insight into mechanics problems.

Consider an isolated system— that is, one on which ei-
ther no external forces are present, or, if such forces are
present, they do no work on the system. For example, two

U � 1
2 kx2 � 1

2(1.25 � 108 N/m)(0.056 m)2 � 1.96 � 105 J.

� 3.7 � 106 J � 3.7 MJ.
�U � mg �y � mgh � (920 kg)(9.80 m/s2)(412 m)

U(y) � mgy.

U(y) � 0 � ��y

0
(�mg) dy

pucks connected by a spring and free to slide on a horizon-
tal, frictionless surface would qualify as an isolated system
according to this definition. Gravity and the normal force—
both external forces—act on this system but neither force
does any work on the system.

Even though no external forces affect this isolated sys-
tem, the particles within the system can exert forces on one
another. These forces, which we call internal forces, may
do work on the particles as the configuration of the system
changes. We assume that the internal forces are conserva-
tive, so that we can associate a potential energy with each
of them. In our puck– spring system, for example, the
spring exerts a (conservative) force on each puck. If the
spring increases or decreases its length as the system slides
on the horizontal frictionless surface, the spring force does
work on each puck and changes their kinetic energies.

To analyze a simple case, consider the block– spring
system of Fig. 12-1a as the block moves from x � � d to
x � 0. As the spring expands, the kinetic energy of the
block increases by �K, which, from the work–energy the-
orem (Eq. 11-24), is given by

(12-10)

where W is the (positive) work done on the block by the
spring force. Also, as the spring expands, the potential en-
ergy of the block– spring system decreases by �U, which,
from the definition of potential energy (Eq. 12-4), is given
by

(12-11)

Thus the increase in kinetic energy is exactly equal to the
decrease in potential energy of this conservative
block– spring system:

We can extend this conclusion to the more general case
of an isolated conservative system consisting of many parti-
cles that interact with each other by means of a number of
conservative forces, such as elastic spring forces, gravita-
tional forces, and electrical forces. The total change in ki-
netic energy of all of the particles that make up the system
is equal in magnitude, but opposite in sign, to the total
change in the potential energy of the system, or

We can recast this, perhaps more usefully, as

(12-12)

Equation 12-12 says that, in an isolated system in which
only conservative forces act, any change in the total kinetic
energy of the system must be balanced by an equal and op-
posite change in its potential energy, so that the sum of
these changes is zero.

We can also interpret Eq. 12-12 as 
0. That is, when only conservative forces act, the change in
the quantity is zero. We define this quantity to
be the total mechanical energy Etotal of the system:

(12-13)Etotal � Ktotal � Utotal .

Ktotal � Utotal

�(Ktotal � Utotal) �

�Ktotal � �Utotal � 0.

�Ktotal � ��Utotal .

�K � ��U.

�U � �W.

�K � W,
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Using this definition of the total mechanical energy, Eq. 12-
12 becomes

(12-14)

For convenience we drop the subscripts “total,” with the un-
derstanding that when we apply the result 

to a system of particles we must always use the to-
tal values of the various energies for the system.

If the change in any quantity is zero, then that quantity
must remain constant, so we can rewrite Eq. 12-14 as

(12-15)

where the subscripts i and f refer to the initial and final
states of the system. That is, the initial value of the total
mechanical energy is equal to the final value.

Equation 12-15 is the mathematical statement of the law
of conservation of mechanical energy:

In an isolated system in which only conservative forces
act, the total mechanical energy remains constant.

Forces that act within our system can change kinetic into
potential or potential into kinetic energy, or even one form
of potential energy into another, but the total mechanical
energy remains constant. If nonconservative forces, such as
friction, act in the system, then the total mechanical energy
is not constant; we consider this case in Chapter 13.

As an example of the conservation of mechanical en-
ergy, let us consider again the block– spring system of Fig.

Ei � Ef or Ki � Ui � Kf � Uf ,

�E � 0
�(K � U) �

�(Ktotal � Utotal) � �Etotal � 0.

12-1. At an arbitrary point in the motion, the spring is ex-
tended or compressed by a distance x (relative to the x � 0
reference position) and the block is moving with speed v,
so that the total mechanical energy is 
When the spring has its maximum extension or compres-
sion xm , the block is instantaneously at rest; at that point
the mechanical energy is all potential and As
the spring then returns to its relaxed length and the block
moves toward x � 0, the potential energy decreases and the
kinetic energy increases, until at x � 0 the potential energy
becomes zero and the kinetic energy reaches its maximum
value of so Figure 12-5 illustrates the
variation of the kinetic and potential energies as the system
moves. Note that at every stage of the motion, the sum

remains constant.
Similarly, as the ball at first rises in the ball–Earth sys-

tem of Fig. 12-2, the gravitational potential energy increases
as the kinetic energy decreases, but the total mechanical en-
ergy remains constant. Taking U � 0 at the point of release,
the initial mechanical energy is (As we dis-
cussed above, the motion of the Earth is negligible in this
system, so we can associate the kinetic energy entirely with
the ball.) At an arbitrary height y, the total mechanical en-
ergy is the sum of the kinetic plus potential energies,

At its maximum height h, the speed is
zero and so E � mgh. At each location, the total mechanical
energy has the same value, although it may be shared differ-
ently between its kinetic and potential parts. As the ball falls,

E � 1
2 mv2 � mgy.

E � 1
2 mv2

0 .

K � U

E � 1
2 mv2

m .1
2 mv2

m ,

E � 1
2 kx 2

m .

E � 1
2 mv2 � 1

2 kx2.
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FIGURE 12-5. A block attached to a spring
oscillates back and forth on a horizontal fric-
tionless surface. The mechanical energy E of the
system remains constant but is shared differ-
ently between kinetic and potential energy as
the system moves. At certain times (a, e) the en-
ergy is all kinetic, at others (c, g) it is all poten-
tial, and at still others (b, d, f, h) it is shared
equally between the two forms.



the system loses potential energy as the ball gains kinetic en-
ergy, again keeping the total mechanical energy constant.

Sample Problem 12-3. The spring of a spring gun is
compressed a distance d of 3.2 cm from its relaxed state, and a
ball of mass m is put in the barrel. With what speed will
the ball leave the barrel once the gun is fired? The force constant k
of the spring is 7.5 N/cm. Assume no friction and a horizontal gun
barrel.

Solution Our isolated system consists of the ball � spring, as in
the case of Fig. 12-1. The initial configuration consists of the ball
at rest against the compressed spring. Thus 

using Eq. 12-8 for the potential energy when the
spring is compressed by a distance d. When the spring expands to
its relaxed length (x � 0), the end of the spring (along with the
ball) is moving with its maximum speed vm ; as the spring expands
beyond its relaxed length, the end of the spring begins to slow
down, but the ball continues to move with speed vm and so it is no
longer in contact with the spring. At this instant,

Conservation of energy (Ef � Ei)
then gives

Solving for vm yields

Sample Problem 12-4. A roller coaster (Fig. 12-6)
slowly lifts a car filled with passengers to a height of y � 25 m,
from which it accelerates downhill. Neglecting friction, with what
speed will the car reach the bottom?

Solution We take our system to consist of the car (with its pas-
sengers) plus the Earth. This system meets our criterion for an iso-
lated system, because the track (which is not part of the system)
does no work on the car (we assume no friction, and the normal
force of the track on the car does no work because its direction is
always perpendicular to the displacement of the car). When the
car is at rest at the top of the track, the total mechanical energy is

where we have taken y � 0 at the bottom of the track. When the
car reaches the bottom, the mechanical energy Ef is

with the reference for U chosen so that U � 0 at y � 0. Conserva-
tion of energy means Ei � Ef , and thus

Solving for v, we obtain

This is the same speed with which an object dropped vertically
from a height of 25 m would hit the ground. The normal force of
the track does not change the speed of the “falling” car; it merely
changes the car’s direction. Note that the result is independent of
the mass of the car or of its occupants.

As the roller coaster car travels, its speed increases and de-
creases as it passes through the valleys and peaks of the track. As

v � √2gy � √(2)(9.8 m/s2)(25 m) � 22 m/s.

mgy � 1
2 mv2.

Ef � Uf � Kf � 0 � 1
2 mv2,

Ei � Ui � Ki � mgy � 0,

vm � d√ k

m
� (0.032 m)√ 750 N/m

12 � 10�3 kg
� 8.0 m/s.

1
2 mv2

m � 0 � 0 � 1
2 kd 2.

Ef � Kf � Uf � 1
2 mv2

m � 0.

0 � 1
2 kd 2,

Ei � Ki � Ui �

(�12 g)

long as no peak is higher than the starting point, there is enough
mechanical energy in the system to overcome any of the interme-
diate hills of potential energy and carry the system through to the
finish.

You can readily appreciate the advantages of the energy tech-
nique from this problem. To use Newton’s laws would require
knowing the exact shape of the track, and then we would need to
find the force components and the acceleration at every point. This
could be quite a difficult procedure. On the other hand, the solu-
tion using Newton’s laws would provide more information than
the solution using the energy method— for instance, the time it
takes the car to reach the bottom.

Applications of the Conservation of
Mechanical Energy
Our law of the conservation of mechanical energy came
from the definition of potential energy (W � � �U ) and
from the work–energy theorem (W � �K ), which was in
turn obtained from Newton’s second law. We can therefore
use the law of conservation of mechanical energy to ana-
lyze conservative systems to which we have previously ap-
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FIGURE 12-6. A device for converting gravitational potential
energy into kinetic energy.



plied Newton’s laws. By way of illustration, we reconsider
some problems that we have already solved using Newton’s
laws. We discuss only problems in linear mechanics in
which the forces are conservative and the bodies behave
like particles.

Sample Problem 12-5. Using conservation of mechan-
ical energy, analyze the Atwood’s machine (Sample Problem 5-5)
to find the velocity and the acceleration of the blocks after they
have moved a distance y from rest.

Solution Review the problem and the free-body diagram from
Fig. 5-9. For our system we take the two blocks plus the Earth.
For simplicity, we assume that both blocks start from rest at the
same level, which we define as y � 0, the reference point for
gravitational potential energy. The initial potential energy is there-
fore zero. The initial kinetic energy is also zero, and so Ei � 0.
After the system is released, block 1 moves up to position � y,
block 2 moves down to position � y, and both blocks are moving
with speed v. The final total mechanical energies are therefore

for block 1 and for block 2. Con-
servation of mechanical energy then gives Ef � Ei , or

Solving for the speed v, we obtain

Block 1 is therefore moving upward with velocity vy � � v and
acceleration ay � dvy/dt:

If we replace dy/dt with the expression for the velocity vy and re-
arrange the terms, we obtain

This is the same result we obtained in Sample Problem 5-5, which
demonstrates that methods based on Newton’s laws and on energy
conservation give identical results.

Sample Problem 12-6. Using conservation of mechan-
ical energy, find the speed of the blocks in Sample Problem 5-6 af-
ter they have moved a distance L from rest.

Solution Review the problem and Fig. 5-10. Our system is both
blocks plus the Earth. For this problem we will use the form of en-
ergy conservation given in Eq. 12-12. The initial kinetic energy is
zero, so the change in kinetic energy is 

where v is the speed of the blocks after they have moved a
distance L. There is no potential energy change for block 1 (which
moves horizontally), so the net change in potential energy is that
due to the change in the vertical position of block 2, or

Conservation of mechanical energy
then gives

Solving for the speed v, we obtain

v � √ 2m 2 gL

m 1 � m 2
.

�K � �U � 1
2 m 1v

2 � 1
2 m 2v

2 � m 2 gL � 0.

�U � m 2 g�y � m 2 g(�L).

1
2 m 2v2,

�K � Kf � 1
2 m 1v

2 �

ay �
m 2 � m 1

m 1 � m 2
g.

ay �
dvy

dt
�

1

2 �2 
m 2 � m 1

m 1 � m 2
gy�

�1/2

�2 
m 2 � m 1

m 1 � m 2
g� dy

dt
.

v � √2 
m 2 � m 1

m 1 � m 2
gy.

1
2 m 1v2 � m 1gy � 1

2 m 2v2 � m 2 gy � 0.

1
2 m 2v2 � m 2 gy1

2 m 1v2 � m 1gy

Once again, you should show that differentiating this expression
with respect to time (treating dL /dt as an appropriate velocity
component) leads to the expression for the acceleration found in
the solution to Sample Problem 5-6.

12-4 ENERGY CONSERVATION IN
ROTATIONAL MOTION

In Section 11-7 we discussed how to apply concepts of
work and kinetic energy to problems involving rotational
motion. We can also apply the conservation of mechanical
energy to analyze the motion of systems involving objects
that can rotate about an axis as well as move translationally.
There is no separate conservation law for rotational mo-
tion; instead, the kinetic energies in Eq. 12-15 may contain
both rotational and translational terms.

Sample Problem 12-7. Using conservation of mechan-
ical energy, reconsider Sample Problem 9-10 to find the speed of
the block after it falls from rest through a distance of 0.56 m.

Solution Review the problem and Fig. 9-26. Our system is the
block, the disk, and the Earth. If the block falls from rest, then
Ki � 0 for both the block and the disk. Let y � 0 be the initial po-
sition of the block, where Ui � 0; after the block falls to vertical
coordinate � y, its potential energy is Uf � mg(� y). The final ki-
netic energy of the falling block is and the final kinetic en-
ergy of the disk is Because the cord does not stretch, the
speed of the falling block is the same as the tangential speed of
the disk, and so 	 � v/R. Conservation of mechanical energy then
gives Ei � Ef , or

and solving for v (with for the disk) we find

You should be able to show that the acceleration found in Sample
Problem 9-10 leads to this vertical speed. Once again, we see that
methods based on Newton’s laws and on energy conservation give
identical results.

Combined Rotational and Translational
Motion
In Section 9-7, we considered the analysis of combined ro-
tational and translational motion using Newton’s laws. Now
let us consider a different analysis based on work–energy
methods. As we did in Section 9-7, we again restrict our
analysis to the case in which the rotational axis remains in
the same direction in space as the object moves.

Let us first show that the kinetic energy of an arbitrary
body in this special case can be written as the sum of inde-
pendent translational and rotational terms. Figure 12-7

� √ 4(1.2 kg)(9.8 m/s2)(0.56 m)

2.5 kg � 2(1.2 kg)
� 2.3 m/s.

v � √ 4mgy

M � 2m

I � 1
2 MR2

0 � 1
2 mv2 � 1

2 I(v/R)2 � mgy

1
2 I	2.

1
2 mv2,
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shows an arbitrary body of mass M. The center of mass C is
located instantaneously at the position relative to the
origin of the chosen inertial reference frame. A particle P of
mass mn is located at the position relative to the origin
and at the position relative to the center of mass of the
body. The translational motion is restricted to the xy plane;
that is, the vector describing the motion of mn has only x
and y components. The body also rotates with instanta-
neous angular velocity 	 about an axis passing through the
center of mass and perpendicular to the page. Relative to O,
the kinetic energy of the particle of mass mn is and
the total kinetic energy of the body is found from the sum
over all such particles:

(12-16)

From Fig. 12-7, we see that Differentiat-
ing, we find the corresponding relationship between the ve-
locities: where is the velocity of the
particle relative to the origin O, is the velocity of the
center of mass, and is the velocity of the particle rela-
tive to the center of mass. Observed from the reference
frame of the center of mass, the motion is pure rotation
about an axis through the center of mass; thus has mag-
nitude 

The quantity that appears in Eq. 12-16 can be writ-
ten as or, using the velocity transformation equa-
tion as 

The kinetic energy from
Eq. 12-16 can then be written as

(12-17)

Let us consider the three terms in this sum individually: (1)
In the first term in Eq. 12-17, the only quantity that in-
volves the summation index n is the particle mass mn , and

� �
N

n�1

1
2 mn(v2

cm � 2vBcm� vB
n � v
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n ).
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K � �
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n�1
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2 mnv2

n .

1
2 mnv2

n

vBn

rB
n

rBn

rBcm

for this term the total mass of the body. (Note
that vcm passes through the summation symbol because it
does not depend on the index n.) This term then becomes

(2) In the second term we have
The quantity 

is the total momentum of all the particles in the body, mea-
sured in the center-of-mass reference frame:
which is zero as shown in Eq. 7-24. (3) The third term in
Eq. 12-17 can be simplified if we recall that the motion in
the primed (center-of-mass) reference frame is a pure rota-
tion, and so The third term then becomes

The summation here gives the ro-
tational inertia in the center-of-mass frame 
and so With the middle term equal to
zero, the remaining two terms of Eq. 12-17 then give

(12-18)

Equation 12-18 indicates that the total kinetic energy of
the moving object consists of two terms, one associated
with the pure translation of the center of mass of the object
at velocity and the other associated with pure rotation
about an axis through the center of mass. The two terms are
quite independent: the rotation would be present even in the
absence of translation (for example, as observed from a
frame of reference moving at The velocities and

are, in this general case, independent of one another: we
can provide any amount of rotational kinetic energy and
any amount of translational kinetic energy.

Rolling without Slipping. For the special case of rolling
without slipping, which we also discussed in Section 9-7,
the angular speed and the center-of-mass speed are not in-
dependent— they are related by vcm � 	R for an object of
radius R. The total kinetic energy is then completely deter-
mined by either the translational speed vcm or the rotational
speed 	, and we can find the corresponding expressions for
the kinetic energy by substituting into Eq. 12-18:

(12-19a)

(12-19b)

In either case, only one parameter (vcm or 	) is sufficient to
determine the kinetic energy.

When an object rolls without slipping, there is a fric-
tional force exerted at the instantaneous point of contact be-
tween the object and the surface on which it rolls (Fig. 9-
33, for example). However, this frictional force does no
work on the moving object because the point of application
of the force does not move. That is, the force does not move
a point on the object through some distance. Instead, the
frictional force is applied first at one point on the object and
then, as the object rotates, at a different point on the object.
An ideal wheel can roll without slipping on a horizontal
surface at constant translational and rotational velocity; if
there were external work done on the wheel (for example
by friction), its kinetic energy would change, which is not
the case. If the wheel were instead sliding on the surface,
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then the frictional force would do work and would change
the translational and rotational kinetic energies.

Sample Problem 12-8. Using energy conservation,
find the final speed of the rolling cylinder in Fig. 9-32 when it
reaches the bottom of the plane.

Solution Figure 9-32 shows the forces that act on the rolling
cylinder. For our system we take the cylinder and the Earth. Even
though there is a frictional force present, it does no work and so it
cannot change the mechanical energy. The initial kinetic energy is
zero and the initial potential energy is Mgh � MgL sin � relative
to the base of the plane where U � 0; thus Ei � Ki � Ui � 0 �
MgL sin �. The final potential energy is zero (because that is our
chosen reference point), and the kinetic energy is given by Eq. 12-
19a in terms of the final translational speed of the center of mass;
thus Ef � Kf � Uf � Setting Ef � Ei ,
we obtain

With we can solve for vcm to find

in agreement with the result of Sample Problem 9-11.

Sample Problem 12-9. Find the final angular speed of
the yo-yo of Sample Problem 9-13 using energy conservation.

Solution The motion of the yo-yo as it unwinds down the string is
another example of combined rotational and translational motion.
The point of contact between the cord and the shaft plays the same
role as the point of contact between the wheel and the ground in
rolling without slipping. For our system we take the yo-yo plus
the Earth. The yo-yo has initial translational speed v0 and final an-
gular speed 	, so its change in kinetic energy is (using Eq. 12-19b
for Kf and Eq. 12-19a for Ki)

Let the yo-yo fall from initial location y � 0, where Ui � 0, to the
vertical coordinate � y, where Uf � Mg(� y). The change in po-
tential energy as the yo-yo falls is then �U � � Mgy. Setting �K
� �U � 0 and solving for the final angular speed 	, we obtain

You should show that by differentiating the above expression for
	 you obtain the expression for � derived in Sample Problem 9-13
using Newton’s laws.

12-5 ONE-DIMENSIONAL
CONSERVATIVE SYSTEMS: THE
COMPLETE SOLUTION

Our goal in the analysis of a mechanical system is often to
describe the motion of a particle as a function of the time.
In Chapters 3 and 4 we showed how to solve this problem
by applying Newton’s laws, which, in one dimension, allow

	 � √� v0

R0
�

2

�
2gy

R2
0 � R2/2

.

�K � Kf � Ki � (1
2 M	2R2

0 � 1
2 Icm	2) � �1

2 Mv2
0 � 1

2 Icm
v2

0

R2
0
�.

vcm � √4
3 gL sin �,

Icm � 1
2 MR2,

1
2 Mv2

cm � 1
2 Icmv2

cm /R2 � MgL sin �.

1
2 Mv2

cm � 1
2 Icmv2

cm /R2 � 0.

us to solve for the position and velocity as functions of the
time. In this chapter we have solved many of the same
problems using conservation of energy, which can yield the
velocity of the bodies in a system in a final configuration
that is different from the initial configuration. These two
methods, the dynamical or force method and the energy
method, give identical results, but the energy method as we
have applied it so far does not give the position and velocity
of bodies in the system as functions of the time. In this sec-
tion, we show how the energy method can be extended to
provide this information.

We assume a one-dimensional system with a force that
depends only on position.* Associated with this force is the
potential energy function U(x), which also depends on the
coordinates. Equation 12-13 for the definition of mechani-
cal energy, E � K � U, gives a relationship between x and
vx :

(12-20)

and solving for vx , we obtain

(12-21)

For any particular value of the total mechanical energy E of
the system, Eq. 12-21 tells us that the motion is restricted to
regions of the x axis where E  U(x), because we cannot
allow a negative kinetic energy or an imaginary velocity.

If we plot U(x) as a function of x, we can get a good
qualitative description of the motion, based on Eq. 12-21.
For example, consider the potential energy function shown
in Fig. 12-8a. This represents the potential energy of a par-
ticle moving in one dimension along the x axis. The rela-
tionship between the potential energy and the force is deter-
mined by Eq. 12-7, Fx � � dU/dx. The force corresponding
to this potential energy is shown in Fig. 12-8b. We consider
several different possible choices for the total mechanical
energy of the system. For any particular value of the energy
(for example, E4), the kinetic energy at any point (for ex-
ample, x4) is found from the difference between the total
energy and the potential energy.

E � E0 . This is the lowest possible energy of the sys-
tem. At this point E � U, so K � 0. The particle must
be at rest at the point x0 .

E � E1 . With this energy, the particle can move in the
region between x1 and x2 . Since the kinetic energy is the
difference between E and U(x), we see from the graph
that the particle has its maximum kinetic energy, and
thus its maximum speed, at x0 . As it approaches x1 or
x2 , the speed decreases. At x1 and x2 the particle stops

vx � �√ 2

m
[E � U(x)] .

U(x) � 1
2 mv2

x � E
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*In one dimension, forces that depend only on position are always conser-
vative; this is not necessarily true in two or three dimensions, as we dis-
cuss in Section 12-6. The (constant) gravitational force is conservative,
even though it does not depend explicitly on position. However, the (con-
stant) frictional force is not conservative, because its direction depends on
the direction of motion and not on the position; it can thus be regarded as a
velocity-dependent force.



and reverses its direction. The points x1 and x2 are called
turning points of the motion.

E � E2 . At the energy E2 there are four turning points,
and the particle can move back and forth in either of the
two valleys of the potential energy function.

E � E3 . At this energy there is only one turning point
in the motion, at x3 . If the particle is initially moving in
the negative x direction, it will stop at x3 and then move
in the positive x direction.

E � E4 . At energies above E4 there are no turning
points, and the particle does not reverse direction. The
speed changes according to Eq. 12-21 as the particle
moves.

At a point where U(x) has a minimum value, such as at
x � x0 , the slope of the curve is zero, and therefore the
force is zero; that is, A particle
at rest at this point will remain at rest. Furthermore, if the
particle is displaced slightly in either direction, the force,
Fx(x) � � dU/dx, will tend to return it, and it will oscillate
about the equilibrium point. This equilibrium point is there-
fore called a point of stable equilibrium. If the particle
moves slightly to the left of x0 (that is, to smaller x), the
force is positive and the particle is pushed toward larger x
(that is, back toward x0). If the particle moves to the right of
x0 , it experiences a negative force that again moves it back
toward x0 .

At a point where U(x) has a maximum value, such as at
x � x5 , the slope of the curve is zero so that the force is
again zero; that is, A particle
at rest at this point will remain at rest. However, if the parti-
cle is displaced even the slightest distance from this point,
the force Fx(x) will tend to push it farther from the equilib-
rium position. Such an equilibrium point is therefore called
a point of unstable equilibrium. At the point in Fig. 12-8b
corresponding to x5 , moving away from x5 to the right (to-

Fx(x 5) � � (dU/dx)x�x5
� 0.

Fx(x 0) � � (dU/dx)x�x0
� 0.

ward larger x) results in a positive force that pushes the par-
ticle toward even larger x.

In an interval in which U(x) is constant, such as near
x � x6 , the slope of the curve is zero, and so the force is
zero; that is, Such a location is
called one of neutral equilibrium, since a particle can be
displaced slightly without experiencing either a repelling or
a restoring force.

From this it is clear that if we know the potential energy
function for the region of x in which the body moves, we
know a great deal about the motion of the body.

Sample Problem 12-10. The potential energy func-
tion for the force between two atoms in a diatomic molecule can
be expressed approximately as follows:

where a and b are positive constants and x is the distance between
atoms. Find (a) the equilibrium separation between the atoms, (b)
the force between the atoms, and (c) the minimum energy neces-
sary to break the molecule apart (that is, to separate the atoms
from the equilibrium position to x � �).

Solution (a) In Fig. 12-9a we show U(x) as a function of x. Equi-
librium occurs at the coordinate xm , where U(x) is a minimum,
which is found from

That is,

or

xm � � 2a

b �
1/6

.

�12a

x 13
m

�
6b

x 7
m

� 0

� dU

dx �
x�xm

� 0.

U(x) �
a

x12 �
b

x6 ,

Fx(x 6) � � (dU/dx)x�x6
� 0.
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FIGURE 12-8. (a) A potential energy function U(x). (b) The x
component of the force corresponding to that potential energy.
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FIGURE 12-9. Sample Problem 12-10. (a) The potential en-
ergy and (b) the force between two atoms in a diatomic molecule
as a function of the distance x separating the atoms. Note that the
potential energy is taken as zero when the atoms are infinitely sep-
arated.



(b) From Eq. 12-7, we can find the force corresponding to this
potential energy:

We plot the force as a function of the separation between the
atoms in Fig. 12-9b. When the force is positive (from x � 0 to
x � xm), the atoms are repelled from one another (the force is di-
rected toward increasing x). When the force is negative (from x �
xm to x � �), the atoms are attracted to one another (the force is
directed toward decreasing x). At x � xm the force is zero; this is
the equilibrium point and is a point of stable equilibrium.
(c) The minimum energy needed to break up the molecule into
separate atoms is called the dissociation energy, Ed . From the po-
tential energy plotted in Fig. 12-9a, we see that we can separate
the atoms to x � �, where U � 0, whenever E � 0. The minimum
energy needed corresponds to E � 0, which means that the atoms
will be infinitely separated (U � 0) and at rest (K � 0) in their fi-
nal state. In the molecule’s equilibrium state, however, its energy
is all potential so that (see Fig. 12-9a) E � U(xm), a negative
quantity. The energy that we must add to the molecule in its equi-
librium state to raise its energy from this negative value to zero is
what we have called its dissociation energy Ed . Thus

or

Inserting the value for xm , we find

which is a positive quantity, as it must be. This energy could be
supplied by doing external work on the molecule, perhaps using
electric forces, or else by increasing the kinetic energy of one
atom of the molecule relative to the other.

General Solution for x(t)
If we can find x(t), we know all about the future behavior of
the particle. Using Newton’s laws, we can obtain this func-
tion by first finding the acceleration. Let us see how we can
use energy methods to reach this same goal.

We begin with Eq. 12-21. With vx � dx/dt, we can solve
for dt to obtain

(12-22)

Note that the two variables in this equation are separated, t
appearing only on the left and x on the right.

Suppose the particle is initially located at x � x0 when
t � 0, and it reaches its final position x at time t. We can
therefore integrate Eq. 12-22. The integral on the left side,

gives simply t, so we have

(12-23)t � �x

x0

dx

�√(2/m)[E � U(x)]
.

�t
0 dt,

dt �
dx

�√(2/m)[E � U(x)]
.

Ed �
b2

4a
,

Ed � �U(xm) � �
a

x 12
m

�
b

x 6
m

.

U(xm) � Ed � 0,

Fx(x) � �
dU

dx
� �

d

dx �
a

x12 �
b

x6 � �
12a

x13 �
6b

x7 .

In applying this equation, we choose the � sign when vx is
in the positive x direction, and the � sign when vx is in the
negative x direction. If vx changes direction during the mo-
tion, we must break the integral into separate � and �
parts.

After carrying out the integration of Eq. 12-23, we
would obtain t as a function of x. It is then usually possible
to solve for x as a function of t either analytically or numer-
ically.

As an example of this procedure, we will solve Eq. 12-
23 for a particle acted on by a spring force, for which

At t � 0, the particle is located at x0 and is at
rest (vx � 0). At that point its mechanical energy is

and since the mechanical energy remains con-
stant, its energy at every point has this value. In this case
Eq. 12-23 becomes

The integral is a standard form that can be found in integral
tables and is equal to � cos�1 (x/x0):

because cos�1 (x0/x0) � cos�1 1 � 0.
With some manipulation we can solve for x to find

Note that cos (� �) � cos �.
The one-dimensional motion of a particle acted on by a

spring force is a sinusoidal oscillation. In Chapter 17 we
will derive this same result using Newton’s laws.

12-6 THREE-DIMENSIONAL
CONSERVATIVE SYTEMS (Optional)

So far we have discussed potential energy and conservation
of mechanical energy in one-dimensional systems in which
the force is directed along the line of motion. We can easily
generalize to systems in three dimensions, in which the
force and displacement may have arbitrary and different di-
rections.

Consider a system in which a particle moves along a
path (Fig. 12-10) from an initial location 

to final location at The
particle is part of a system that exerts a conservative force

on the particle. (For simplicity we again assume that we
can focus our attention on this particle and that no work is
done on the rest of the system.) Associated with this force
is a potential energy function U(x, y, z); as the particle

F
B

rBf � x fî � yf ĵ � z f k̂.yi ĵ � z ik̂
rBi � x iî �

x(t) � x 0 cos√ k

m
t.

� �√ m

k ��cos�1� x

x 0
� � 0�

t � �√ m

k ��cos�1� x

x 0
��x

x0

�

t � �x

x0

dx

�√(2/m)[1
2 kx 2

0 � 1
2 kx2]

� �√ m

k
�x

x0

dx

√x 2
0 � x2

.

E � 1
2 kx 2

0 ,

U(x) � 1
2 kx2.
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moves between the initial and final locations, the change in
potential energy can be defined by analogy with Eq. 12-5:

(12-24)

To apply this equation, the path from i to f must be speci-
fied; the equation for the path of the particle gives the rela-
tionship between dx, dy, and dz. However, because the
force is conservative, we get the same value of �U for
every path from i to f. We can then apply the conservation
of total mechanical energy in three dimensions with E �
K � U if we take U � U(x, y, z) and 

Written more compactly in vector notation, Eq. 12-24
becomes

(12-25)

where is a displacement vector tangent to the path
Here 

where Fx , Fy , and Fz may be functions of x, y, and z. Equa-
tion 12-25 also follows directly from Eq. 11-19 (W �

and the definition of potential energy (Eq. 12-4,
�U � � W ).

We can also write Eq. 12-7 in three-dimensional form
as*

(12-26)

In the language of vectors, we say that the conservative
force is written as the negative gradient of the potential
energy U(x, y, z). For motion along the x axis, Eq. 12-26 re-
duces to Eq. 12-7.

F
B

F
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d sB
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2 mv2

x � 1
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z .
K � 1

2 mv2 �

� ��f

i
(Fx dx � Fy dy � Fz dz).

�U � U(x f , yf , z f) � U(x i , yi , z i)

Sample Problem 12-11. In a certain system of parti-
cles confined to the xy plane, the force has the form

where k is a positive con-
stant. (A particle located at an arbitrary point (x, y) is pushed 
toward the diagonal line y � � x by this force. You can verify 
this by drawing the line y � � x and sketching the force compo-
nents Fx and Fy at various points in the xy plane.) (a) Show that
the work done by this force when a particle moves from the origin
(0, 0) to the point (a, b) is independent of path along the three
paths shown in Fig. 12-11. (b) Assuming this force to be conserva-
tive, find the corresponding potential energy U(x, y) of this sys-
tem. Take the reference point to be x0 � 0, y0 � 0 and assume
U(0, 0) � 0.

Solution (a) The work done along path 1 can be found by break-
ing the path into two parts: path 1a from x � 0 to x � a along the
x axis, and path 1b vertically from point (a, 0) to point (a, b). The
work along path 1a, where is

because y � 0 along path 1a. Along path 1b, and x �
a, so

The total work along path 1 is therefore

Along path 2 we proceed in similar fashion:

Along path 3, and

Let the variable r run along the straight line from (0, 0) to (a, b).
With y � r sin �, then dy � dr sin � (because � is constant along
the line). Also, x � r cos � and dx � dr cos �. We treat r as our
integration variable, with values in the range from 0 at the origin

W3 � �f

i
F
B

�d sB � �f

i
(�ky dx � kx dy).

d sB � dx î � dy ĵ,

W2b � �f

i
F
B

�d sB � �x�a

x�0
(�ky) dx � (�kb)�a

0
dx � �kab.

W2a � �f

i
F
B

�d sB � �y�b

y�0
(�kx) dy � 0

W1 � W1a � W1b � �kab.

W1b � �f

i
F
B

�d sB � �y�b

y�0
(�kx) dy � (�ka)�b

0
dy � �kab.

d sB � dy ĵ

W1a � �f

i
F
B

�d sB � �xf
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Fx dx � �x�a

x�0
(�ky) dx � 0

d sB � dx î,

F
B

(x, y) � Fx î � Fy ĵ � �ky î � kx ĵ,
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FIGURE 12-10. A particle moves along a path from i to f. A
conservative force acts on the particle.F

B

FIGURE 12-11. Sample Problem 12-11. Three different
paths are used to evaluate the work done in moving a particle from
the origin (0, 0) to the point (a, b).

*The partial derivative means we take the derivative of U(x, y, z)
with respect to x as if y and z were constant. Similarly, means we
differentiate with respect to y as if x and z were constant.
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to d � (a2 � b2)1/2 at the point (a, b). The integral for W3 then be-
comes

With sin � � b/d and cos � � a/d, this becomes W3 � � kab.
Thus W1 � W2 � W3 . This does not prove that is conservative
(we would need to evaluate all such paths to make that conclusion),
but it certainly leads us to suspect the might be conservative.
(b) The potential energy can be found from Eq. 12-24, which we
have in effect already evaluated in finding the work done along
path 3. The only difference is that we must integrate to the arbi-

F
B

F
B

� �2k sin � cos ��d

0
r dr � �kd 2 sin � cos �.

W3 � �d

0
[�k(r sin �)(dr cos �) � k(r cos �)(dr sin �)]

trary point (x, y) instead of to (a, b). We simply relabel point (a, b)
as point (x, y) and thus

where we have taken U(0, 0) � 0. You should be able to show that
we can apply Eq. 12-26 to this potential energy function and ob-
tain the force 

If we change the force slightly to then
the methods of part (a) show that this force is not conservative
when k1 � k2 . (See Exercise 33.) Even when k1 � � k2 , the force
is still nonconservative. Such a force has important applications to
the magnetic focusing of electrically charged particles, but it can-
not be represented by a potential energy function, because it is not
conservative.

F
B

� �k 1y î � k 2 x ĵ,
F
B

(x, y).

�U � U(x, y) � U(0, 0) � �W � kxy,
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MULTIPLE CHOICE

12-1 Conservative Forces
1. Which of the following forces is not conservative?

(A) (B)
(C) (D)

2. Which of the following forces is conservative?
(A) (B)
(C) (D)

3. Two conservative forces, and act on an object. What is
the relationship between

and

(The circle on the integral symbol means that the integral is to
be evaluated around a closed path.)

(A) (B)
(C) (D)

12-2 Potential Energy
4. Which of the following can never be negative?

(A) Mass (B) Time (C) Work
(D) Potential energy (E) Kinetic energy

There may be more than one correct answer.

12-3 Conservation of Mechanical Energy
5. Two blocks are at the top of an inclined ramp. Block A slides

down the ramp without friction; block B falls vertically with-
out friction at the same instant.
(a) Which block reaches the bottom first?

(A) Block A (B) Block B
(C) They arrive at the same time.
(D) There is not enough information to answer the ques-

tion.

(b) Which block reaches the bottom with the larger speed?

(A) Block A (B) Block B
(C) They arrive with the same speed.

W� � W�W� � W� � 0
W� � W� � 0W�  W�
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� yx î � xy ĵF
B

� y î � x ĵ
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� yx î � xy ĵF
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� y î � x ĵ

F
B

� 3x2 î � 4y2 ĵF
B

� 3y î � 4x ĵ
F
B

� 3x î � 4y ĵF
B

� 3î � 4ĵ

(D) There is not enough information to answer the ques-
tion.

(c) Which block experiences the larger acceleration?

(A) Block A (B) Block B
(C) They experience the same acceleration.
(D) There is not enough information to answer the ques-

tion.

12-4 Energy Conservation in Rotational Motion
6. Three rolling objects are moving at the same speed on a level

horizontal surface. The objects are a solid cylinder, a solid
sphere, and a hollow sphere. All have the same mass and ra-
dius. The three objects then roll up an incline. Assuming each
rolls without slipping, which will

(a) roll to the highest vertical point above the level surface?

(A) The solid cylinder (B) The solid sphere
(C) The hollow sphere
(D) They will all roll to the same height.

(b) roll the farthest distance as measured along the incline?
(A) The solid cylinder (B) The solid sphere
(C) The hollow sphere
(D) They will all roll the same distance.

7. Three rolling objects are moving at the same speed on a level
surface. The objects are all solid spheres: sphere A has radius
r and mass m, sphere B has radius 2r and mass m; sphere C
has radius r and mass 2m. The three objects then roll up an
incline. Assuming each rolls without slipping, which will
(a) roll to the highest vertical point (as measured by the
change in the location of the center of mass)?

(A) Sphere A (B) Sphere B (C) Sphere C
(D) They will all roll to the same height.

(b) roll the farthest distance as measured along the incline?

(A) Sphere A (B) Sphere B (C) Sphere C
(D) They will all roll the same distance.

8. A cylinder and a block are at the top of an inclined ramp. The
cylinder rolls down the ramp without slipping; the block falls
vertically without friction at the same instant.
(a) Which object reaches the bottom first?



(A) The cylinder (B) The block
(C) They arrive at the same time.
(D) There is not enough information to answer the ques-
tion.

(b) Which object reaches the bottom with the larger speed?

(A) The cylinder (B) The block
(C) They arrive with the same speed.
(D) There is not enough information to answer the ques-
tion.

(c) Which object experiences the larger acceleration?

(A) Cylinder A (B) Block B
(C) They experience the same acceleration.
(D) There is not enough information to answer the ques-
tion.

9. A solid sphere of mass m and radius r is projected horizon-
tally out of a cannon without spinning with an initial speed
v0 . The sphere immediately lands on a level surface, where it
skips a few times but eventually begins to roll without slip-
ping.
(a) To find the final speed of the sphere, one must apply

(A) conservation of energy.
(B) conservation of linear momentum.

(C) conservation of angular momentum.
(D) at least two of the previous principles.

(b) The final speed for the sphere depends on

(A) the radius.
(B) the mass.
(C) both the mass and the radius.
(D) neither the mass nor the radius.

(See also Exercise 27.)

12-5 One-Dimensional Conservative Systems:
The Complete Solution
10. A particle with total energy E moves in one dimension in a re-

gion where the potential energy is U(x).

(a) The speed of the particle is zero where

(A) U(x) � E. (B) U(x) � 0.
(C) dU(x)/dx � 0.
(D) d 2U(x)/dx2 � 0.

(b) The acceleration of the particle is zero where

(A) U(x) � E. (B) U(x) � 0.
(C) dU(x)/dx � 0.
(D) d 2U(x)/dx2 � 0.

12-6 Three-Dimensional Conservative Systems
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FIGURE 12-12. Question 12.

QUESTIONS

1. Consider the one-dimensional force where f (x) is
a function of x only. Is it possible to determine whether this is
a conservative force without any additional information? If
so, is it conservative?

2. Consider the two-dimensional force 
where f (x, y) and g(x, y) are both functions of x and y only. Is
it possible to determine whether this is a conservative force
without any additional information? If so, is it conservative?
What if f (x, y) � f (x) and g(x, y) � g(y)?

3. A ball is thrown up into the air; at the highest point the po-
tential energy U is a maximum. Is the derivative of U zero at
the highest point? If so, what does this say about the force on
the ball at the highest point? If not, then how is U a maxi-
mum?

4. Mountain roads rarely go straight up the slope but wind up
gradually. Explain why.

5. Taking into account how the potential energy of a system of
two identical molecules is related to the separation of their
centers, explain why a liquid that is spread out in a thin layer
has more potential energy than the same mass of liquid in the
shape of a sphere.

6. Pole vaulting was transformed when the wooden pole was re-
placed by the fiberglass pole. Explain why.

7. You drop an object and observe that it bounces to one and
one-half times its original height. What conclusions can you
draw?

8. An earthquake can release enough energy to devastate a city.
Where does this energy reside an instant before the earth-
quake takes place?

9. The total mechanical energy of a certain isolated system of
particles remains constant. If the individual kinetic energies

F
B

� f (x, y)î � g(x, y)ĵ,

F
B

� f (x) î, of the particles are also constant, then what can be concluded
about the forces that act in this system?

10. In Sample Problem 12-4 (see Fig. 12-6) we concluded that
the speed of the roller coaster at the bottom does not depend
at all on the shape of the track. Would this still be true if fric-
tion were present?

11. Explain, using work and energy ideas, how a child pumps a
swing up to large amplitudes from a rest position. (See “How
to Make a Swing Go,” by R. V. Hesheth, Physics Education,
July 1975, p. 367.)

12. Two disks are connected by a stiff spring. Can you press the
upper disk down enough so that when it is released it will
spring back and raise the lower disk off the table (see Fig. 12-
12)? Can mechanical energy be conserved in such a case?

13. Discuss the words “energy conservation” as used (a) in this
chapter and (b) in connection with an “energy crisis” (for ex-
ample, turning off lights). How do these two usages differ?

14. Can the translational kinetic energy of a system change into
rotational kinetic energy of the system in the absence of ex-
ternal forces? If so, give an example; if not, explain why not.

15. A bowling ball that originally is not spinning is thrown down
a bowling lane; by the time the ball strikes the pins it is



rolling without slipping. Is the total mechanical energy con-
served?

16. Give physical examples of unstable equilibrium, neutral equi-
librium, and stable equilibrium.

17. A marble can be balanced on the edge of a bowl so that with a
small push it could either (1) roll into the bowl and oscillate

back and forth inside it or (2) roll off the bowl, land on the
floor, and break. Is this balanced position a point of stable or
unstable equilibrium?

18. Is it possible to have an equilibrium point that is both unstable
and stable?
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FIGURE 12-13. Exercise 7.

FIGURE 12-14. Exercise 9.

FIGURE 12-15. Exercise 10.

EXERCISES

12-1 Conservative Forces

12-2 Potential Energy
1. In one dimension, the magnitude of the gravitational force of

attraction between a particle of mass m1 and one of mass m2 is
given by

where G is a constant and x is the distance between the parti-
cles. (a) What is the potential energy function U(x)? Assume
that as (b) How much work is required to
increase the separation of the particles from x � x1 to x �
x1 � d?

2. Show that W � d for d �� x1 in Exercise 1. Where have you
seen this before?

3. A particle moves along the x axis under the influence of a
conservative force that is described by

,

where � and � are constants. Find the potential energy func-
tion U(x).

12-3 Conservation of Mechanical Energy
4. Each minute, 73,800 m3 of water passes over a waterfall

96.3 m high. Assuming that 58.0% of the kinetic energy
gained by the water in falling is converted to electrical energy
by a hydroelectric generator, calculate the power output of the
generator. (The density of water is 1000 kg/m3.)

5. To disable ballistic missiles during the early boost phase of
their flight, an “electromagnetic rail gun,” to be carried in
low-orbit Earth satellites, has been proposed. The gun might
fire a 2.38-kg maneuverable projectile at 10.0 km/s. The ki-
netic energy carried by the projectile is sufficient on impact to
disable a missile even if it carries no explosive. (A weapon of
this kind is a “kinetic energy” weapon.) The projectile is ac-
celerated to muzzle speed by electromagnetic forces. Suppose
instead that we wish to fire the projectile using a spring (a
“spring” weapon). What must the force constant be in order to
achieve the desired speed after compressing the spring
1.47 m?

6. A 220-lb man jumps out a window into a fire net 36 ft below.
The net stretches 4.4 ft before bringing him to rest and toss-
ing him back into the air. What is the potential energy of the
stretched net?

7. A very small ice cube is released from the edge of a hemi-
spherical frictionless bowl whose radius is 23.6 cm; see Fig.
12-13. How fast is the cube moving at the bottom of the
bowl?

F
B

� ��xe��x 2
î

x : �.U(x) : 0

Fx(x) � G
m 1m 2

x2 ,

8. A projectile with a mass of 2.40 kg is fired from a cliff 125 m
high with an initial velocity of 150 m/s, directed 41.0° above
the horizontal. What are (a) the kinetic energy of the projec-
tile just after firing and (b) its potential energy? (c) Find the
speed of the projectile just before it strikes the ground. Which
answers depend on the mass of the projectile? Ignore air drag.

9. A frictionless roller-coaster car starts at point A in Fig. 12-14
with speed v0 . What will be the speed of the car (a) at point B,
(b) at point C, and (c) at point D? Assume that the car can be
considered a particle and that it always remains on the track.

23.6 cm

A

h h

h/2

B

C

D

v0

10. Figure 12-15 shows the force as a function of stretch or com-
pression for the spring in a cork gun. The spring is compressed
by 5.50 cm and used to propel a cork of mass 3.80 g from the
gun. (a) What is the speed of the cork if it is released as the
spring passes through its relaxed position? (b) Suppose now
that the cork sticks to the spring, causing the spring to extend
1.50 cm beyond its unstretched length before separation occurs.
What is the speed of the cork at the time of release in this case?

Stretch (cm)

F
or

ce
 (

N
)

2
–0.2

–0.4

0.4

0.2

4
–4 –2



11. Figure 12-16 shows a 7.94-kg stone resting on a spring. The
spring is compressed 10.2 cm by the stone. (a) Calculate the
force constant of the spring. (b) The stone is pushed down an
additional 28.6 cm and released. How much potential energy
is stored in the spring just before the stone is released? (c)
How high above this new (lowest) position will the stone rise?

force constant is 20.8 N/cm, is compressed 18.7 cm, after
which the block is released. How far up the incline will the
block go before coming to rest? Measure the final position of
the block with respect to its position just before being released.
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FIGURE 12-16. Exercise 11.

FIGURE 12-17. Exercise 14.

FIGURE 12-18. Exercise 15.

FIGURE 12-19. Exercise 18.

FIGURE 12-20. Exercise 19.

k

12. The area of the continental United States is about 8 �
106 km2 and the average elevation of its land surface is about
500 m. The average yearly rainfall is 75 cm. Two-thirds of
this rainwater returns to the atmosphere by evaporation, but
the rest eventually flows into the oceans. If all this water
could be used to generate electricity in hydroelectric power
plants, what average power output could be produced?

13. An object falls from rest from a height h. Determine the ki-
netic energy and the potential energy of the object as a func-
tion (a) of time and (b) of height. Graph the expressions and
show that their sum— the total mechanical energy— is con-
stant in each case.

14. In the 1996 Olympic Games, the Bulgarian high jumper 
Stefka Kostadinova set a women’s Olympic record for this
event with a jump of 2.05 m; see Fig. 12-17. Other things be-
ing equal, how high might she have jumped on the Moon,
where the surface gravity is only 1.67 m/s2? (Hint: The height
that “counts” is the vertical distance her center of gravity rose
after her feet left the ground. Assume that, at the instant her
feet lost contact, her center of gravity was 110 cm above
ground level. Assume also that, as she clears the bar, her cen-
ter of gravity is at the same height as the bar.)

15. A 1.93-kg block is placed against a compressed spring on a
frictionless 27.0° incline (see Fig. 12-18). The spring, whose

27°

1.93 kg

16. A pendulum is made by tying a 1.33-kg stone to a string
3.82 m long. The stone is projected perpendicular to the string,
away from the ground, with the string at an angle of 58.0° with
the vertical. It is observed to have a speed of 8.12 m/s when it
passes its lowest point. (a) What was the speed of the stone
when projected? (b) What is the largest angle with the vertical
that the string will reach during the stone’s motion? (c) Using
the lowest point of the swing as the zero of gravitational poten-
tial energy, calculate the total mechanical energy of the system.

17. One end of a vertical spring is fastened to the ceiling. A
weight is attached to the other end and slowly lowered to its
equilibrium position. Show that the loss of gravitational po-
tential energy of the weight equals one-half the gain in spring
potential energy. (Why are these two quantities not equal?)

18. A 2.14-kg block is dropped from a height of 43.6 cm onto a
spring of force constant k � 18.6 N/cm, as shown in Fig. 12-
19. Find the maximum distance the spring will be compressed.

k

43.6 cm

19. Two children are playing a game in which they try to hit a
small box on the floor with a marble fired from a spring-loaded
gun that is mounted on a table. The target box is 2.20 m hori-
zontally from the edge of the table; see Fig. 12-20. Bobby com-
presses the spring 1.10 cm, but the marble falls 27.0 cm short.
How far should Rhoda compress the spring to score a hit?

2.20 m



20. Tarzan, who weighs 180 lb, swings from a cliff at the end of a
convenient 50-ft vine; see Fig. 12-21. From the top of the cliff
to the bottom of the swing, Tarzan would fall by 8.5 ft. The
vine has a breaking strength of 250 lb. Will the vine break?

equator of the shell, over a pulley, and is attached to a small
object that is otherwise free to fall under the influence of
gravity. What is the speed of the object after it has fallen a
distance h from rest?

24. A car is fitted with an energy-conserving flywheel, which in
operation is geared to the driveshaft so that it rotates at 237
rev/s when the car is traveling at 86.5 km/h. The total mass of
the car is 822 kg, the flywheel weighs 194 N, and it is a uni-
form disk 1.08 m in diameter. The car descends a 1500-m-
long, 5.00° slope, from rest, with the flywheel engaged and no
power supplied from the motor. Neglecting friction and the
rotational inertia of the wheels, find (a) the speed of the car at
the bottom of the slope, (b) the angular acceleration of the fly-
wheel at the bottom of the slope, and (c) the power being ab-
sorbed by the rotation of the flywheel at the bottom of the
slope.

25. A solid sphere of radius 4.72 cm rolls up an inclined plane of
inclination angle 34.0°. At the bottom of the incline the center
of mass of the sphere has a translational speed of 5.18 m/s.
(a) How far does the sphere travel up the plane? (b) How long
does it take to return to the bottom? (c) How many rotations
does the sphere make during the round trip?

26. A body is rolling horizontally without slipping with speed v.
It then rolls up a hill to a maximum height h. If h � 3v2/4g
what might the body be?

27. A solid sphere of mass m and radius r is projected horizon-
tally out of a cannon without spinning with an initial speed
v0 . The sphere immediately lands on a level surface, where it
skips a few times but eventually begins to roll without slip-
ping. Find the final speed of the sphere. (See Multiple-Choice
question 9.)

12-5 One-Dimensional Conservative Systems:
The Complete Solution
28. A particle moves along the x axis through a region in which

its potential energy U(x) varies as in Fig. 12-24. (a) Make a
quantitative plot of the force Fx(x) that acts on the particle, us-
ing the same x axis scale as in Fig. 12-24. (b) The particle has
a (constant) mechanical energy E of 4.0 J. Sketch a plot of its
kinetic energy K(x) directly on Fig. 12-24.
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FIGURE 12-21. Exercise 20.

FIGURE 12-22. Exercise 21.

FIGURE 12-23. Exercise 23.

FIGURE 12-24. Exercise 28.

21. Two pendulums each of length L are initially situated as in Fig.
12-22. The first pendulum is released from height d and strikes
the second. Assume that the collision is completely inelastic
and neglect the mass of the strings and any frictional effects.
How high does the center of mass rise after the collision?

m2

m1

d

L L

12-4 Energy Conservation in Rotational Motion
22. If R � 12.3 cm, M � 396 g, and m � 48.7 g in Sample Prob-

lem 9-10 (Fig. 9-26), find the speed of the block after it has
descended 54.0 cm starting from rest. Solve the problem us-
ing energy-conservation principles.

23. A uniform spherical shell rotates about a vertical axis on fric-
tionless bearings (Fig. 12-23). A light cord passes around the

M, R

I, r

m

5 61 432
x (m)

2

1

U
(x

) 
(J

)

0

3

4

29. A particle of mass 2.0 kg moves along the x axis through a re-
gion in which its potential energy U(x) varies as shown in 
Fig. 12-25. When the particle is at x � 2.0 m, its velocity is
� 2.0 m/s. (a) Calculate the force acting on the particle at this
position. (b) Between what limits does the motion take place?
(c) How fast is it moving when it is at x � 7.0 m?



12-6 Three-Dimensional Conservative Systems
30. Show that for the same initial speed v0 the speed v of a projec-

tile will be the same at all points at the same elevation, re-
gardless of the angle of projection. Ignore air drag.

31. The potential energy corresponding to a certain two-dimen-
sional force is given by (a) Derive Fx

and Fy and describe the vector force at each point in terms of
its coordinates x and y. (b) Derive Fr and F� and describe the
vector force at each point in terms of the polar coordinates r
and � of the point. (c) Can you think of a physical model of
such a force?

32. The potential energy of a three-dimensional force is given by

U(x, y, z) � (a) Derive Fx , Fy , and Fz and
then describe the vector force at each point in terms of its co-
ordinates x, y, and z. (b) Convert to spherical polar coordi-
nates and find Fr .

33. By integrating along the same three paths as Sample Problem
12-11, show that the force is nonconserv-
ative when k 1 � k 2 .

F
B

� �k 1y î � k 2x ĵ

�k/√x2 � y2 � z2.

U(x, y) � 1
2 k(x 2 � y2).
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FIGURE 12-25. Exercise 29.

FIGURE 12-26. Problem 2.

FIGURE 12-27. Problem 3.

FIGURE 12-28. Problem 4.

FIGURE 12-29. Problem 5.
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PROBLEMS

1. The force on a particle constrained to move along the z axis is
given by

where k and l are fixed constants. Assume that
(a) Find an exact expression for U(z)

when z  l. (b) Show that U(z) � 1/z2 for z  l.

2. A ball of mass m is attached to the end of a very light rod of
length L. The other end of the rod is pivoted so that the ball
can move in a vertical circle. The rod is pulled aside to the
horizontal and given a downward push as shown in Fig. 12-26
so that the rod swings down and just reaches the vertically up-
ward position. What initial speed was imparted to the ball?

U(z) : 0 as z : �.

Fz(z) �
k

(z � l )2 �
k

(z � l )2

4. A chain is held on a frictionless table with one-fourth of its
length hanging over the edge, as shown in Fig. 12-28. If the
chain has a length L and a mass m, how much work is re-
quired to pull the hanging part back on the table?

L

m

3. An ideal massless spring can be compressed 2.33 cm by a
force of 268 N. A block whose mass is m � 3.18 kg is re-
leased from rest at the top of the incline as shown in Fig. 12-
27, the angle of the incline being 32.0°. The block comes to
rest momentarily after it has compressed this spring by 
5.48 cm. (a) How far has the block moved down the incline at
this moment? (b) What is the speed of the block just as it
touches the spring?

d

m

k

5. A small block of mass m slides along the frictionless loop-
the-loop track shown in Fig. 12-29. (a) The block is released
from rest at point P. What is the net force acting on it at point

5R

P

R
Q



Q? (b) At what height above the bottom of the loop should the
block be released so that it is on the verge of losing contact
with the track at the top of the loop?

6. A block of mass m rests on a wedge of mass M, which, in
turn, rests on a horizontal table, as shown in Fig. 12-30. All
surfaces are frictionless. If the system starts at rest with point
P of the block a distance h above the table, find the speed of
the wedge the instant point P touches the table. 12. The particle m in Fig. 12-33 is moving in a vertical circle of

radius R inside a track. There is no friction. When m is at its
lowest position, its speed is v0 . (a) What is the minimum
value vm of v0 for which m will go completely around the cir-
cle without losing contact with the track? (b) Suppose v0 is
0.775vm . The particle will move up the track to some point P
at which it will lose contact with the track and travel along a
path shown roughly by the dashed line. Find the angular posi-
tion � of point P.
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FIGURE 12-30. Problem 6.

FIGURE 12-31. Problems 8 and 9.

FIGURE 12-32. Problem 11.

FIGURE 12-33. Problem 12.

FIGURE 12-34. Problem 13.

FIGURE 12-35. Problem 14.
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7. A 1.18-kg object is acted on by a net conservative force given
exactly by where A � � 3.00 N/m and B �
� 5.00 N/m2. (a) Find the potential energy of the system at 
x � 2.26 m. Assume that U(0) � 0. (b) The object has a
speed of 4.13 m/s in the negative x direction when it is at x �
4.91 m. Find its speed as it passes x � 1.77 m.

8. The string in Fig. 12-31 has a length L � 120 cm, and the
distance d to the fixed peg is 75.0 cm. When the ball is re-
leased from rest in the position shown, it will follow the arc
shown in the figure. How fast will it be going (a) when it
reaches the lowest point in its swing and (b) when it reaches
its highest point, after the string catches on the peg?

Fx � Ax � Bx2

L

d

r
P

9. In Fig. 12-31 show that, if the ball is to swing completely
around the fixed peg, then d  3L/5. (Hint: The ball must be
moving at the top of its swing; otherwise the string will col-
lapse.)

10. A block of mass m at the end of a string swings in a vertical
circle of radius R under the influence of gravity only. Find the
difference between the magnitudes of the tension in the string
at the top of the loop and at the bottom of the loop assuming
the block is always moving fast enough so that the string
never goes slack.

11. A boy is seated on the top of a hemispherical mound of ice
(Fig. 12-32). He is given a very small push and starts sliding
down the ice. Show that he leaves the ice at a point whose
height is 2R/3 if the ice is frictionless. (Hint: The normal
force vanishes as he leaves the ice.)

R

P

R

m

v0

13. A rigid body is made of three identical thin rods fastened to-
gether in the form of a letter H (Fig. 12-34). The body is free
to rotate about a horizontal axis that passes through one of the
legs of the H. The body is allowed to fall from rest from a po-
sition in which the plane of the H is horizontal. What is the
angular speed of the body when the plane of the H is vertical?

L
L

L

14. A small solid marble of mass m and radius r rolls without
slipping along the loop-the-loop track shown in Fig. 12-35,

h

R
Q



having been released from rest somewhere on the straight sec-
tion of track. (a) From what minimum height above the bot-
tom of the track must the marble be released in order that it
just stay on the track at the top of the loop? (The radius of the
loop-the-loop is R; assume R  r.) (b) If the marble is re-
leased from height 6R above the bottom of the track, what is
the horizontal component of the force acting on it at point Q?

15. A particle is projected horizontally along the interior of a fric-
tionless hemispherical bowl of radius r, which is kept at rest
(Fig. 12-36). We wish to find the initial speed v0 required for
the particle to just reach the top of the bowl. Find v0 as a func-
tion of �0 , the initial angular position of the particle.

the potential energy function U(r) for various positions of the
lighter atom. Describe the motion of this atom if (a) the total
mechanical energy is greater than zero, as at E1 , and (b) if it
is less than zero, as at E2 . For E1 � 1.0 � 10�19 J and r �
0.30 nm, find (c) the potential energy, (d ) the kinetic energy,
and (e) the force (magnitude and direction) acting on the
moving atom.

17. An alpha particle (helium nucleus) inside a large nucleus is
bound by a potential energy like that shown in Fig. 12-38. (a)
Construct a function of x that has this general shape, with a
minimum value U0 at x � 0 and a maximum value U1 at x �
x1 and x � � x1 . (b) Determine the force between the alpha
particle and the nucleus as a function of x. (c) Describe the
possible motions.
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FIGURE 12-36. Problem 15.

FIGURE 12-37. Problem 16.

FIGURE 12-38. Problem 17.
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16. Figure 12-37a shows an atom of mass m at a distance r from a
resting atom of mass M, where m �� M. Fig. 12-37b shows

0.1 0.40.30.2
r (nm)(b)

E1

E2U
(r

) 
(1

0–1
9 J

)

0
–3

–2

–1

0

1

2

3

(a)

r

m
M

U0

U1

x1–x1 O

U(x)

x

18. The so-called Yukawa potential energy

gives a fairly accurate description of the interaction between
nucleons (i.e., neutrons and protons, the constitutents of the
nucleus). The constant r0 is about 1.5 � 10�15 m and the con-
stant U0 is about 50 MeV. (a) Find the corresponding expres-
sion for the force of attraction. (b) To show the short range of
this force, compute the ratio of the force at r � 2r0 , 4r0 , and
10r0 to the force at r � r0 .

U(r) � �
r0

r
U0e�r /r0

COMPUTER PROBLEMS

1. A particle moves along the x axis under the influence of a
conservative force that is described by

where sign(x) is � 1 for x  0, � 1 for x � 0, and 0 when 
x � 0. Here F0 � 1 N and � � 1 m�2. Numerically create a
graph of the potential energy function U(x).

F
B

� �sign(x)F0 (1 � e��x2
) î

2. A 1.0-kg particle moves in a one-dimensional potential de-
scribed by U(x) � Ax4, where A � 1 J/m4. (a) The particle is
released from rest at x � 1 m; use an appropriate numerical
method to find the time it will take before the particle returns
to the starting point. (b) The particle is released from rest at 
x � 2 m; find the time it will take before the particle returns
to the starting point. (c) Prepare a graph of return time vs.



starting position for various starting values between x � 0.1 m
and x � 10 m. What is the functional form of this graph?

3. A 1.0-kg particle moves in a two-dimensional potential de-
scribed by U(x, y) � A(x4 � y4 � 2�x2y2), where A �
1.00 J/m4 and � is a dimensionless constant that can have any
value between 0 and 1. The particle starts from rest at x �

1.00 m, y � 2.00 m. (a) Numerically compute the trajectory
of the particle for � � 0. Plot the trajectory on an xy graph.
You might have to experiment with the length of time for
which the trajectory is plotted. (b) Repeat the process, except
use � � 1. Plot the trajectory, and compare with your answer
to (a). This is a classic example of chaotic motion.
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ENERGY 3:
CONSERVATION OF

ENERGY

The law of conservation of energy is one of the main

guiding principles of physics. In the storage, conversion, or transfer of energy in mechanical systems, the

total energy remains constant. So far we have studied energy conservation in mechanical systems in which

no external work is done on the system and in which only conservative forces act among the constituents. In

this chapter we consider systems of particles for which the energy can be changed by the work done by ex-

ternal forces, and we also consider nonconservative forces such as friction that might act among the ob-

jects within the system or between the system and its environment. These extensions of the law of conserva-

tion of energy lead us to introduce another form of energy, the internal energy.

Finally, we discuss a second method for changing the energy of a system—namely, the transfer of heat

through the system boundary. This leads us to develop a more general form of the law of conservation of

energy called the first law of thermodynamics.

13-1 WORK DONE ON A SYSTEM
BY EXTERNAL FORCES

In Section 12-3 we defined the total mechanical energy E of
an isolated system as the sum of its kinetic and potential
energies, K � U. The potential energy arises from the
forces that the objects within the system exert on one an-
other, and we assumed those forces to be conservative. In
such an isolated system, the total mechanical energy re-
mains constant.

In this chapter we extend this approach in several differ-
ent ways. We will consider systems in which: (1) external
forces can change the total mechanical energy; (2) energy
may be stored internally in the motions or interactions
among the constituent atoms or molecules; (3) nonconserv-
ative forces may act, in particular frictional forces; (4) the
energy can be changed through the transfer of heat. In each
case we will see how the concept of energy and the law of
conservation of energy can be broadened to include these
effects. These discussions will provide further evidence of

the importance and wide applicability of the law of conser-
vation of energy in physics.

We begin by discussing the effect of external forces that
may act on a system. In analyzing a problem, it is often
convenient to divide the physical situation into a system
and its environment. We imagine that we draw a boundary
around the portion of the situation that we define to be the
system; within that boundary there may be objects that ex-
ert conservative forces on one another, and we represent
those forces by their potential energies. The objects in the
environment may exert forces that can do external work
Wext on the system. Figure 13-1 represents this situation, in
which external forces exerted by objects in the system’s en-
vironment do work that can change the total mechanical en-
ergy K � U of the system.

We can think of the external work as providing a means
of transferring energy between the system and the environ-
ment. Positive external work done by the environment on
the system carries energy into the system, thereby increas-
ing its total energy; on the other hand, negative external
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work done by the environment on the system transfers en-
ergy out of the system, and thus decreases its total energy.

Energy is not created or destroyed by the external work;
the work merely represents a transfer of energy. For exam-
ple, if Wext � � 100 J, then as a result of the external work
100 J of energy is transferred from the environment to the
system. In the process, the system gains 100 J of energy
and the environment loses 100 J of energy; the total energy
of system � environment remains unchanged.

To analyze this case in more detail, we consider a sys-
tem composed of several objects that can be treated as par-
ticles. The work done on any particle in the system may be
due to forces exerted by objects inside the system as well as
by objects outside of the system. We let internal work refer
to the work on the particle due to forces exerted by other
objects within the system, and we continue to assume that
these forces are conservative. These internal forces might
include gravitational forces, elastic spring forces, or electri-
cal forces. The external work on the particle is done by
forces exerted by objects that are outside the system bound-
ary. The net work on a particular particle n is then the total
of the internal and external contributions: Wnet, n �
Wint, n � Wext, n, and the work–energy theorem (Eq. 11-24)
reminds us that the net work on particle n is equal to the
change in its kinetic energy:

We now consider the entire system of many particles.
The total change in kinetic energy of the system is simply
the sum of the changes in kinetic energy of all the n indi-
vidual particles: and similarly the total exter-
nal work done on the system is the sum of the work done
on all the n particles by the external forces:

If the internal forces are conservative, as
we have assumed, each can be represented by a potential
energy function; the total change in potential energy of the
system can be found from Eq. 12-4 based on the total inter-
nal work done by the particles of the system on one an-
other: From 

for particle n, we sum over all particles to obtain the
work for the entire system 
or, making the above substitutions,
We can then write

(13-1)�K � �U � Wext .

�K � ��U � Wext .
� Wnet, n � � Wint, n � �Wext, n ,

Wext, n

Wnet, n � Wint, n ��U � �Wint � �� Wint, n .

Wext � � Wext, n .

�K � � �Kn ,

Wnet, n � �Kn .

Equation 13-1 is the formal statement of the situation repre-
sented in Fig. 13-1: the external work can change the total
mechanical energy K � U of the system within the bound-
ary. Note again that positive external work increases the en-
ergy: if then Note also that Eq.
12-12 is a special case of Eq. 13-1 that ap-
plies to isolated systems (those for which 

As an example of how we apply these results, let us
consider a block of mass m attached to a vertical spring
near the Earth’s surface. We release the block, and as it falls
the gravitational force acts downward and the spring force
acts upward. We are free to choose our system boundary in
any convenient way, as illustrated in Fig. 13-2.

1. System � block (Fig. 13-2a). Here the spring force
and gravity are external forces; there are no internal forces
within the system and thus no potential energy. In this case
the kinetic energy K of the block changes due to the net ef-
fect of the external work done by the spring and gravity,
and Eq. 13-1 becomes 

2. System � block � spring (Fig. 13-2b). Now the
spring is within the system, so we include its interaction
with the block through their potential energy. Gravity re-
mains an external force, so 

3. System � block � Earth (Fig. 13-2c). Here gravity
is an internal force, but the spring force is external, and so
Eq. 13-1 becomes 

4. System � block � spring � Earth (Fig. 13-2d).
Now there are no external forces that do work on the sys-
tem; the spring force and gravity are both internal to the
system, so because Wext � 0.

If our goal were, for example, to calculate the change in
speed of the block after falling a given distance, all of these
methods would give the same result, and the choice is often
just a matter of convenience.

�K � �Uspring � �Ugrav � 0,

�K � �Ugrav � Wspring .

�K � �Uspring � Wgrav .

�K � Wspring � Wgrav .

Wext � 0).
(�K � �U � 0)

�(K � U ) � 0.Wext � 0,
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External work Wext

FIGURE 13-1. A system enclosed within the boundary has
kinetic energy K and potential energy U (representing only the in-
teractions among components within the system). The environ-
ment can exchange energy with the system through the perfor-
mance of external work Wext . The arrow indicates that energy is
being transferred into the system due to the external work; energy
and work are scalars and have no associated direction.

FIGURE 13-2. A block, a spring, and the Earth can be
grouped in different ways to define the system and its environment.
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13-2 INTERNAL ENERGY IN A
SYSTEM OF PARTICLES

Consider an ice skater as she pushes herself away from a
railing at the edge of a skating rink. She starts at rest
against the railing, and by extending her arms to push away
from the railing she begins to slide across the ice.

We will try to analyze this example by applying the law
of conservation of mechanical energy in the form of Eq.
13-1 We define our system to include
only the skater. Then clearly �U � 0 (there are no other
objects within the system to exert forces on the skater).
There are three external forces exerted on the skater by
bodies in the environment. Clearly gravity and the normal
force do no work on the skater. The third force on the skater
is that exerted on her by the railing (which is equal and op-
posite to the force exerted on the railing by the skater); this
force likewise does no work, because the point of applica-
tion of the force does not move. Thus for all three external
forces, Wext � 0. Applying Eq. 13-1, we would then con-
clude that �K � 0, in disagreement with our observation
that she accelerates away from the railing. Clearly some-
thing is missing from this calculation. Where does the
skater’s kinetic energy come from?

When a rule (such as Eq. 13-1) that is valid and useful
in some cases appears to disagree with experiment in oth-
ers, physicists usually try to broaden the rule rather than
discard it. In its broadened form, the rule can often be made
to apply both to the previous valid examples as well as the
new examples that seem to deviate from the old rule. How
can we broaden the law of conservation of mechanical en-
ergy so it can be applied to the example of the skater?

The conservation of mechanical energy was derived
from Newton’s laws expressed in a form that holds only for
single particles. In the examples to which we applied this
principle in Chapter 12, each body in the system could be
treated as a particle. However, the skater is clearly not be-
having as a particle— recall that particle behavior requires
that all parts of a body move in the same way. As she ex-
tends her arm in pushing off from the railing, all parts of her
body do not move in the same way, and thus she cannot be
treated as a particle. The skater must be treated as a system
of particles, which has an internal structure; within this sys-
tem, something is taking place that could not take place in a
single particle that, by definition, has no internal structure.

We can extend our concept of energy by postulating that
a system consisting of many particles can store energy in a
form that we call internal energy Eint . We then extend Eq.
13-1 to include this new form of energy:

(13-2)

What is the nature of this internal energy? Often we can
represent the internal energy as the sum of the kinetic en-
ergy associated with the random motions of the atoms or
molecules (which usually determines the temperature of the
object) and the potential energy associated with the forces
between the atoms or molecules: InEint � Kint � Uint .

�K � �U � �Eint � Wext .

(�K � �U � Wext).

most cases we shall not need to consider the forms that the
internal energy may take; we simply regard it as another
form of energy in the system.

For example, consider a small metal ball falling through
a viscous liquid such as oil. Suppose the ball has reached its
terminal speed, so that �K � 0 as we observe it over a cer-
tain distance. We take the ball, the container of oil, and the
Earth as our system. Then the only potential energy associ-
ated with forces acting between the objects in our system is
that of gravity, �Ugrav . No external forces act on the sys-
tem, so Wext � 0. In this case Eq. 13-2 becomes

or As the ball falls
and �Ugrav decreases, the internal energy increases; that is,
the loss in gravitational potential energy of the system is
balanced by an increase in the internal energy, so that the
total energy of the system remains constant. (The increase
in the internal energy, which is associated with changes in
the motion or configurations of the atoms of the ball and
the oil, might be observed as a slight increase in the tem-
perature of the oil or the ball.)

A similar explanation helps us to understand why a ten-
nis ball released from rest does not quite bounce to the
same height from which it was released. During the instant
it is in contact with the ground, the flexing and deformation
of the ball increase its internal energy at the expense of its
kinetic energy; as a result, its speed just after the bounce is
smaller than its speed just before the bounce, and so it can-
not return to its original height.

You can see from this discussion how we have retained
the original concept of conservation of energy. In these ex-
amples, energy was transformed from mechanical energy
K � U to internal energy Eint , but the total amount of en-
ergy remained constant.

Let us review the meanings of the terms in Eq. 13-2:
• K is the kinetic energy associated with the overall

(translational or rotational) motion of the bodies in the sys-
tem, measured from any convenient inertial reference
frame, typically one fixed in the laboratory.

• U is the potential energy associated with conservative
forces that objects within the system exert on one another.

• Eint is the internal energy of the system, including the
microscopic kinetic and potential energies of the atoms or
molecules of the system.

• Wext is the work done by external forces that act on
the system.

Now we can see how the inclusion of the internal en-
ergy term allows us to analyze the motion of the skater and
preserve the notion of conservation of energy. From Eq. 13-
2, still with Wext � 0 and �U � 0, we now have

(13-3)

For the skater, �K is positive and therefore, according to
Eq. 13-3, �Eint is negative. The increase in her kinetic en-
ergy comes about at the cost of a decrease in her supply of
internal energy, which her body obtains from the food she
eats. Note that, even though the point of application of the
force exerted on the skater by the railing does not move as

�Eint � ��K.

�Eint � ��Ugrav .�Ugrav � �Eint � 0,
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she pushes away, the center of mass of the skater does
move as she bends and then straightens her arms. This type
of example will require us to examine the motion of the
center of mass of a system of particles from the energy
point of view; we will do so in Section 13-5.

Sample Problem 13-1. A Chicago Cubs fan drops a
baseball (of mass m � 0.143 kg) from the top of the Sears Tower
at a height h of 443 m The ball reaches a terminal
speed v of 42 m/s (see Section 4-4). Find the change in the inter-
nal energy of the ball and the surrounding air during the fall to the
surface of the Earth.

Solution Let us regard the system as the baseball, the air through
which it falls, and the Earth. No external force acts on this system;
the gravitational pull of the Earth on the ball and the drag force of
the air on the ball are internal forces in the system as we have de-
fined it. The change in potential energy of the system is

The change in kinetic energy during the fall is

(We are neglecting the motion of the Earth under the gravitational
attraction of the ball.) According to Eq. 13-2, we can write conser-
vation of energy as because there is no
external work done on the system. Solving for the internal energy,
we obtain

This internal energy increase might be observed as a temperature
rise of the ball and the surrounding air, or perhaps as kinetic en-
ergy of the air left in the wake of the falling ball. Using Eq. 13-2
alone, we cannot allocate the energy among these forms. To do so,
we must isolate the ball or the air as our system and calculate the
work done by the external forces that act. This procedure, which
requires knowledge of the drag force between the ball and the air
as well as the details of the ball’s motion, is too complex for us to
solve here.

13-3 FRICTIONAL WORK

Consider a block sliding across a horizontal table and even-
tually coming to rest due to the frictional force exerted by
the table. If we define the system to consist of the block and
the tabletop, then no external force does any work on the
system (the frictional force is an internal force in this sys-
tem). Applying Eq. 13-2 to this system, we obtain

(13-4)

As the kinetic energy of the block decreases, there is a cor-
responding increase in the internal energy of the system of
block � table. This increase in internal energy might be
observed as a slight increase in the temperature of the sur-
faces of the block and the table. It is a common observation

�K � �Eint, block� table � 0.

�Eint � ��U � �K � � (�621 J) � 126 J � 495 J.

�U � �K � �Eint � 0,

�K � Kf � Ki � 1
2 mv2 � 0 � 1

2 (0.143 kg)(42 m/s)2 � 126 J.

� � (0.143 kg)(9.80 m/s2)(443 m) � �621 J.
�U � Uf � Ui � 0 � mgh

(� 1450 ft).

that friction between two surfaces causes an increase in the
temperature, as for example in the case of holding a piece
of metal against a grinding wheel or applying the brakes to
an automobile or a bicycle (in which case both the brakes
and the sliding tires can become warmer). You can even ob-
serve this effect by rubbing your hands together.

In Section 5-3, we showed that we could analyze me-
chanical systems with friction using a constant frictional
force f equal in magnitude to the coefficient of friction
times the normal force. We might be tempted to write the
magnitude of the work done by the frictional force as the
product of the frictional force times the displacement
through which the object moves: However, as
we shall see, this gives an incorrect value for the frictional
work. This error comes about because the basic equation
for work done in one dimension by a constant force, W �
Fs, is correct only if the object can be treated as a particle.
Objects subject to sliding friction cannot be treated as parti-
cles from the standpoint of work and energy.

Let us consider an example in which a block is pulled
across a horizontal table at constant velocity by a string that
exerts a tension force of constant magnitude T (Fig. 13-3).
If the velocity is constant, then the acceleration is zero and
so the net force must be zero. The magnitude of the fric-
tional force f must then equal the magnitude of the tension
T. Let us try to apply Eq. 13-2 to the system consisting only
of the block. We assumed that the block moves with con-
stant velocity, and so �K � 0. No potential energy exists
within the system, and the external work on the block is
due to two forces: the tension does positive work WT and
friction does negative work Wf . In this case Eq. 13-2 gives

(13-5)

In contrast to Eq. 13-4, here the quantity �Eint refers only
to the block.

Suppose the block moves through a displacement s.
Then WT � Ts (a positive quantity); substituting this result
into Eq. 13-5 and solving for the frictional work, we find

(13-6)

where the last result comes about because T � f, as we de-
duced because the net force on the block is zero. Equation
13-6 clearly shows that Wf is not equal to � fs. In fact, be-
cause �Eint, block is a positive quantity, we must have

Work represents energy that is transported across
the system boundary; according to Eq. 13-6, the magnitude
� Wf � � fs.

Wf � �Ts � �Eint, block � � fs � �Eint, block ,

�Eint, block � WT � Wf .

� Wf � � fs.
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FIGURE 13-3. A block is pulled along a horizontal surface
by a string that exerts a tension T
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of the energy that is transported out of the system (the
block) due to frictional work is less than fs, because some
of the energy remains inside the system as internal energy.
Without a more detailed model of the frictional force, we
cannot carry Eq. 13-6 any further in finding the frictional
work, because we don’t know how much of the energy re-
mains in the block as internal energy.

Choosing the table as our system does not improve the
situation. Applying Eq. 13-2 to the table alone gives

where ) represents the fric-
tional work done on the table by the block, a positive quan-
tity. Positive work done by friction carries energy across the
system boundary to increase the internal energy of the
table, but again we cannot calculate the amount of this en-
ergy transfer.

Let us instead apply conservation of energy to the sys-
tem consisting of block � table. Now the frictional force is
an internal force, and it does not enter into the equations.
The only external force is the tension, which does work WT

on the system. We can then write Eq. 13-2 as

(13-7)

The work done by the tension force is ultimately responsi-
ble for increasing the internal energy (and thus the tempera-
ture) of the block and the table. Without a very detailed
(and necessarily complicated) model of the properties of
the two surfaces, we cannot separate the total internal en-
ergy increase into �Eint, block and �Eint, table ; Eq. 13-7 gives
only their sum. Also lacking precise knowledge of the inter-
nal energy increase of the block, we cannot use Eq. 13-6 to
find the frictional work.

How is it possible that a frictional force f, acting on an
object that moves through a displacement s, does work that
is in magnitude smaller than fs? The frictional force acting
on a sliding surface is not a single force acting at a single
point, but is instead due to many smaller forces acting at
various surface points (see Fig. 5-14 for an indication of the
microscopic character of the frictional force). This force
can be regarded as the net effect of the forces at many mi-
croscopic welds, some occurring where protrusions from
the table bond to the surface of the block, and others occur-
ring where protrusions from the block encounter the surface
of the table. As the block moves through a displacement s,
only those welds at the moving surface contribute to the
work; for the welds at the surface of the table, the displace-
ment is zero and so their contribution to the work is zero.
Thus a portion of the frictional force does not contribute to
the work, and in this model it is not surprising that

*
This model of the frictional force is greatly oversimpli-

fied, and in fact it is hopelessly complicated to try to ac-

� Wf � � fs.

�Eint, block� table � WT .

(��WfW	f�Eint, table � W	f ,

count for all of the microscopic welds that are responsible
for the frictional force. However, consistent with the energy
transfer by work represented in Fig. 13-1, we can describe
the frictional process as one in which, depending on how
we define the system boundary, energy can be transferred
between the objects within a system or between the system
and its environment, in either case changing the internal en-
ergy of the objects. Without a microscopic model we do not
know how the total gain in internal energy is shared among
the objects in the system, and we therefore cannot calculate
the work done by the frictional force that is responsible for
this transformation.

Sample Problem 13-2. A 4.5-kg block is thrust up a
30° incline with an initial speed v of 5.0 m/s. It is found to travel a
distance d � 1.5 m up the plane as its speed gradually deceases to
zero. (a) How much internal energy does the system of block �
plane � Earth gain in this process due to friction? (b) The block
then slides from rest back down the plane. Assuming friction to
produce the same gain in internal energy during the downward
journey, what is the speed of the block as it passes through its ini-
tial location?

Solution (a) Choosing the system of block � plane � Earth, we
note that the potential energy change of the block and the Earth is
included in the term �U in Eq. 13-2. As we did in Sample Prob-
lem 13-1, we ignore the kinetic energy changes of the Earth in our
calculation and consider only the change in kinetic energy of the
block. The change in potential energy of the system is

The change in kinetic energy of the block as it moves from the
bottom to the top of the plane is

The change in mechanical energy of the system is

The system loses 23 J of mechanical energy. Since Wext � 0 for
this system (friction and gravity act within this system, as we have
defined it), Eq. 13-2 gives �Eint � � (�U � �K ) � � 23 J. The
system gains an internal energy of 23 J, which might be revealed
as a slight warming of the block and the plane.
(b) Now we consider the round-trip journey as the block moves
first up the plane and then back down to its starting point. In part
(a) we found the gain in internal energy for the uphill journey to
be 23 J. If the downhill portion produces the same gain in internal
energy, the change in internal energy for the entire trip up and
back down is 46 J. Since the block returns to its starting location,
�U � 0. Thus for the round trip �K � � �Eint � � 46 J. With
�K � Kf � Ki , we have

The corresponding speed is

vf � √ 2Kf

m
� √ 2(10 J)

4.5 kg
� 2.1 m/s.

Kf � �K � Ki � �46 J � 56 J � 10 J.

�U � �K � 33 J � (�56 J) � �23 J.

�K � Kf � Ki � 0 � 1
2 mv2 � � 1

2 (4.5 kg)(5.0 m/s)2 � �56 J.

� (4.5 kg)(9.8 m/s2)(1.5 m)(sin 30
) � 33 J.
�U � Uf � Ui � mgh � 0 � mgd sin 30
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*For a more detailed explanation of this model, see “Work and Heat
Transfer in the Presence of Sliding Friction,” by B. A. Sherwood and
W. H. Bernard, American Journal of Physics, November 1984, p. 1001.



13-4 CONSERVATION OF
ENERGY IN A SYSTEM OF
PARTICLES

Equation 13-2 is our first step in progressing from a law of
conservation of mechanical energy in an isolated system
(Eq. 12-15) to a more general law of the conservation of
energy. The left-hand side of Eq. 13-2 represents the
change in the total energy of our system, including kinetic,
potential, and internal terms. As we encounter new forms
that the energy can take (for example, electrostatic energy
or magnetic energy) we can add corresponding terms to the
left side of this equation. The right-hand side indicates one
way that we can change the energy of the system: we can
do external work on it. (Later in this chapter we will find
that there is a second way that we can change the energy of
a system—by heat transfer.)

Our statement of the law of conservation of energy in
Section 12-3 was restricted to isolated systems (those on
which external forces do no work). It also included only
mechanical energy K � U. Our previous statement of the
law required that the total mechanical energy remain con-
stant, although we permitted the energy within the system
to change forms (kinetic to potential or potential to kinetic).

We can broaden this statement to include the cases we
have so far considered in this chapter by including other
forms of energy (internal energy, for example), by relaxing
the restriction that only conservative forces may act within
the system (friction may act between objects in the system),
and by allowing external work to be done on the system:

Energy may change from one form to another within a
system. In an isolated system the total energy remains
constant; the total energy of a system can be changed by
transferring energy in the form of external work.

The conservation of energy is, like conservation of linear
and angular momentum, a law of nature that has not been
contradicted by any laboratory experiment or observation.

We are free to define the system in any convenient way.
Once we have drawn the system boundary, we consider all
forms of energy that the objects within the system may
have: kinetic, potential, or internal. Interactions between
the objects within the system can change energy from one
form to another, but they cannot change the total energy of
the system. To determine whether the total energy changes,
we look for objects in the environment of the system that
can do work on it.

We illustrate these principles by considering the
block– spring combination shown in Fig. 13-4. We assume
that the spring is initially compressed and then released,
and that a frictional force acts between the block and the
table. It is instructive to define the system in several differ-
ent ways, as suggested by the different system boundaries
drawn in Fig. 13-4. We show energy transfers across the
system boundaries as arrows that represent the work. The

direction of any arrow indicates only the direction of the
corresponding energy transfer (into the system or out of
the system); work, being a scalar, has no direction in space.

1. System � block. We first define our system to be the
block itself (Fig. 13-4a). The figure shows two transfers of
energy through the system boundary: the positive work Ws

done on the block by the spring and the negative work Wf

done on the block by the frictional force exerted by the
table. For this system, conservation of energy (Eq. 13-2)
can be written as

(13-8)

Here �U � 0, because the system within the boundary
experiences no change in potential energy. The spring is not
part of the system, so the spring potential energy is not con-
sidered; instead, we account for the spring as a part of the
environment through the work Ws it does on the system.
The weight and the normal force also act on the system, but
they do no work so they play no part in this energy analy-
sis. Note the directions of the arrows indicating the energy
transfers in Fig. 13-4a; Eq. 13-8 indicates that positive
work done by the spring tends to increase the energy of the
block, and negative frictional work done by the horizontal
surface tends to decrease the energy of the block.

2. System � block � spring. Now let us consider the
system to consist of the block and the spring (Fig. 13-4b).
The system now has potential energy �U � � Ws (associ-
ated with the spring force). The frictional force is the only
external force that does work on the system. For this defini-
tion of the system, we write conservation of energy as

(13-9)�U � �K � �Eint � Wf .

�K � �Eint � Ws � Wf .
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FIGURE 13-4. A block acted on by a spring slides on a table
that exerts a frictional force. (a) The system consists only of the
block; the spring force and friction do work on the system, chang-
ing its energy. (b) The system now consists of the block and
spring, and it has both kinetic and potential energy. (c) The system
now includes the table. The frictional force is now an internal
force and contributes to the internal energy of the system.



The energy of the system is now U � K � Eint ; trans-
fers of energy between the spring and the block do not
change the energy of the system in this case. The spring
force is an internal force that can transfer energy within the
system from one form to another but it cannot
change the total energy of the system. Negative (frictional)
work by the horizontal surface can decrease the energy of
the system.

3. System � block � spring � table. Finally, let us de-
fine the system to include the table (Fig. 13-4c). Now there
is no external force responsible for energy transfers that
penetrate the system boundary. With this definition of the
system, the external work is zero and thus

(13-10)

The frictional force is now an internal force, along with
the spring force. Energy can be transferred within the sys-
tem from the mechanical energy U � K of the block �
spring to the internal energy of the block � table, but the
total energy (mechanical � internal) remains constant.
Suppose, for example, that we release the block from rest
with the spring compressed. The block slides back and
forth across the table and eventually comes to rest. In this
case �K � 0 (because Kf � Ki � 0), and so �Eint �
� �U. The potential energy that was originally stored in the
system becomes the internal energy of the system; the mi-
nus sign indicates that the internal energy increases as the
potential energy decreases. From this analysis, we cannot
determine the separate changes in internal energy of the
block and the table, only the total change for the system as
a whole.

Our analysis of Fig. 13-4 suggests that we are free to
define the system to which we apply the law of conserva-
tion of energy in any way that we wish. Depending on the
problem at hand, some choices will be more useful than
others. Once we have made a choice we must stay with it,
and we must always be clear as to whether the forces that
may act and the work that may be done are internal or ex-
ternal to the system.

The frictional force is an example of a nonconservative,
dissipative force. In a closed mechanical system such as that
illustrated here, mechanical energy is transformed into inter-
nal energy by the frictional force. Mechanical energy is not
conserved in this case, the loss in mechanical energy being
compensated by an equivalent gain in the internal energy.

13-5 CENTER-OF-MASS ENERGY

Figure 13-5 shows the ice skater we discussed earlier in this
chapter. The skater exerts a force on the railing, and by New-
ton’s third law the railing exerts an equal and opposite force
on the skater. This force, which is labeled in the figure,
accelerates the skater from rest to some final velocity 

Let us review what conservation of energy can teach us
about this process. Taking the skater as the system, we note

vBcm .
F
B

ext

�U � �K � �Eint � 0.

(U 4 K),

that in applying Eq. 13-2 there is no change in potential en-
ergy of our system; that is, �U � 0. Also, there is no exter-
nal work done on the system (assuming the ice to be fric-
tionless). Even though the railing exerts a force on the
skater, it does no work because the point of application of
the force does not move. That is, in reference to Fig. 13-1,
there is no transfer of energy through the system boundary.
With Wext � 0, Eq. 13-2 gives

(13-11)

For a skater of mass M, starting from rest, the change in ki-
netic energy is (a positive quantity), so �Eint must be
negative. That is, the kinetic energy the skater gains in
pushing away from the railing is derived from a decrease in
her store of internal energy and not from any external
source.

The conservation-of-energy equation in such a complex
system provides only limited information. For instance, the
external force does not appear (because it does no work),
and so the equation does not permit us to determine the
force.

A further complication is that the skater cannot be
treated as a particle. For a body to behave like a particle, all
parts of it must move in the same way. That is certainly not
true of the skater—her arm and body move in different
ways.

In Section 7-3, we learned how to analyze a complex
system containing many particles. In particular, Eq. 7-16

relates the net external force acting on a
system to the motion of its center of mass. For simplicity,
we assume that all forces and motions are in the x direction,
and we will not explicitly write the x subscript on the x
components of the force, velocity, and acceleration vectors.
With only one external force acting, Eq. 7-16 becomes
Fext � Macm , in which Fext is the x component of the net ex-
ternal force. Suppose the center of mass moves through the
small displacement dxcm . Multiplying on both sides by this
quantity, we obtain

where we have replaced acm by dvcm/dt and dxcm by vcmdt.
This gives

(13-12)Fextdx cm � Mvcmdvcm .

Fextdx cm � Macmdx cm � M
dvcm

dt
vcmdt,

(� F
B

ext � M aB cm)

1
2Mv2

cm

�K � �Eint � 0.
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(a)

Fext vcm

Ice

(b)

FIGURE 13-5. (a) A skater pushing away from a railing. The
railing exerts a force on the skater. (b) After pushing off, the
skater is moving with velocity vBcm .
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Let the center of mass move from xi to xf as the velocity
changes from vcm,i to vcm,f . Integrating Eq. 13-12 between
these limits, we find

(13-13)

The terms on the right-hand side of this equation represent
the kinetic energy Kcm of a particle of mass M moving with
the velocity of the center of mass. With this identification,
we obtain

(13-14)

In many cases of interest to us, the external force is con-
stant and can be taken out of the integral. The remaining in-
tegral gives the net displacement scm of the
center of mass. In this case Eq. 13-14 becomes

(13-15)

Equations 13-14 and 13-15 resemble the work –energy
theorem for a particle. However, it is important to note that
although the quantities on the left-hand sides of these
equations look like work (and in fact have the dimension
of work), they are not work in the sense we have defined it,
because dxcm and scm do not represent the displacement of
the point of application of the external force.* (In Fig. 13-
5, for example, the displacement of the point of application
of the external force was zero, but scm is certainly not
zero.)

Equations 13-14 and 13-15 are not expressions of con-
servation of energy. Translational kinetic energy (of the
center-of-mass motion) is the only kind of energy that ap-
pears in these expressions. Other energy terms, including
the real work, rotational kinetic energy, potential energy,
and internal energy, do not appear.

We will refer to Eq. 13-14 or 13-15 as the center-of-
mass (COM) energy equation and Eq. 13-2 as the conserva-
tion-of-energy (COE) equation. Note that the COM equa-
tion is derived directly from Newton’s second law and,
although it is a useful formulation, it is not a new and inde-
pendent principle.

The following examples illustrate the differing and of-
ten complementary information that these two equations
give.

1. A sliding block. A block slides across a horizontal
table with initial velocity and is brought to rest by thevBcm

Fext scm � �Kcm .

(� x f � x i)

�xf

xi

Fext dx cm � Kcm, f � Kcm, i � �Kcm .

�xf

xi

Fextdx cm � �vcm, f

vcm, i

Mvcmdvcm � 1
2 Mv2

cm, f � 1
2 Mv2

cm, i .

frictional force f exerted on it by the tabletop. The center of
mass of the block moves through a displacement scm . Our
two energy equations give:

COM (Eq. 13-15): (13-16a)

COE (Eq. 13-2): (13-16b)

The COM equation looks like the work–energy theorem
but it is not, because, as we have seen, fscm is not the mag-
nitude of the frictional work. In this and the following ex-
amples, we write COE (Eq. 13-2) as 

so that the COM and COE equations look
more similar.

2. Pushing a meter stick. Figure 13-6 shows the result
of pushing on a meter stick (initially at rest) that is free to
slide on a frictionless horizontal surface. A constant exter-
nal force is applied at the 25-cm mark. The point of appli-
cation of the force moves through the distance s as the cen-
ter of mass of the stick moves through the distance scm

(which is less than s), and the stick acquires a center-of-
mass velocity vcm and a rotational velocity �. Our two en-
ergy equations give

COM: (13-17a)

COE: (13-17b)

The COE equation includes the actual work done
by the external force.

3. A ball rolling down an incline. Figure 13-7 illustrates
this situation. We consider rolling without slipping (Section
9-7), so that the instantaneous point of contact between the
ball and the incline (where the frictional force acts) does
not move. The ball starts from rest and acquires a center-of-
mass velocity at the bottom of the incline.

COM: (13-18a)

COE: (13-18b)Mgscm sin � � 1
2 Mv2

cm � 1
2 I�2.

(Mg sin � � f )scm � 1
2 Mv2

cm ,

vBcm

(� Fexts)

Fexts � 1
2 Mv 2

cm � 1
2 I�2.

Fextscm � 1
2 Mv 2

cm ,

�U � �Eint ,
Wext � �K �

Wf � � 1
2 Mv2

cm � �Eint, block .

� fscm � � 1
2 Mv2

cm ,
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*Some authors use the terms pseudowork or center-of-mass work to de-
scribe the left side of Eq. 13-14. We prefer not to introduce a term closely
related to work to describe a quantity that is unrelated to the accepted
meaning of work. For a comprehensive summary of work and energy in a
system of particles, see “Developing the Energy Concepts in Introductory
Physics,” by A. B. Arons, The Physics Teacher, October 1989, p. 506.

FIGURE 13-6. A meter stick is pushed across a frictionless
horizontal surface by a force The force is applied at the 25-
cm mark. The stick rotates as well as translates and does not move
as a particle. The force is applied through a displacement s that is
greater than the displacement scm of the center of mass.
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We have applied the COE equation to the system consisting
only of the ball, so gravity appears as external work. The
net external force on the ball in the COM equation is
Mg sin � � f. Note that f appears in the COM equation
even though it does no work (and therefore does not appear
in the COE equation). Note also that if the ball were slip-
ping as it rolled, the COM equation would be unchanged,
but the COE equation would include frictional work on the
left and internal energy on the right.

4. A jumping athlete. Figure 13-8 shows an athlete first
crouching and then leaping by straightening her legs. For
simplicity we assume that in straightening her legs she
pushes down on the ground with a constant force F in addi-
tion to her weight, so the ground exerts a constant normal
force N � F � Mg. At the instant her foot leaves the
ground, her center of mass has risen by scm and she has a
velocity vcm .

COM: (13-19a)

COE: (13-19b)�Mgscm � 1
2Mv2

cm � �Eint .

(N � Mg) scm � 1
2Mv2

cm ,

The COE equation is applied to the system consisting only
of the jumper. The normal force does no work, so it does
not appear in the COE equation. The term �Eint accounts
for all changes of internal energy in the jumper’s body. It
might include, for example, a negative term due to the
stored energy in her body that she must consume to jump
and a positive term from the increase in temperature in the
working muscles of her legs. Subtracting the COE and
COM equations, we see immediately that the net �Eint

must be negative.

Sample Problem 13-3. A 50-kg ice skater pushes
away from a railing as shown in Fig. 13-5, exerting a constant
force F � 55 N as she does so. Her center of mass moves through
a distance scm � 32 cm until she loses contact with the railing. (a)
What is the speed of the center of mass of the skater as she breaks
away from the railing? (b) What is the change in the stored inter-
nal energy of the skater during this process? Neglect friction be-
tween the ice and the skates.

Solution (a) Once again we take the skater as our system. From
Newton’s third law, the railing exerts on the skater a force of 55 N
to the right in Fig. 13-5. This force is the only external force that
we need to consider. From the COM equation (Eq. 13-15), we
have

or

(b) Now we apply the COE equation (Eq. 13-2), which, under the
conditions that apply in this problem 
takes the form

This amount of internal energy could be replenished by digesting
about teaspoon of diet soda.

The analysis of this Sample Problem could be applied un-
changed to the problem of a car accelerating from rest. The exter-
nal force in the case—exerted by the road on the bottoms of the
tires—does no work because its point of application does not
move; recall that the bottom of a wheel that is rolling without slip-
ping is instantaneously at rest. The change in the internal energy
of this system is reflected in the consumption of gasoline.

Sample Problem 13-4. Skater Joan (mass 50 kg)
pushes herself away from her partner Jim (mass 72 kg), who is
standing with his back against a wall, as in Fig. 13-9a. Both have
their arms bent initially. Each pushes against the other as they
straighten their arms, until finally they lose contact (Fig. 13-9b).
Jim exerts a constant force Fext � 55 N through a distance of s �
32 cm; this is the distance his hands actually move as he straight-
ens his arms. At the instant contact is broken, Joan’s center of
mass has moved through a total distance of scm � 58 cm as a re-
sult of the extension of both pairs of arms. (a) What is Joan’s
speed after contact is broken? (b) What is the change in the stored
internal energy of each skater during this process? Neglect friction
between the ice and the skater.

1
4

�Eint � ��K � � 1
2 Mv2

cm � � 1
2 (50 kg)(0.84 m/s)2 � �17.6 J.

(�U � 0 and Wext � 0),

vcm � √ 2Fext scm

M
� √ 2(55 N)(0.32 m)

50 kg
� 0.84 m/s.

Fext scm � 1
2 Mv2

cm � 0
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FIGURE 13-7. A ball rolling down an incline. A frictional
force acts at the instantaneous point of contact between the ball
and the plane. After the ball has moved a distance scm , its velocity
is and it is also rotating with angular speed �.vBcm

f
B

FIGURE 13-8. (a) A jumper in a crouching position. She
pushes on the floor with force as she straightens her legs to
jump. (b) At the instant her feet leave the floor, she is moving up-
ward with velocity and her center of mass C has risen through
a distance scm .

vBcm
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Solution (a) We take Joan as our system. Note that in this case
there is external work done on the system, so there is a transfer of
energy through the system boundary. From the COM equation
(Eq. 13-15) we have

so

(b) Applying the COE equation (Eq. 13-2) to Joan, we have

where is the external work done on Joan by Jim.
Solving for Joan’s internal energy change and substituting

from part (a), we obtain

Applying the COE equation to a system consisting only of Jim,
we obtain

In Jim’s case, Wext is negative. The external force on him is sup-
plied by Joan as a reaction force to him pushing on her. Since the
force on Jim and the displacement of his hands are in opposite di-
rections, the external work done on Jim is negative. In this case
(see Fig. 13-1), Wext takes energy out of the system. For Jim,

Thus, to attain her final kinetic energy, Joan must supply 14.3 J of
energy from her internal resources. Jim supplies 17.6 J by doing
work on Joan, which, of course, comes from his internal store. If
Jim were not present and Joan had attained the same kinetic en-
ergy by pushing directly on the wall, she would need to supply the
full 31.9 J of her kinetic energy from her in-
ternal energy store.

Sample Problem 13-5. A 5.2-kg block is projected
over a horizontal surface with an initial horizontal velocity of
0.65 m/s before coming to rest. The coefficient of kinetic friction
between the block and the surface is 0.12. (a) What is the change

(�14.3 J � 17.6 J)

�Eint, Jim � Wext � �(55 N)(0.32 m) � �17.6 J.

�Eint, Jim � Wext .

� �17.6 J � 31.9 J � �14.3 J.
� (55 N)(0.32 m) � (55 N)(0.58 m)

�Eint, Joan � Wext � �K � Fext s � Fext scm

�K � �Kcm � Fext scm

Wext (� Fext s)

�K � �Eint, Joan � Wext ,

vcm � √ 2 �Kcm

M
� √ 2(31.9 J)

50 kg
� 1.13 m/s.

�Kcm � 1
2 Mv2

cm � Fext scm � (55 N)(0.58 m) � 31.9 J,

in the internal energy of the system of block � surface? (b) How
far does the block travel in coming to rest?

Solution (a) In applying energy conservation, the most useful
system to consider is the block plus the portion of the horizontal
surface over which it slides. In using Eq. 13-2, we have �U � 0,
because no change of potential energy occurs on the horizontal
surface. Furthermore, Wext � 0, because no external force acts on
the system. (We have defined the system so that friction is an in-
ternal force.) Thus Eq. 13-2 becomes

in which �K (Kf � Ki) is negative, corresponding to a loss in ki-
netic energy. Substituting values, we have

This increase in internal energy of the system reveals itself as a
small increase in the temperature of the block and of the horizon-
tal surface. It is difficult to calculate how this energy is shared be-
tween the block and the surface; it is largely to avoid this diffi-
culty that we have chosen to analyze the combined system of the
block plus the surface, rather than the block alone.
(b) In this case we choose the block alone as our system. We can-
not treat the block as a particle, because energy transfers (specifi-
cally, internal energy) other than translational kinetic energy are
involved. Applying Eq. 13-15, we have

where Fext is the external frictional force taking the di-
rection of motion to be positive) that acts on the block and scm is
the displacement of the center of mass of the block. Thus we have

or

This analysis of this sample problem could be applied un-
changed to the problem of a car braking to rest from a given initial
speed. In this case, the increase in internal energy would reveal it-
self as a rise in temperature of the brake disks and brake pads.

13-6 REACTIONS AND DECAYS

The law of conservation of energy finds wide use in analyz-
ing a great variety of reaction and decay processes, on a
scale that ranges from atoms and molecules (chemical reac-
tions, molecular formation) to nuclei (fusion reactions, ra-
dioactive decays) to elementary particles (high-energy colli-
sions). In Chapter 6 we analyzed collisions using the law of
conservation of linear momentum, and we classified the
processes into elastic, inelastic, and explosive. In Chapter
11 we showed how we could understand those classifica-
tions in terms of the change in kinetic energy of the
processes. Now we can discuss these processes from the
perspective of a more general law of conservation of energy.

With this more general law, we can even analyze
processes in which the identities of the objects change dur-

scm �
v2

cm

2g
�

(0.65 m/s)2

2(0.12)(9.8 m/s2)
� 0.18 m.

(�Mg)(scm) � 0 � 1
2 Mv2

cm

(��Mg,

Fext scm � �Kcm ,

�Eint � � (0 � 1
2 Mv2

cm) � � 1
2 (5.2 kg)(0.65 m/s)2 � �1.1 J.

�Eint � ��K
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vcm

(b)(a)

FIGURE 13-9. Sample Problem 13-4. (a) A skater (Joan) and
her partner (Jim) are preparing to exert forces on one another by
extending their arms. Jim has his back against a wall and so does
not move. (b) After the arms have been extended, Joan is moving
with speed vcm .



ing the collision. For example, consider the nuclear reaction
represented by in which a neutron is
incident on a nucleus of lithium with a mass number (total
number of protons � neutrons) of 6, containing three pro-
tons and three neutrons. After the reaction, the particles ob-
served are a nucleus of helium with a mass number of 4
(two protons and two neutrons) and a nucleus of hydrogen
with a mass number of 3 (one proton and two neutrons).
Note that the total number of neutrons is unchanged in the
reaction, being equal to 4 both before and after the reaction.
Similarly the total number of protons remains constant at 3.
However, the protons and neutrons are rearranged during
the reaction. Presumably, in these rearranged groupings the
neutrons and protons have different interactions with one
another and thus the internal energies of the groupings may
change during the reaction.

Let us analyze the reaction A � B : C � D by choos-
ing our system boundary so that it includes objects A and B
before the collision when they are far enough apart that
there is no interaction between them and thus no initial po-
tential energy. (A and B may each have an internal poten-
tial energy, but there is no potential energy due to any inter-
action of A with B.) The total initial kinetic energy of this
system is Ki � KA � KB , and A and B have total internal
energy Eint, i . During the reaction, there may be internal re-
arrangements so that the final particles C and D are differ-
ent from A and B, but the final particles C � D remain
within the system boundary and constitute the system after
the reaction. The total internal energy of the system consist-
ing of C and D after the reaction is Eint,f , and the total final
kinetic energy of this system after the reaction is Kf �
KC � KD ; as in the initial state we assume there is no inter-
action between the colliding objects and therefore no final
potential energy. Figure 13-10 presents a schematic view of
the collision. We assume that no object in the environment
does work on the objects during the collision, so Wext � 0.

Applying our general law of conservation of energy, Eq.
13-2, to this process, and assuming Ui � Uf � 0, we have

(13-20)
or

(13-21)Kf � Ki � � (Eint, f � Eint, i) � Eint, i � Eint, f .

�K � �Eint � 0

n � 6Li : 4He � 3H,
If Eint, i � Eint, f , the final kinetic energy is greater than the
initial kinetic energy, which means that some internal en-
ergy of the colliding objects has been changed into kinetic
energy. Such reactions are called exoergic (energy-releasing)
and are analogous to the collisions we have been calling
“explosive.” If Eint, i � Eint, f , the final kinetic energy is 
less than the initial kinetic energy, because some of the 
original kinetic energy is converted into internal energy of
the final particles. These reactions are called endoergic
(energy-absorbing) and are analogous to the collisions we
have been calling “inelastic.” For elastic collisions, in which
the kinetic energy does not change, we must have Eint, i �
Eint, f . In practice this means that the identities of the collid-
ing bodies do not change and that there are no internal re-
groupings of their constituents (that is, A � B : A � B).

Decay Processes
Some nuclei and elementary particles are unstable and
spontaneously decay to two or more other particles. For ex-
ample, in the alpha decay a uranium
nucleus of mass number 235 breaks apart into a nucleus of
thorium of mass number 231 and a nucleus of helium of
mass number 4. The 4He nucleus is commonly known as an
alpha particle.

We assume that the original decaying particle A is at
rest (Ki � 0); its momentum is zero, so conservation of
momentum requires that the total momentum of the pro-
duct particles must be zero. If the decay occurs into only
two particles B and C, their linear momenta must be equal
and opposite: so or

which gives

(13-22)

The final kinetic energy Kf , which is just the total ki-
netic energy of B and C, comes from the transformation of
internal energy. With Ui � 0 and Uf � 0 as before, Eq. 13-
21 applies but with Ki � 0 and Kf � KB � KC :

(13-23)

Clearly, since Kf must be positive, the decay
will occur only if Eint, i � Eint, f . In this case, internal energy
is converted into kinetic energy.

If the decay occurs into two particles, then Eq. 13-22
and 13-23 together can be solved for the final kinetic ener-
gies KB and KC . If the decay occurs into three or more final
particles B � C � D � � � � , then the equations for conser-
vation of energy and conservation of momentum do not
provide enough information to determine unique values for
the kinetic energies of the product particles. In this case, the
particles can have a continuous range of kinetic energies
whose sum is determined by Eq. 13-23.

Sample Problem 13-6. The fusion reaction 
known as the d-d reaction (d stands for deuteron,

which is another name for 2H, the hydrogen nucleus with a mass

2H : 1H � 3H,

2H �

(� KB � KC)

KB � KC � Eint, i � Eint, f .

KB/KC � mC/mB .

mB(2KB) � mC(2KC),
m 2

Bv2
B � m 2

Cv2
CmBvB � �mCvC ,

235U : 231Th � 4He,
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FIGURE 13-10. The energy changes in the reaction
A � B : C � D.
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number of 2), is important for the release of nuclear energy. The
internal energy of the initial particles is greater than that of the fi-
nal particles by 4.03 MeV. In one particular reaction, a beam of 2H
of kinetic energy 1.50 MeV is incident on a target of 2H at rest.
The proton (1H) is observed with a kinetic energy of 3.39 MeV in
a direction at an angle of 90° with respect to the original beam of
2H (Fig. 13-11). Find the energy and direction of the outgoing 3H.
The masses are: 1H–1.01 u, 2H–2.01 u, 3H–3.02 u.

Solution From Eq. 13-21, the final kinetic energy is

The final kinetic energy is shared between the 1H and 3H nuclei.
With Kf � K1 � K3 , we have

From conservation of momentum, the momentum of the original
2H must equal the x component of the momentum of the 3H, or

Using we obtain

or � � 46.9°.

Sample Problem 13-7. In the alpha-decay process
the naturally occurring radioactive element

radium decays to the gaseous element radon. The internal energy
decreases by 4.87 MeV in the decay. If the radium decays from rest,
find the kinetic energies of the radon and the alpha particle (4He).
The masses are: 226Ra–226.0 u, 222Rn–222.0 u, 4He–4.00 u.

Solution From Eq. 13-22, the ratio of the kinetic energies of the
product particles is

The total kinetic energy of the products is given by Eq. 13-23:

Solving these two equations simultaneously gives KRn � 0.086
MeV and KHe � 4.78 MeV. Note that the lighter alpha particle
takes about 98% of the energy, consistent with conservation of
momentum.

Kf � KRn � KHe � Eint, i � Eint, f � 4.87 MeV.

KRn

KHe
�

mHe

mRn
�

4.00 u

222.0 u
� 0.0180.

226Ra : 222Rn � 4He,

cos � �
m 2v2

m 3v3
� √ m 2K2

m 3K3
� √ (2.01 u)(1.50 MeV)

(3.02 u)(2.14 MeV)
� 0.683

v � √2K/mm 2v2 � m 3v3 cos �.

K3 � Kf � K1 � 5.53 MeV � 3.39 MeV � 2.14 MeV.

Kf � ��Eint � Ki � 4.03 MeV � 1.50 MeV � 5.53 MeV.

13-7 ENERGY TRANSFER BY
HEAT

Figure 13-1 showed that the energy of a system can be
changed by work that is done on the system by its environ-
ment. Work is one of two ways that a system can exchange
energy with its environment. The other way is through heat.

As we discussed in Section 11-1, the physics definition
of “work” may differ from its common usage in the English
language. The same is true for heat. Our physics definition
of heat is as follows:

Heat is a means of energy transfer between a system
and its environment because of the temperature differ-
ence between them.

We represent heat transfer by the symbol Q. Because heat is
a form of energy, it is measured in energy units ( joules, for
example).

There are two important similarities between work and
heat:

1. Heat is energy in transit. Just as we never speak of
“the amount of work contained in a body,” so we likewise
never say “the amount of heat contained in a body.” When
heat is transferred from system A to system B, it is not correct
to say that “system A has less heat.” Instead, we should say
that “system A has less energy” because some of its energy
was lost due to the heat transferred to system B. Similarly, if
system A does work on system B, we never say that “system
A has less work,” but instead that “system A has less energy”
because it used some of its energy to do work on system B.

2. The amount of heat transferred in a process depends
on how the process is done. We have seen examples of
cases in which a system can be taken from a given initial
state to a given final state through several different paths. If
a nonconservative force (such as friction) acts on the sys-
tem, then the work done by that force will in general have
different values for different paths leading from the same
initial state to the same final state. (This in fact was one
way in which we defined nonconservative forces in Chapter
12.) In this respect, heat transfer resembles nonconservative
work, in that different amounts of heat transfer may be re-
quired to take the system along different paths connecting
the same initial state with the same final state.

Heat and Temperature
Often in colloquial usage we say “heat” when we mean
temperature or internal energy. When we “heat” a dish in an
oven to a certain temperature, we transfer energy by means
of heat (with the dish surrounded by an environment at a
higher temperature) until the dish reaches the desired tem-
perature. When we take the hot dish out of the oven and
place it on the table, the dish will transfer energy to its
cooler environment as heat.

As with work and heat, we must give a precise defini-
tion of temperature in order for it to be a useful physical
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FIGURE 13-11. Sample Problem 13-6. The incident 2H
strikes a stationary 2H target, producing the outgoing 1H and 3H
particles.



quantity. We delay a formal definition until Chapter 21, but
we will give a brief summary here so that we can discuss
temperature in connection with mechanical systems.

A change in the temperature of a body is accompanied
by a change in the average translational kinetic energy of its
atoms or molecules. If we increase the internal energy of a
body, its constituent atoms or molecules might acquire this
energy in several different forms— for example, increased
translational kinetic energy, increased rotational kinetic en-
ergy, or an altered configuration (such as increasing their
average spacing)— so that their potential energy increases.
Only the portion that results in increased translational ki-
netic energy will produce a temperature increase.

Another way of looking at temperature is as an indicator
of whether two bodies placed into contact will exchange
energy as heat. If their temperatures are the same, no heat
will be exchanged between them. Note that if one body is
much larger than the other, it may have a much greater total
internal energy, but it will transfer none of that energy to
the second body if their temperatures are the same. One
way of transferring heat is through collisions between the
atoms or molecules of the two bodies at the surface where
they are in contact. When two bodies at different tempera-
tures are placed in contact, collisions at the contact surface
between atoms or molecules of the bodies will in general
transfer energy from the body whose particles have on the
average more translational kinetic energy (the higher-
temperature body) to the body whose particles have on
the average less translational kinetic energy (the lower-
temperature body).

Be careful to distinguish between the concepts of heat
and temperature. Heat is always energy in transit between
bodies; temperature is a measure of the internal energy of a
single body. We can increase the temperature of a body
with no heat transfer to it (such as by doing work on it), and
we can transfer heat to a body from an environment at
higher temperature with no change in the temperature of
the body (for example, by melting solid ice at 0°C to liquid
water at 0°C).

The First Law of Thermodynamics
In our previous general expression for conservation of en-
ergy, Eq. 13-2, we omitted one method of energy trans-
fer—heat. Figure 13-12 shows a more complete view of
the energy transfers in a system. The energy inside our sys-
tem boundary can change due to either heat transferred to
or from the environment or work done by or on the environ-
ment. Including the heat, we can write Eq. 13-2 as

(13-24)

In Eq. 13-24, Etotal indicates all forms of energy contained
within the system boundary: kinetic, potential, internal, and
perhaps other forms. For convenience we have dropped the
subscript “ext” from W, but we still take it to mean the
work done on the system by its external environment. Our

�Etotal � Q � W.

sign convention for Q is similar to that for work: Q � 0
means that heat is transferred to a system and increases its
energy, while Q � 0 means that heat is transferred from the
system and decreases its energy.*

Equation 13-24 is the most general statement we can
make about conservation of energy in a system. In this form
it is commonly known as the first law of thermodynamics.
Later in this text we will consider more detailed application
of this law to a particular thermodynamic system: a gas en-
closed in a container. For now we consider how this law ap-
plies to some mechanical systems.

1. A block sliding on a horizontal surface. A block is
sliding on a flat horizontal table where a frictional force
acts. The block has an initial speed v and eventually comes
to rest. We first take our system to be the block. Equation
13-24 applied to the block gives

(13-25)

Here �Eint, block is the increase in
internal energy of the block (which is measured by its rise
in temperature), Wf is the (negative) frictional work done on
the block by the table, and Q is the (negative) heat trans-
ferred from the block. We assume that the heat transferred
to the air is negligible, and that the only heat transfer is
from the hot block to the cooler regions of the table with
which it comes into contact.

Now applying the first law of thermodynamics to the
system of block � table, we find

(13-26)�K � �Eint, block � �Eint, table � 0.

�K � Kf � Ki � 1
2 Mv2,

�K � �Eint, block � Wf � Q.
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FIGURE 13-12. The energy of a system can be changed in
two ways: by work done on or by the environment, and by heat
transferred to or from the environment. The sign conventions for
W and Q are indicated—work done on the system and heat trans-
ferred to the system both are taken to be positive and both increase
the energy of the system.

*It is important to note that W represents the external work done on the
system. You may occasionally see Eq. 13-24 written as in
which W represents the work done by the system on its external environ-
ment. Since the work done by system A on system B is the negative of the
work done by system B on system A, either form of the equation is correct.
We have chosen to write the equation in this form so that W always repre-
sents the work done on a system. Otherwise it would be necessary to de-
fine thermodynamic work as the negative of mechanical work. We prefer
to emphasize the connection between mechanics and thermodynamics by
choosing a consistent sign convention for work.

�E � Q � W,

System
energy

System
boundary
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Heat Q

Etotal

+

+
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Here the work does not appear, because it is internal to the
system. Likewise, Q does not appear, because the heat
transfer is also internal to this system (since we have ne-
glected heat loss to the surrounding air). Combining Eqs.
13-25 and 13-26, we obtain

(13-27)

Both Wf and Q are negative, so both terms on the right con-
tribute to increase the internal energy (temperature) of the
table; � Wf (a positive quantity) represents the frictional
work done on the table by the block, and � Q (a positive
quantity) represents the heat transferred to the table by the
block.

2. Joule’s experiment. In the 19th century it was not at
first realized that heat is a form of energy. As a result, heat
was measured in units that differed from the standard en-
ergy units. Among the early units used for heat were the
calorie (cal) and the British thermal unit (Btu), which are
related to our SI energy units ( joules) according to

The common use for the word calorie today is based on the
energy content of food; this “calorie” is in actuality a kilo-
calorie (1 Cal � 1 kilocalorie � 1000 cal). The Btu is still
often found today as a measure of the ability of a heater or
an air conditioner to transfer energy as heat between a room
and its environment.

The calorie was originally defined as the amount of heat
Q that must be transferred to one gram of water to raise its
temperature from 14.5°C to 15.5°C, in the process increas-
ing its internal energy by �Eint . No external work is done
in this process, and therefore we can write Eq. 13-24 as

(13-28)

Joule’s experiment was designed to raise the temperature of
a quantity of water by doing work on it instead of transfer-
ring heat to it. His apparatus is shown in Fig. 13-13. The
falling weights turned a set of paddle wheels that stirred the
water, thus transforming the gravitational work Wg on the
weights into internal energy of the water. We take Joule’s

�Eint � Q.

1 cal � 4.186 J and 1 Btu � 1055 J.

�Eint, table � �Wf � Q.

entire apparatus as our system, allowing the weights to fall
a fixed distance and then stop, and we wait for the paddle
wheels to lose all their rotational kinetic energy to the wa-
ter. Assuming that no heat is transferred through the con-
tainer and no energy is dissipated in the pulleys, we can
write Eq. 13-24 as

(13-29)

For the same change in internal energy (corresponding to
the same temperature increase) as in Eq. 13-28, it was then
possible for Joule  to find the equivalence between a certain
quantity of work (measured—using modern units— in
joules) and the corresponding quantity of heat (measured in
calories). This relationship is known as the mechanical
equivalent of heat: 1 cal � 4.186 J. Today we measure
heat, like other forms of energy, in joules, and so this con-
version factor has lost the importance it had in Joule’s time.
Nevertheless, Joule’s experiment, done in 1850, provided a
direction in showing that heat, like work, could properly be
regarded as a means of transferring energy.

�Eint � Wg .
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FIGURE 13-13. Joule’s arrangement for measuring the me-
chanical equivalent of heat. The falling weights turn paddles that
stir the water in the container, thus raising its temperature.

MULTIPLE CHOICE

13-1 Work Done on a System by External Forces
1. A ball is dropped from the edge of a cliff. Which of the fol-

lowing statements is correct? (There may be more than one
correct answer!)

(A) Gravity does work on the ball as it falls.
(B) The gravitational potential energy of the ball decreases

as the ball falls.
(C) The gravitational potential energy of the Earth de-

creases as the ball falls.
(D) The gravitational potential energy of the system of ball

� Earth decreases as the ball falls.

2. Suppose �K � � 10 J for the block in the situation shown in
Fig. 13-2. Which of the following could correctly describe the
energy transfers in that situation?

(A) Wspring � � 5 J, Wgrav � � 15 J
(B) �Uspring � � 5 J, Wgrav � � 15 J
(C) Wspring � � 5 J, �Ugrav � � 15 J
(D) �Uspring � � 5 J, �Ugrav � � 15 J

3. A wooden block (mass 2.0 kg) is dropped from a high board
above a swimming pool and enters the water moving at a
speed of 10 m/s. The block descends to a depth of 3.0 m in
the water and comes instantaneously to rest before beginning



to rise again to the surface. What is the work done on the
block by the water during the 3-m descent?

(A) � 159 J (B) � 100 J
(C) � 59 J (D) � 41 J

13-2 Internal Energy in a System of Particles
4. A 2.0-kg ball is dropped from a height of 5.0 m. The ball

falls, hits the ground, and bounces back up to a height of
3.0 m. What can be said about �Eint, ball between the initial
and final state of the ball?

(A) �Eint, ball � 39.2 J (B) �Eint, ball � 39.2 J
(C) �Eint, ball � 39.2 J

5. This section is concerned with “missing energy” that can be
stored in an object as internal energy. Should there be a simi-
lar concern about “missing momentum” and “internal mo-
mentum”?

(A) Yes, but the effects will be much smaller because mo-
mentum is proportional to velocity whereas energy is
proportional to velocity squared.

(B) Yes, but the effects can be ignored because physicists
are only concerned with systems where momentum is
conserved.

(C) No, because momentum is a vector whereas energy is a
scalar.

(D) No, as long as “potential momentum” is not intro-
duced.

13-3 Frictional Work
6. A 10-cm cube of metal is fastened rigidly in place. A second,

identical cube of metal is pulled across the top of the first
cube at a constant speed by a constant 10 N force, as shown
in Fig. 13-14.
(a) The frictional force between the cubes

(A) is less than 10 N.
(B) is equal to 10 N.
(C) is greater than 10 N.
(D) cannot be determined without a detailed model of the

two surfaces.

(b) How is the change in internal energy of the moving top
cube, �Eint, moving , related to the change in internal energy of
the fixed cube �Eint, fixed ?

(A) �Eint, moving � �Eint, fixed

(B) �Eint, moving � �Eint, fixed

(C) �Eint, moving � �Eint, fixed

(D) There is no obvious relationship without a detailed de-
scription of the frictional force.

of friction on the block times the distance the block slides, the
calculated value of the bullet velocity will be

(A) lower than the actual value, because there will also be
a change in the internal energy of the block and sur-
face.

(B) higher than the actual value, because there will also be
a change in the internal energy of the block and sur-
face.

(C) correct, because errors caused by ignoring changes in
internal energies are cancelled by the error in the as-
sumption about the work done by friction.

(D) wrong, because friction invalidates conservation of
momentum as well.

13-4 Conservation of Energy in a System of Particles
8. (a) A block slides from rest down a wedge inclined at an an-

gle � with the horizontal. There is friction between the block
and the wedge. When the block reaches the bottom of the
wedge, its kinetic energy is 3 J, and gravity has done � 10 J
of work on the block. Which of the following describes the
energy transfers in this system?

(A) �Eint, block � � 7 J
(B) Frictional work on block by wedge � � 7 J
(C) Frictional work on wedge by block � � 7 J
(D) �Eint, block � � 7 J

(b) Suppose the wedge is free to slide on a frictionless hori-
zontal table (there is still friction between the block and the
wedge). The block is again released from rest and reaches the
bottom of the wedge with a kinetic energy K after gravity
does work Wg on the block. The masses of the block and the
wedge are known. From this information, is it possible to cal-
culate the speed of the wedge?

(A) Yes, by applying conservation of momentum in the
horizontal direction

(B) No, because we do not know how much mechanical
energy is lost due to friction

(C) No, because conservation of momentum does not ap-
ply when frictional forces act

(D) No, because the net external force on the system is not
zero

13-5 Center-of-Mass Energy
9. Two particles collide elastically. In the laboratory frame one

of the particles is originally at rest.

(a) In which frame is the total kinetic energy least?

(A) The laboratory frame
(B) The center-of-mass frame
(C) The kinetic energy is the same in the laboratory frame

and the center-of-mass frame.
(D) The question cannot be answered without more infor-

mation.

(b) In which frame is the magnitude of the total momentum
least?

(A) The laboratory frame
(B) The center-of-mass frame
(C) The momentum is the same in the laboratory frame

and the center-of-mass frame.
(D) The question cannot be answered without more infor-

mation.
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FIGURE 13-14. Multiple-choice question 6.

v = constant

10 N

7. A method for determining the speed of a bullet is to shoot it
into a block of wood and see how far the block slides on a
surface. (See Problem 3.) Assuming (incorrectly) that the
magnitude of the work done by friction is equal to the force



10. Is the rotational kinetic energy part of center-of-mass kinetic
energy or part of internal energy?

(A) It is definitely part of the center-of-mass kinetic en-
ergy.

(B) It is definitely part of the internal energy.
(C) It could be either, depending on how the system is de-

fined.
(D) It could be either, because you can always find an iner-

tial frame where the body is not rotating.
(E) It is part of neither the center-of-mass energy nor the

internal energy.

13-6 Reactions and Decays
11. Consider the decay in which A is initially

at rest. The masses of all the particles and energy �Eint re-
leased in the decay are known. It is desired to know the
speeds and directions of all three final particles. An experi-
ment determines the speed and direction of B. What is the
minimum amount of additional experimental data needed to
enable all remaining unknown variables to be calculated?

(A) No additional data are needed.
(B) Both the speed and the direction of C are needed.
(C) Either the speed or the direction of C is needed.
(D) The speeds of both C and D are needed.

A : B � C � D

12. The kinetic energy of a particle depends on the reference
frame of the observer. In an exoergic reaction, the total final
kinetic energy is greater than the total initial kinetic energy.
Which of the following is correct?

(A) A reaction that is exoergic in one inertial reference
frame is exoergic in all inertial reference frames.

(B) It is possible to find a reference frame in which an exo-
ergic reaction could appear to be endoergic.

(C) It is possible to find a reference frame in which an exo-
ergic reaction could appear to be elastic.

(D) The net change in kinetic energy will have the same
value in all inertial reference frames.

13-7 Energy Transfer by Heat
13. How would the inclusion of energy transfer by heat affect the

discussion of the block in Fig. 13-3?
(A) Energy might be transferred as heat between the block

and the table, changing both Eint, block and Eint, table but
keeping Eint, block � table constant.

(B) Energy might be transferred as heat from the block and
table to their presumably cooler surroundings, thereby
decreasing both Eint, block and Eint, table .

(C) Process of types (A) and (B) can both occur, leading to
a net decrease in Eint, block � table .

294 Chapter 13 / Energy 3: Conservation of Energy

QUESTIONS

1. At the highest point of its trajectory a vertically tossed ball
has zero kinetic energy. Where has the energy gone? Has ex-
ternal work been done on the ball? Is the energy now in the
form of potential energy in the ball? Potential energy in the
Earth?

2. What happens to the potential energy that is lost as an eleva-
tor descends from the top of a building to a stop at the ground
floor?

3. Figure 13-15 shows a circular glass tube fastened to a vertical
wall. The tube is filled with water except for an air bubble
that is temporarily at rest at the bottom of the tube. Discuss
the subsequent motion of the bubble in terms of energy trans-
fers. Do so both neglecting viscous and frictional forces and
taking them fully into account.

5. Can internal energy be considered a special form of potential
energy? Why or why not?

6. Can potential energy be considered a special case of internal
energy? Why or why not?

7. An automobile is moving along a highway. The driver jams
on the brakes and the car skids to a halt. In what form does
the lost kinetic energy of the car appear?

8. In the above question, assume that the driver operates the
brakes in such a way that there is no skidding or sliding. In
this case, in what form does the lost kinetic energy of the car
appear?

9. An automobile accelerates from rest to a speed v, under con-
ditions such that no slipping of the driving wheels occurs.
From where does the mechanical energy of the car come? In
particular, is it true that it is provided by the (static) frictional
force exerted by the road on the car?

10. Wf in Eq. 13-6 represents the transfer of energy out of the
block system into the table system. Does Wf � � �Eint, table ?
Explain. Can you conclude that fs � �Eint whenever f is an
internal force of friction? If not, give a counter example.

11. In the case of work done against friction, the internal energy
change is independent of the velocity (or inertial reference
frame) of the observer. That is, different observers would assign
the same quantity of mechanical energy transformed into inter-
nal energy due to friction. How can this be explained, consider-
ing that such observers measure different quantities of total
work done and different changes in kinetic energy in general?

12. In an article “Energy and the Automobile,” which appeared in
the October 1980 issue of The Physics Teacher (p. 494), the au-
thor (Gene Waring) states: “It is interesting to note that all the
fuel input energy is eventually transformed to thermal energy

Bubble

FIGURE 13-15. Question 3.

4. When the ice skater in Section 13-2 pushes herself away from
the railing her internal energy Eint decreases. What happens to
her internal energy when she skates up to the railing and then
pushes herself to a stop?



and strung out along the car’s path.” Analyze the various mech-
anisms by which this might come about. Consider, for example,
road friction, air resistance, braking, the car radio, the head-
lamps, the battery, internal engine and drive train losses, the
horn, and so on. Assume a straight and level roadway.

13. The electric power for a small town is provided by a hydro-
electric plant at a nearby river. If you turn off a lightbulb in
this closed-energy system, conservation of energy requires
that an equal amount of energy, perhaps in another form, ap-
pears somewhere else in the system. Where and in what form
does this energy appear?

14. Air bags greatly reduce the chance of injury in a car accident.
Explain how they do so, in terms of energy transfers.

15. A ball dropped to Earth cannot rebound higher than its release
point. However, spray from the bottom of a waterfall can
sometimes rise higher than the top of the falls. Why is this?

16. A swinging pendulum eventually comes to rest. Is this a vio-
lation of the law of conservation of mechanical energy?

17. A scientific article (“The Energetic Cost of Moving About,” by
V. A. Tucker, American Scientist, July–August 1975, p. 413)
asserts that walking and running are extremely inefficient forms
of locomotion and that much greater efficiency is achieved by
birds, fish, and bicyclists. Can you suggest an explanation?

18. A spring is compressed by tying its ends together tightly. It is
then placed in acid and dissolves. What happens to its stored
potential energy?

19. Since the left-hand sides of Eqs. 13-14 and 13-15 look so
much like the definition of work in Eqs. 11-1 and 11-14, why
not just call it work and move on? What is the advantage of
defining work the way that physicists do? Is the same numeri-
cal answer arrived at regardless of the definition?

20. Can an external force that does no work (because the point of
application is stationary) cause change in the rotational ki-
netic energy of a system?

21. Under what conditions, if any are needed, is it correct to say
that the decay is simply the reverse of the totally
inelastic collision 

22. A high-school science student claims to have invented simple
glass marbles that collide with perfectly elastic collisions. He
demonstrates this by shooting one marble at another; you hear
the snap of the collision and then see the marbles move apart.
Repeated measurements always indicate that the collision is
elastic within the measurement accuracy of the equipment. Is
the collision elastic? Why or why not?

23. Trace back to the Sun as many of our present energy sources
as you can. Can you think of any that cannot be so traced?

24. We say that a car is not accelerated by internal forces but
rather by external forces exerted on it by the road. Why then
do cars need engines?

25. Can the work done by internal forces decrease the kinetic en-
ergy of a body? Increase it?

26. (a) If you do work on a system, does the system necessarily
acquire kinetic energy? (b) If a system acquires kinetic en-
ergy, does it necessarily mean that some external agent did
work on it? Give examples. (By “kinetic energy” here we
mean kinetic energy associated with the motion of the center
of mass.)

27. In Sample Problem 13-3, we saw an example (a skater) in
which kinetic energy appeared but no external work was
done. Consider the opposite case. A screwdriver is held
tightly against a rotating grinding wheel. Here external work
is done but the kinetic energy of the screwdriver does not
change. Explain this apparent contradiction.

28. A disgruntled hockey player throws a hockey stick along the
ice. It rotates about its center of mass as it slides along and is
eventually brought to rest by the action of friction. Its motion
of rotation stops at the same moment that its center of mass
comes to rest, not before and not after. Explain why.

B � C : A?
A : B � C
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EXERCISES

13-1 Work Done on a System by External Forces
1. A projectile whose mass is 9.4 kg is fired vertically upward.

On its upward flight, 68 kJ of mechanical energy is dissipated
because of air drag. How much higher would it have gone if
the air drag had been made negligible (for example, by
streamlining the projectile)?

2. While a 1700-kg automobile is moving at a constant speed of
15 m/s, the motor supplies 16 kW of power to overcome fric-
tion, wind resistance, and so on. (a) What power must the mo-
tor supply if the car is to move up an 8.0% grade (8.0 m verti-
cally for each 100 m horizontally) at 15 m/s? (b) At what
downgrade, expressed in percentage terms, would the car
coast at 15 m/s?

3. In the situation of Fig. 13-2, a block of mass 1.25 kg is re-
leased from rest at a point where the spring (of force constant
k � 262 N/m) has its relaxed length. What is the speed of the
block after it has fallen a distance of 8.4 cm?

4. An automobile with passengers has a weight of 16,400 N
and is moving up a 10° slope with an initial

speed of 70 mi/h when the driver begins to ap-(� 113 km/h)
(� 3680 lb)

ply the brakes. The car comes to a stop after traveling 225 m
along the inclined road. Calculate the work done by the
brakes in stopping the car, assuming that all other energy
transfers in this problem (such as heat and internal energy)
can be neglected.

13-2 Internal Energy in a System of Particles
5. A ball of mass 12.2 g is dropped from rest at a height of

76 cm above the surface of oil that fills a barrel to a depth of
55 cm. The ball reaches the bottom of the barrel with a speed
of 1.48 m/s. (a) Neglecting air resistance, find the speed of
the ball when it enters the oil. (b) What is the change in the
internal energy of the system of ball � oil?

13-3 Frictional Work
6. A 25.3-kg bear slides, from rest, 12.2 m down a lodge-pole

pine tree, moving with a speed of 5.56 m/s at the bottom. (a)
What is the initial potential energy of the bear? (b) Find the
kinetic energy of the bear at the bottom. (c) Assuming no
other energy transfers, find the change in internal energy of
the bear and tree.



7. When a space shuttle (mass 79,000 kg) returns to Earth from
orbit, it enters the atmosphere at an altitude of 100 miles and
a speed of 18,000 mi/h, which is gradually reduced to a
touchdown speed of 190 knots What is its total
energy (a) at atmospheric entry and (b) at touchdown? See
Fig. 13-16. (c) What happens to the “missing” energy?

(� 220 mi/h).

tically down from a height of 12.4 m to have it bounce back
to that same height? Ignore air resistance.

14. A rubber ball dropped from a height of exactly 6 ft bounces
(hits the floor) several times, losing 10% of its kinetic energy
each bounce. After how many bounces will the ball subse-
quently not rise above 3 ft?

15. A steel ball of mass 0.514 kg is fastened to a cord 68.7 cm
long and is released when the cord is horizontal. At the bot-
tom of its path, the ball strikes a 2.63-kg steel block initially
at rest on a frictionless surface (Fig. 13-18). On collision,
one-half the mechanical kinetic energy is converted to inter-
nal energy and sound energy. Find the final speeds.
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FIGURE 13-16. Exercise 7.

FIGURE 13-17. Exercise 12.

FIGURE 13-18. Exercise 15.

8. A 68-kg skydiver falls at a constant terminal speed of 59 m/s.
At what rate is the internal energy of the skydiver and sur-
rounding air increasing?

9. A river descends 15 m in passing through rapids. The speed
of the water is 3.2 m/s upon entering the rapids and is 13 m/s
as it leaves. What percentage of the potential energy lost by
the water in traversing the rapids appears as kinetic energy of
water downstream? What happens to the rest of the energy?

10. During a rockslide, a 524-kg rock slides from rest down a hill
slope that is 488 m long and 292 m high. The speed of the rock
as it reaches the bottom of the hill is 62.6 m/s. How much me-
chanical energy does the rock lose in the slide due to friction?

11. A 4.26-kg block starts up a 33.0° incline at 7.81 m/s. How far
will it slide if it loses 34.6 J of mechanical energy due to fric-
tion?

12. Two snow-covered peaks are at elevations of 862 m and
741 m above the valley between them. A ski run extends from
the top of the higher peak to the top of the lower one; see Fig.
13-17. (a) A skier starts from rest on the higher peak. At what
speed would he arrive at the lower peak if he coasts without
using the poles? Assume icy conditions, so that there is no
friction. (b) After a snowfall, a 54.4-kg skier making the same
run also without using the poles only just makes it to the
lower peak. By how much does the internal energy of her skis
and the snow over which she traveled increase?

13-5 Center-of-Mass Energy
16. You crouch from a standing position, lowering your center of

mass 18.0 cm in the process. Then you jump vertically into
the air. The force that the floor exerts on you while you are
jumping is three times your weight. What is your upward
speed as you pass through your standing position leaving the
floor?

17. A 55.0-kg woman leaps vertically into the air from a crouch-
ing position in which her center of mass is 40.0 cm above the
ground. As her feet leave the floor her center of mass is
90.0 cm above the ground and rises to 120 cm at the top of
her leap. (a) What upward force, assumed constant, does the
ground exert on her? (b) What maximum speed does she at-
tain?

18. A 116-kg ice hockey player skates at 3.24 m/s toward a rail-
ing at the edge of the ice and stops himself by grasping the
railing with his outstretched arms. During this stopping
process his center of mass moves 34.0 cm toward the rail. (a)
Find the average force he must exert on the rail. (b) How
much internal energy does he lose?

19. The National Transportation Safety Board is testing the crash-
worthiness of a new car. The 2340-kg vehicle is driven at
12.6 km/h into an abutment. During impact, the center of
mass of the car moves forward 64.0 cm; the abutment is com-
pressed by 8.30 cm. Ignore friction between the car and the
road. (a) Find the force, assumed constant, exerted by the
abutment on the car. (b) By how much does the internal en-
ergy of the car increase?

20. Let the total energy of a system of N particles be measured in
an arbitrary frame of reference, such that In
the center-of-mass reference frame, the velocities are

where vcm is the velocity of the center of
mass relative to the original frame of reference. Keeping in
mind that show that the kinetic energy can be
written

K � Kint � Kcm ,

v2
n � vBn� vBn ,

v	n � vn � vcm ,

K � � 1
2 mnv2

n .

862 m
741 m

13-4 Conservation of Energy in a System of Particles
13. A ball loses 15.0% of its kinetic energy when it bounces back

from a concrete walk. With what speed must you throw it ver-



where and This demonstrates
that the kinetic energy of a system of particles can be divided
into an internal term and a center-of-mass term. The internal
kinetic energy is measured in a frame of reference in which
the center of mass is at rest; for example, the random motions
of the molecules of gas in a container at rest are responsible
for its internal translational kinetic energy.

13-6 Reactions and Decays
21. An electron, mass m, collides head-on with an atom, mass M,

initially at rest. As a result of the collision, a characteristic

Kcm � 1
2 Mv2

cm .Kint � � 1
2 mnv	2

n amount of energy E is stored internally in the atom. What is
the minimum initial speed v0 that the electron must have?
(Hint: Conservation principles lead to a quadratic equation
for the final electron speed v and a quadratic equation for the
final atom speed V. The minimum value, v0 , follows from the
requirement that the radical in the solutions for v and V be
real.)

13-7 Energy Transfer by Heat
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FIGURE 13-19. Problem 2.

FIGURE 13-20. Problem 5.

PROBLEMS

1. A stone of weight w is thrown vertically upward into the air
with an initial speed v0 . Suppose that the air drag force f dis-
sipates an amount fy of mechanical energy as the stone travels
a distance y. (a) Show that the maximum height reached by
the stone is

(b) Show that the speed of the stone upon impact with the
ground is

2. A small object of mass m � 234 g slides along a track with
elevated ends and a central flat part, as shown in Fig. 13-19.
The flat part has a length L � 2.16 m. The curved portions of
the track are frictionless; but in traversing the flat part, the ob-
ject loses 688 mJ of mechanical energy, due to friction. The
object is released at point A, which is a height h � 1.05 m
above the flat part of the track. Where does the object finally
come to rest?

v � v0 � w � f

w � f �
1/2

.

h �
v2

0

2g(1 � f /w)
.

ical energy as the block is brought to rest. Find the speed of
the block at the instant of collision with the spring.

5. The magnitude of the force of attraction between the posi-
tively charged proton and the negatively charged electron in
the hydrogen atom is given by

where e is the electric charge of the electron, k is a constant,
and r is the separation between electron and proton. Assume
that the proton is fixed. Imagine that the electron is initially
moving in a circle of radius r1 about the proton and jumps
suddenly into a circular orbit of smaller radius r2 ; see Fig. 13-
20. (a) Calculate the change in kinetic energy of the electron,
using Newton’s second law. (b) Using the relation between
force and potential energy, calculate the change in potential
energy of the atom. (c) By how much has the total energy of
the atom changed in this process? (This energy is often given
off in the form of radiation.)

F � k
e2

r 2 ,

h

A

L

3. A bullet of mass 4.54 g is fired horizontally into a 2.41-kg
wooden block at rest on a horizontal surface. The coefficient
of kinetic friction between block and surface is 0.210. The
bullet comes to rest in the block, which moves 1.83 m. As-
sume that the work done on the block because of friction is
83% of the energy dissipated because of friction. (a) What is
the speed of the block immediately after the bullet comes to
rest within it? (b) What is the initial speed of the bullet?

4. A 1.34-kg block sliding on a horizontal surface collides with
a spring of force constant 1.93 N/cm. The block compresses
the spring 4.16 cm from the unextended position. Friction be-
tween the block and the surface dissipates 117 mJ of mechan-

r2

+e

–e

r1

6. The cable of a 4000-lb elevator in Fig. 13-21 snaps when the
elevator is at rest at the first floor so that the bottom is a dis-
tance d � 12.0 ft above a cushioning spring whose force con-
stant is k � 10,000 lb/ft. A safety device clamps the guide
rails, removing 1000 ft-lb of mechanical energy for each
1.00 ft that the elevator moves. (a) Find the speed of the ele-
vator just before it hits the spring. (b) Find the distance that
the spring is compressed. (c) Find the distance that the eleva-
tor will bounce back up the shaft. (d) Calculate approxi-



mately the total distance that the elevator will move before
coming to rest. Why is the answer not exact?

7. A 10.0-kg block is originally at rest on a frictionless table. A
2.5-kg block is placed on the 10.0-kg block, and a 11.0-N
force pulls the 2.5-kg block a distance of 30.0 cm; the blocks,
however, are free to continue moving. The coefficient of fric-
tion between the two blocks is k � 0.35. What is the change
in internal energy of the two blocks (a) between the start
when the blocks are at rest and the moment the applied force
is discontinued, and (b) between the moment the applied
force is discontinued and the time that the blocks are at rest
relative to each other?

8. Consider the reaction Show that this can
be an elastic collision only if there is no change in the collid-
ing bodies.

A � B : C � D.
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FIGURE 13-21. Problem 6.

d
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COMPUTER PROBLEMS

1. A small block of mass m is originally at rest on the edge of a
hemispherical bowl of radius R. The block, starting at � �
�/2, slides down to the bottom of the bowl and up the other
side, but because of the energy dissipated due to friction, the
block does not make it to the edge before sliding back down
again. Numerically plot a graph of the angular position of
the block as a function of time. (a) As a first approximation,
solve the problem with the assumption that the amount of
energy dissipated is proportional to the total distance traveled:
�Edissipated � ��. (b) Refine the approximation by solving the
problem with the assumption that the energy dissipated also
depends on the angle: �Edissipated � cos � ��.

2. Assume that 100 identical 10.0-g particles are contained in a
cube 1.0 m on a side. With a spreadsheet or otherwise, use a
random number generator to assign x, y, and z positions to the
100 particles, and randomly assign vx , vy , and vz velocity
components (between � 10 and � 10 m/s) to each of the 100
particles. (a) Calculate the location of the center of mass of
the particles, the translational kinetic energy of the center of
mass, the rotational kinetic energy about the center of mass,
and the total kinetic energy of the system. How do the three
kinetic energies compare? (b) Repeat the process with a new
set of random numbers, and create a histogram for each of the
three kinetic energies. On average, what fraction of the energy
is internal for this type of system?
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GRAVITATION

So far in this book we have discussed various

forces: pushes and pulls, elastic forces, friction, and other forces that act when one body is in contact with

another. In this chapter we study the properties of one particularly important noncontact force, gravitation,

which is one of the fundamental and (we believe) universal forces of nature. The law that describes the

gravitational force between any two bodies was discovered by Newton in 1665, and it has had spectacular

success in accounting for the gravitational forces exerted on objects on Earth as well as for the motions of

the planets in the solar system. A modern theory of gravitation, Einstein’s general theory of relativity, is

necessary to account for effects in strong gravitational fields.

As you study this chapter, you should note that many of the basic concepts of dynamics discussed in pre-

vious chapters find application here. In particular, we shall use Newton’s force laws, dynamics of circular

motion, potential energy, and conservation of energy and angular momentum.

14-1 ORIGIN OF THE LAW OF
GRAVITATION

From at least the time of the ancient Greeks, two problems
were puzzling: (1) the falling of objects released near the
Earth’s surface, and (2) the motions of the planets. Al-
though there was no reason at that time to connect these
two problems, today we recognize that they result from the
effect of the same force—gravitation. In fact, this force
also determines the motion of the Sun in our Milky Way
galaxy, as well as the motion of the galaxy in our Local
Cluster of galaxies, the motion of the Local Cluster in the
Local Supercluster, and so on through the universe. In
short, the gravitational force, and the law that describes that
force, controls the structure, the development, and the even-
tual fate of the universe.

The earliest serious attempt to explain the motions of
the planets was due to Claudius Ptolemy (A.D. 2nd century),
who developed a model of the solar system in which the
planets, including the Sun and Moon, revolved about the
Earth. Unfortunately, to explain the complicated orbits of

the planets in this geocentric frame of reference, Ptolemy
was forced to introduce epicycles, in which a planet moves
around a small circle whose center moves around another
larger circle centered on the Earth. Of course, today we
would reject such a model because it violates the law that
every accelerated motion must be accounted for by a force
due to a body in its environment—there is no body at the
center of the small circles that would supply the force nec-
essary for the centripetal acceleration.

It was not until the 16th century that Nicolaus Coperni-
cus (1473–1543) proposed a heliocentric (Sun-centered)
scheme, in which the Earth and the other planets move
about the Sun. Like Ptolemy’s model, Copernicus’ solar
system was still based only on geometry because the notion
of a force had not yet been introduced. Nevertheless, the
Copernican model was a significant step forward because it
provided the correct reference frame for our present under-
standing of the solar system to develop.

Based on careful analysis of observational data on plan-
etary motions, Johannes Kepler (1571–1630) proposed
three laws (which we discuss in Section 14-7) that describe
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those motions. However, Kepler’s laws were only empiri-
cal—they simply described the motions of the planets
without any basis in terms of forces. It was a great triumph
for the newly developed field of mechanics later in the 17th
century when Isaac Newton was able to derive Kepler’s
laws from his laws of mechanics and his proposed law of
gravitation. With this stunning development, Newton was
able to use the same concept to account for the motion of
the planets and of bodies falling near the Earth’s surface.

In 1665, the 23-year-old Newton left Cambridge Uni-
versity when the college was dismissed because of the
plague. Later Newton would write: “I began to think of
gravity extending to the orb of the Moon . . . and having
thereby compared the force requisite to keep the Moon in
her orb with the force of gravity at the surface of the Earth,
and found them to answer pretty nearly.” His friend
William Stukeley wrote of having tea with Newton under
some apple trees when Newton recalled how he got the idea
for gravitation: “It was occasioned by the fall of an apple as
he sat in a contemplative mood . . . and thus by degrees
he began to apply this property of gravitation to the motion
of the Earth and the heavenly bodies . . . ”

Using modern data, let us see how Newton might have
made this comparison. Figure 14-1 shows that the Moon,
moving in a circular orbit about the Earth, and an apple,
falling near the Earth’s surface, are both accelerated toward
the center of the Earth. The Moon’s centripetal acceleration
(aM � v2/rM) can be found from its tangential speed v �
2�rM/T, where T is the time for one orbit (27.3 d). Using
our current value for the radius of the Moon’s orbit (about
380,000 km), we obtain aM � 0.0027 m/s2. Because the ac-
celeration aa of the apple is simply the free-fall acceleration
g, we obtain the ratio of these two accelerations to be

aM/aa � (0.0027 m/s2)/(9.8 m/s2) � 2.8 � 10�4.

Guided by Kepler’s laws, Newton tried to account for this
difference by assuming that the gravitational force on these
objects that produces the acceleration is inversely propor-
tional to the square of their distance from the center of the
Earth. Using the current value of the Earth’s radius (ra �
rE � 6400 km), Newton’s prediction for the ratio of the ac-
celerations would be

In Newton’s words, the two results do indeed “answer
pretty nearly,” suggesting that the force responsible for the
fall of an apple and the force that holds the Moon in its or-
bit have the same origin— the Earth’s gravitation.

To make this calculation, Newton had to regard the
gravitational force of the Earth as if all of the Earth’s mass
were concentrated at its center, so that rM and ra are mea-
sured from the center of the Earth (see Fig. 14-1). In fact,
this assumption can be rigorously proved (see Section 14-
5), if we assume that the Earth is approximately spherical
(a good assumption) and that the distribution of its mass
may change with distance from the center but not with an-
gular coordinate (also a good assumption, as we discuss in
Section 14-4).

14-2 NEWTON’S LAW OF
UNIVERSAL GRAVITATION

As we discussed in Section 5-1, gravitation, the force that
acts between bodies due only to their masses, is one of the
four basic forces of physics. It acts throughout the universe:
between bodies on Earth, where (as we shall see below) it
is weak and difficult to measure; between the Earth and
bodies in its vicinity, where it is the controlling feature of
our lives; and among the stars and galaxies, where it con-
trols their evolution and structure.

Newton was the first to propose a force law for gravita-
tion, which we can state as follows:

Every particle in the universe attracts every other parti-
cle with a force directly proportional to the product of
their masses and inversely proportional to the square of
the distance between them. The direction of the force is
along the line joining the particles.

The magnitude of the gravitational force that two particles
of masses m1 and m2 separated by a distance r exert on each
other is

(14-1)

Here G, called the gravitational constant, has the experi-
mentally determined value

G is a universal constant, with the same value for any pair
of particles at any location in the universe. It should not be

G � 6.67 � 10�11 N �m2/kg2.

F � G
m 1m 2

r 2 .

aM/aa � r 2
a /r 2

M � (6400 km)2/(380,000 km)2 � 2.8 � 10�4.
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Figure 14-1. Both the Moon and the apple are accelerated
toward the center of the Earth. The difference in their motions
arises because the Moon has enough tangential speed v to main-
tain a circular orbit.

Moon
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rM
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Earth

v

aM

(= g)aa



confused with g, the free-fall acceleration on Earth, which
is not universal and has different dimensions.

The gravitational constant is a very small number,
which explains why we do not ordinarily notice the gravita-
tional force between objects around us. For example, the
force between two 1-kg particles separated by a distance of
0.1 m would be of order 10�8 N, about equivalent to the
weight of a speck of dust! Nevertheless, using sensitive ap-
paratus physicists can measure these small attractive forces
between common objects. Normally, however, it is only
when the mass of at least one of the interacting bodies is
large (planet-sized) that the effects of the gravitational
force become significant.

Equation 14-1 is in the form of an inverse-square force
law, because the force depends on the inverse square of the
distance. Electromagnetic forces also have the form of in-
verse-square laws.

None of the three fundamental quantities (force, mass,
and distance) that appears in Eq. 14-1 is defined by that
equation. In particular, force and mass were defined in
Chapter 3. The gravitational force is just one type of force
that represents the interaction of a particle with other parti-
cles in its environment. As we discuss in the next section,
once G is determined by experiment for one pair of bodies,
that value can then be used to find the force between any
other pair of bodies.

The Vector Force
Figure 14-2a represents the gravitational force exerted by
two particles on each other, which form an action– reaction
pair according to Newton’s third law. The first particle ex-
erts an attractive force on the second particle along the
line joining the two particles, and similarly the second par-
ticle exerts a force on the first. The forces are oppo-
sitely directed and always equal in magnitude, even though
the two masses may not be equal.

We can express the law of universal gravitation in vec-
tor form by introducing a unit vector that has no units or di-

F
B

12

F
B

21

mensions, that has a numerical length of exactly 1, and
whose sole function is to indicate a direction in space. (The
unit vectors which respectively specify the di-
rections of the coordinate axes x, y, and z, serve similar
functions; see Appendix H.) In the case of the gravitational
force, we choose the direction of the unit vector to be from
one particle to the other. We denote the unit vector pointing
toward m1 from m2 as (Fig. 14-2b) and that to m2 from
m1 as (Fig. 14-2c). We can express these unit vectors as

(14-2)

where, for example, is the displacement vector that lo-
cates m1 relative to m2 and r12 is its magnitude From
Eq. 14-2 you can see that 

In terms of the unit vectors, we can represent the gravi-
tational forces as

(14-3)

as shown in Figs. 14-2b and c.
The negative sign in Eq. 14-3 shows that, for example,
points in a direction opposite to which indicates that

the gravitational force is attractive— the direction of 
which is the same as that of the displacement vector 
points away from m2 , but for an attractive force the vector

points toward m2 , as Fig. 14-2b shows. This notation is
useful in the case in which one object (for example, the Sun)
defines the origin of our coordinate system. The vector 
that locates the other object (the Earth, for instance) points
away from the origin, as does the unit vector but the force
on the Earth due to the Sun points toward the origin.

By comparing Figs. 14-2b and c we can clearly see that
from which Eqs. 14-3 show directly that

verifying that the gravitational forces form an
action– reaction pair.

Often we must consider the gravitational force when
more than two bodies are interacting, for example the force
on the Earth due to the Sun and the Moon. In this case the
procedure is to calculate the magnitudes and directions of
the forces on one body due to each of the others in turn us-
ing Eq. 14-3 and then use vector addition to find the total
force on that body. Figure 14-3 shows an example in the
case of one particular arrangement of the Earth, Sun, and

F
B

12 � � F
B

21 ,
rB21 � � rB12 ,

r̂,

rB

F
B

12

rB12 ,
r̂12 ,

r̂12 ,F
B

12

F
B

12 � �G
m1m2

r 2
12

r̂12 and F
B

21 � �G
m2m1

r 2
21

r̂21 ,

� r̂12 � � 1 and � r̂21 � � 1.
� rB12 �.

rB12

r̂12 � rB12 /r12 and r̂21 � rB21 /r21
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Figure 14-2. (a) The gravitational force between two parti-
cles, which form an action– reaction pair. (b) The gravitational
force exerted on m1 by m2 and the unit vector to m1 from
m2 . (c) The gravitational force exerted on m2 by m1 and the
unit vector to m2 from m1 .r̂21

F
B

21

r̂12F
B

12

Figure 14-3. The gravitational force on the Earth due to the
Sun and the Moon in one particular arrangement. The distances
are not to scale, and the force vectors are also not to scale (in actu-
ality FES is 175 times larger than FEM).
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Moon. We find the Earth–Sun force as if the Moon
were not present and the Earth–Moon force as if the
Sun were not present, and then we add those forces like
vectors to find the resultant force on the Earth. This proce-
dure follows the principle of superposition, according to
which we can write the net force on body X due to N other
bodies as

(14-4)

It is a good approximation to regard the Earth, Sun, and
Moon as particles when we calculate the forces between
them, because their sizes are small in comparison to the
distances that separate them. However, if we wish to con-
sider the gravitational force exerted by the Earth on a satel-
lite in orbit 300 km above its surface, it is certainly not a
good approximation to consider the Earth as a particle. To
follow Eq. 14-4 and add the vector contributions to the
force on the satellite due to each particle of the Earth is a
task of hopeless complexity. Fortunately, this procedure is
not necessary. Using calculus (which Newton developed
partly for this purpose) we can show that, in the case of a
spherically symmetric body, we can calculate the gravita-
tional force as if its entire mass were concentrated in a par-
ticle at its center. We often use this important result, which
we prove in Section 14-5.

Sample Problem 14-1. Calculate the magnitude of the
gravitational force exerted on a cantaloupe of mass mc � 1.00 kg
on the surface of the Earth due to (a) the Earth, (b) the Moon, (c)
the Sun.

Solution (a) The gravitational force on the cantaloupe due to the
Earth is simply the weight of the cantaloupe:

(b) To find the force due to the Moon, we use Eq. 14-1:

(c) Again using Eq. 14-1, we have

Clearly the Earth is the dominant influence on the behavior of ob-
jects on its surface. Note that the force due to the Sun on an object
at the Earth’s surface is much larger than the force due to the
Moon. (However, the tidal effect of the Moon on the Earth’s
oceans is greater than that of the Sun. See Problem 5 for an expla-
nation of this effect.)

� 5.90 � 10�3 N.

�
(6.67 � 10�11 N �m2/kg2)(1.00 kg)(1.99 � 1030 kg)

(1.50 � 1011 m)2

FcS � G
m c mS

r 2
S

� 3.36 � 10�5 N.

�
(6.67 � 10�11 N �m2/kg2)(1.00 kg)(7.36 � 1022 kg)

(3.82 � 108 m)2

FcM � G
m cmM

r 2
M

FcE � m cg � (1.00 kg)(9.8 m/s2) � 9.8 N.
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Sample Problem 14-2. A properly suited astronaut
(ma � 105 kg) is drifting through the asteroid belt on a mining ex-
pedition. At a particular instant he is located near two asteroids of
masses m1 � 346 kg (r1 � 215 m) and m2 � 184 kg (r2 � 142 m)
as shown in Fig. 14-4. The lines connecting the astronaut to the
two asteroids form an angle of 120°. At that instant, what is the
magnitude and direction of the gravitational force on the astronaut
due to these two asteroids? Assume that the astronaut and the as-
teroids can be considered as particles.

Solution Equation 14-1 gives the magnitudes of the two forces:

These two forces are shown in Fig. 14-4. Using either the compo-
nent method or the parallelogram method, we can add these two
vectors to obtain the magnitude of the total force on the astronaut
to be

and its direction is as shown in Fig. 14-4 (� � 69.7°).

14-3 THE GRAVITATIONAL
CONSTANT G

Determining the value of G would seem to be a simple task.
All we need to do is to measure the gravitational force F
exerted by a body of known mass m1 on a second body of
known mass m2 separated by a known distance r. We can
then calculate G from Eq. 14-1.

A large-scale system such as the Earth and the Moon or
the Earth and the Sun cannot serve to determine G. The dis-
tances are large enough that the objects can be regarded as ap-
proximately point masses, but the values of the masses are not
determined independently. In fact, the masses of these bodies,
as we shall soon discuss, are determined using the value of G.

Instead, we must turn to a small-scale measurement, in
which we use two laboratory objects of known mass and

Fa � 5.80 � 10�11 N � 58.9 pN

� 6.39 � 10�11 N � 63.9 pN.

Fa2 � G
m am 2

r 2
2

�
(6.67 � 10�11 N �m2/kg2)(105 kg)(184 kg)

(142 m)2

� 5.24 � 10�11 N � 52.4 pN,

Fa1 � G
m am 1

r 2
1

�
(6.67 � 10�11 N �m2/kg2)(105 kg)(346 kg)

(215 m)2
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Figure 14-4. Sample Problem 14-2.



measure the force between them. The force is very weak,
and the masses must be placed close together to make the
force as large as possible. When we do this, we can usually
no longer regard the masses as point particles, and Eq. 14-1
may not be applicable. There is, however, one special case
in which we can use Eq. 14-1 for large objects. As we prove
in Section 14-5, for spherical mass distributions we can re-
gard the object as a point mass concentrated at its center.
This is not an approximation; it is an exact relationship.

The first laboratory determination of G from the force be-
tween spherical masses at close distance was done by Henry
Cavendish in 1798. He used a method based on the torsion
balance, illustrated in Fig. 14-5. Two small lead balls, each of
mass m, are attached to the ends of a light rod. This rigid
“dumbbell” is suspended, with its axis horizontal, by a fine
vertical fiber. Two large lead balls each of mass M are placed
near the ends of the dumbbell on opposite sides. When the
large masses are in the positions A, they attract the small
masses according to the law of gravitation, and a torque is
exerted on the dumbbell, rotating it counterclockwise as
viewed from above. The rod reaches an equilibrium position
under the opposing actions of the gravitational torque exerted
by the masses M and the restoring torque exerted by the
twisted fiber. When the large masses are in the positions B,
the dumbbell rotates clockwise to a new equilibrium posi-
tion. The angle 2	, through which the fiber is twisted when
the balls are moved from one position (AA) to the other (BB),
is measured by observing the deflection of a beam of light re-
flected from the small mirror attached to the rod. From the
value of 	 and the torsional constant of the fiber (determined
by measuring its period of oscillation—see Section 17-5),

the torque can be determined and the gravitational force can
be obtained. Knowing the values of the masses m and M and
the separation of their centers, we can calculate G.

Cavendish’s original data yielded a value for G of 6.75
� 10�11 N� m2/kg2. In the nearly 200 years since the time
of Cavendish, the same basic technique using the torsion
balance has been used to repeat this measurement many
times, leading to the presently accepted value of G,

with an uncertainty of or about

 0.15%. Compared with the results of measuring other
physical constants, this precision is not impressive; for exam-
ple, the mass of the electron has been measured to a precision
of about 
 0.000008%. It is difficult to improve substantially
on the precision of the measured value of G because of its
small magnitude and the correspondingly small value of the
force between the two objects in our laboratory experiments.
If we use two lead spheres of diameter 10 cm (and mass 
6 kg), the maximum gravitational force between them when
they are as close as possible is about 2 � 10�7 N, correspond-
ing roughly to the weight of a piece of paper of area 1 mm2.

This difficulty of measuring G is unfortunate, because
gravitation has such an essential role in theories of the ori-
gin and structure of the universe. For example, we would
like to know if G really is a constant. Does it change with
time? Does it depend on the chemical or physical state of
the masses? Does it depend on their temperature? Despite
many experimental searches, no such variations in G have
so far been unambiguously confirmed, but measurements
continue to be refined and improved, and the experimental
tests continue.*

The mass of the Earth can be determined from the law
of universal gravitation and the value of G calculated from
the Cavendish experiment. For this reason Cavendish is said
to have been the first person to “weigh” the Earth. (In fact,
the title of the paper written by Cavendish describing his
experiments referred not to measuring G but instead to de-
termining the density of the Earth from its weight and vol-
ume.) Consider the Earth, of mass ME , and an object on its
surface of mass m. The force of attraction is given both by

Here RE is the radius of the Earth, which is the separation of
the two bodies, and g0 is the free-fall acceleration at the
Earth’s surface due only to the gravitational force of the Earth
(see the next section). Combining these equations we obtain

� 5.98 � 1024 kg.

ME �
g0R2

E

G
�

(9.83 m/s2)(6.37 � 106 m)2

6.67 � 10�11 N �m2/kg2

F � mg0 and F �
GmME

R2
E

.


0.010 � 10�11 N �m2/ kg2

G � 6.673 � 10�11 N �m2/ kg2,
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Figure 14-5. A schematic view of the apparatus used in 1798
by Henry Cavendish to measure the gravitational constant G. The
large spheres of mass M, shown in location AA, can also be moved
to location BB.
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A

A

B
mM

M
B m

*For a full discussion of measurements of G, see “The Newtonian Gravita-
tional Constant: Recent Measurements and Related Studies,” by George T.
Gillies, Reports on Progress in Physics, Vol. 60, 1997, pp. 151–225.



14-4 GRAVITATION NEAR THE
EARTH’S SURFACE

Let us assume, for the time being, that the Earth is spherical
and that its density depends only on the radial distance
from its center. The magnitude of the gravitational force
acting on a particle of mass m, located at an external point a
distance r from the Earth’s center, can then be written, from
Eq. 14-1, as

in which ME is the mass of the Earth. This gravitational
force can also be written, from Newton’s second law, as

Here g0 is the free-fall acceleration due only to the gravita-
tional pull of the Earth. Combining the two equations above
gives

(14-5)

Table 14-1 shows some values of g0 at various altitudes
above the surface of the Earth, calculated from this equa-
tion. Note that, contrary to the impression that gravity
drops to zero in an orbiting satellite, we find g0 � 8.7 m/s2

at typical space shuttle altitudes.
The real Earth differs from our model Earth in three

ways.
1. The Earth’s crust is not uniform. There are local den-

sity variations everywhere. The precise measurement of lo-
cal variations in the free-fall acceleration gives information
that is useful, for example, for oil prospecting.

2. The Earth is not a sphere. The Earth is approxi-
mately an ellipsoid, flattened at the poles and bulging at the
equator. The Earth’s equatorial radius is greater than its po-
lar radius by 21 km. Thus a point at the poles is closer to
the dense core of the Earth than is a point on the equator.
We would expect that the free-fall acceleration would in-
crease as one proceeds, at sea level, from the equator to-
ward the poles. Figure 14-6 shows that this is indeed what
happens. The measured values of g in this figure include
both the equatorial bulge effect and effects resulting from
the rotation of the Earth.

3. The Earth is rotating. In Section 3-7 we defined
weight as a measure of the Earth’s gravitational force on a
body, and we discussed how the weight can be determined

g0 �
GME

r 2 .

F � mg0 .

F � G
MEm

r 2 ,

from the reading of a platform scale on which the body
rests. The scale reading is equal to the magnitude of the
Earth’s gravitational force only if the surface of the Earth is
an inertial frame, which is only approximately true for the
rotating Earth. Let us see what effect the Earth’s rotation
has on the scale reading.

Figure 14-7a shows the rotating Earth from an inertial
frame positioned in space above the north pole. A crate of
mass m rests on a platform scale at the equator. A local ob-
server regards the scale reading to be the body’s weight mg,
where g is the locally measured value of the free-fall accel-
eration.

Because of the Earth’s rotation, the crate is in uniform
circular motion with radius RE and period of rotation T

As we discussed in Section 4-5, in order for a
body to be in uniform circular motion at radius r and tan-
gential speed v, the net acceleration (the centripetal acceler-
ation) must have magnitude 

Figure 14-7b shows the free-body diagram of the crate.
There is an upward force on the crate due to the platform
scale (equal in magnitude to the scale reading mg), and the

N
B

ac � v2/r.

(� 24 hours).
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Altitude g0

(km) Location (m/s2)

0 Earth’s surface 9.83
10 Airliner cruising altitude 9.80

100 Top of atmosphere 9.53
400 Space shuttle orbit 8.70

35,700 Communication satellite orbit 0.225
380,000 Moon’s orbit 0.0027

Table 14-1 Variation of g0 with Altitude

Latitude

g 
(m

/s
2 )

PolesEquator

0 10°

9.84

9.83

9.82

9.81

9.80

9.79

9.78
20° 30° 40° 50° 60° 70° 80° 90°

Figure 14-6. The variation of g with latitude at sea level.
About 65% of the variation is due to the rotation of the Earth, with
the remaining 35% coming from the Earth’s slightly flattened
shape.

Figure 14-7. (a) A crate on the rotating Earth, resting on a
platform scale at the equator. The view is along the Earth’s rota-
tional axis, looking down on the north pole. (b) A free-body dia-
gram of the crate. The crate is in uniform circular motion and is
thus accelerated toward the center of the Earth.



downward gravitational force is We take the y axis to
be positive upward (where upward means the outward
radial direction at the location of the crate), and so

Newton’s second law then gives (noting
that the acceleration toward the center of the circle is in the
negative y direction according to our choice of the axis)

where is the angular speed of the Earth’s
rotation. We can write this expression as

(14-6)

Taking the magnitude of the normal force N exerted by the
scale to be the weight mg of the object, we obtain

The free-fall acceleration g at the equator of the rotating
Earth is smaller than the free-fall acceleration g0 of a non-
rotating Earth by only 0.034/9.8 or 0.35%. Equivalently,
we can say that mg (the weight of the object) is less than
mg0 (the gravitational force on the object by the Earth) by
an amount equal to m�2RE . This effect decreases as we
move north or south of the equator, and the difference g0 �
g vanishes at the poles.

As we discuss later in this chapter, for a satellite in orbit
at a height h above the Earth’s surface and thus at a dis-
tance r � RE � h from the Earth’s center, � and r are re-
lated so that �2r � GME/r 2, which is simply g0 as defined
by Eq. 14-5. Equation 14-6 then gives N � 0, which ac-
counts for our usual description of orbiting astronauts as
“weightless,” even though g0 � 0 for the astronauts (the
Earth’s gravitational force still attracts them).

Sample Problem 14-3. (a) A neutron star is a col-
lapsed star of extremely high density. The blinking pulsar in the
Crab nebula is the best known of many examples. Consider a neu-
tron star with a mass M equal to the mass of the Sun, 1.99 �
1030 kg, and a radius R of 12 km. What is the free-fall acceleration
at its surface? Ignore rotational effects. (b) The asteroid Ceres has
a mass of 1.2 � 1021 kg and a radius of 470 km. What is the free-
fall acceleration at its surface?

Solution (a) From Eq. 14-5 we have

Even though pulsars rotate extremely rapidly, rotational effects
have only a small influence on the value of g, because of the small
size of pulsars.
(b) In the case of the asteroid Ceres, we have

There is quite a contrast between the gravitational forces at the
surfaces of these two bodies!

� 0.36 m/s2.

g0 �
GM

R2 �
(6.67 � 10�11 N �m2/kg2)(1.2 � 1021 kg)

(4.7 � 105 m)2

� 9.2 � 1011 m/s2.

g0 �
GM

R2 �
(6.67 � 10�11 N �m2/kg2)(1.99 � 1030 kg)

(12,000 m)2

g0 � g � �2RE � 0.034 m/s2.

N � m(g0 � �2RE).

� � v/RE � 2�/T

N � mg0 � �mac � �mv2/RE � �m� 2RE ,

� Fy � N � mg0 .

mgB0 . 14-5 THE TWO SHELL
THEOREMS

In calculating the gravitational force exerted by a body such
as the Earth or the Sun on another body, it would be hope-
lessly complicated to account for the interactions of every
pair of particles in the two bodies. Fortunately, we can use
two shell theorems to simplify the analysis of the gravita-
tional force in certain cases.

We consider only bodies in which the mass distribution
is spherically symmetric. That is, the density may change
with radius, but the density is uniform in a thin shell at any
radius. To a very good approximation, the Earth and Sun
are spherically symmetric. In both bodies, the density is
large near the center and decreases toward the surface. Thin
shells near the center contain material of a greater density
than thin shells near the surface, but within each thin shell
the density has the same value at all points.

Using his law of universal gravitation and his newly de-
veloped techniques of calculus, Newton established two
theorems that apply to the gravitational force exerted by a
thin spherical shell of uniform density.

Shell Theorem #1:
A uniformly dense spherical shell attracts an external
particle as if all the mass of the shell were concentrated
at its center.

Shell Theorem #2:
A uniformly dense spherical shell exerts no gravita-
tional force on a particle located anywhere inside it.

A spherically symmetric body such as the Earth can be
regarded as composed of a series of thin spherical shells of
uniform density. In calculating the force on a particle at a
point beyond the Earth’s radius, each of those shells can be
replaced by an equivalent mass at the Earth’s center, and
therefore the entire Earth behaves as if it were a point mass
located at its center. A corollary of shell theorem #1 is thus:
A spherically symmetric body attracts particles outside as if
its mass were concentrated at its center.

The importance of shell theorem #2 can be appreciated
by imagining a tunnel drilled along a diameter of the Earth.
As we descend into the tunnel, the portions of the Earth
outside our radius exert no gravitational force on us. Put an-
other way, we feel only the effect of the portion of the
Earth’s mass inside a sphere whose radius is our distance
from the center of the Earth. Sample Problem 14-4 consid-
ers this consequence of shell theorem #2.

The shell theorems are true only for the inverse-square
force. If the gravitational force depended on the separation
r to some power other than � 2, the shell theorems would
not hold. As a consequence, it would not be possible to re-
place a spherically symmetric body with its equivalent
point mass. In fact, the second shell theorem provides an el-
egant way of testing the inverse-square law—we place a
small test mass at various locations inside a spherical shell
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and determine whether the gravitational force on the test
mass due to the shell is zero everywhere in the interior.
Such measurements done to the highest possible precision
have shown no deviation from the Newtonian law. If we
write the dependence on the separation between the masses
as 1/r 2�, where  � 0 in Newton’s theory, then experi-
ments have set an upper limit on  of 10�4. By contrast,
similar experiments designed to test the inverse-square law
for electric forces give an upper limit on  of about 10�16.

Proof of the Shell Theorems (Optional)
Proving the shell theorems requires techniques of integral
calculus. We wish to calculate the force exerted by a thin
spherical shell of uniform density on a point mass located
either outside or inside the shell. Our technique will be to
imagine the shell to be sliced into thin rings. We will find
the force exerted on the point mass by one arbitrary ring,
and then we will add (by integration) the forces exerted by
all such rings to get the total force.

Figure 14-8 shows a thin shell and the ring we will con-
sider. The shell has total mass M, thickness t, and uniform
density � (mass per unit volume). A point mass m is located
at point P, a distance r from the center of the shell (point
O). Our goal is to find the force exerted on m first by the
ring and then by the entire shell.

Consider the ring shown in the figure. If the ring is very
thin, all particles of the ring are a distance x from m. A parti-
cle at point A exerts a force on m, and a particle of equal
mass at B, on the opposite side of the ring, exerts a force 
The two forces are of equal magnitude, and their resultant
must lie along the line PO. This will also be true for every
pair of particles located diametrically opposite one another
in the ring, and so the net force exerted on m by the ring
must also lie along the line PO (the symmetry axis).

Consider an element of mass dmA at point A. The axial
component (along PO) of the force that this element of
mass exerts on m is

where the factor cos � gives the axial component of the
force. Adding the contributions for all the mass elements in
the ring gives the total force dF exerted on m by the ring:

or

(14-7)

where dM is the total mass of the
ring.

Now we must express dM in terms of the geometrical di-
mensions of the ring. First we find its volume dV. Imagine
the ring cut and laid out flat to form a rectangular solid of
height t (the thickness of the ring), width R d	, and length

(� dmA � dmB � �� �)

dF �
Gm dM

x2  cos �,

dF � dFA � dFB � ��� �
Gm

x2  (cos �)(dmA � dmB � ���)

dFA � G
m dmA

x2  cos �,

F
B

B .
F
B

A

2�(R sin 	). The volume is thus dV � t(R d	)(2�R sin 	).
The mass of this ring is dM � � dV, or

(14-8)

Finally, we must choose a single variable for our inte-
gration. From the three variables in Fig. 14-8 (x, �, and 	)
we choose to eliminate � and 	, leaving x as the single vari-
able over which we plan to integrate. From the figure we
see that PQ � x cos � and also PQ � r � R cos 	, so

(14-9)

Using the law of cosines on triangle AOP we obtain
or

(14-10)

We now put Eq. 14-10 into Eq. 14-9 and then substitute the
result for cos � into Eq. 14-7. We still have not eliminated
all variables except x in Eq. 14-7, because Eq. 14-8 shows
that dM depends on 	. To eliminate this variable, we differ-
entiate Eq. 14-10 to find

(14-11)

We can use Eq. 14-11 to eliminate 	 from Eq. 14-8 and
then substitute the result for dM into Eq. 14-7. The result is

(14-12)

This is the force exerted by the circular ring dM on the par-
ticle m at P.

To find the total force on m due to the entire shell, we
must add the effects due to all the rings into which we
imagine the shell to be sliced. This involves an integral over
x, which ranges from r � R to r � R:

F � � dF �
�Gt�mR

r 2 �r�R

r�R
� r 2 � R2

x2 � 1� dx.

dF �
�Gt�mR

r 2 � r 2 � R2

x2 � 1� dx.

sin 	 d	 �
x

rR
dx.

R cos 	 �
r 2 � R2 � x2

2r
.

x2 � r 2 � R2 � 2rR cos 	

cos � �
r � R cos 	

x
.

dM � 2� t�R2 sin 	 d	.
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Figure 14-8. Gravitational attraction of a section of a spheri-
cal shell of matter on a particle of mass m at P.
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The integral is straightforward to evaluate and gives the
value 4R. The force then becomes

(14-13)

where is the total mass of the shell. Equation
14-13 is exactly the expression for the force that a particle
of mass M located at the center of the shell would exert on
the particle of mass m located at P. This proves the first
shell theorem.

The proof of the second shell theorem is based on the
geometry shown in Fig. 14-9, with point P now inside the
shell. The derivation is exactly the same up to the final step,
but the lower limit of the integral is now R � r rather than
r � R. This small change causes the value of the integral to
be zero, so that F � 0, which proves the second shell theo-
rem. (For an alternative way of proving the second shell
theorem, see Problem 17.)

These proofs apply only in the spherical geometry and
only when the density of the shell is uniform. The theorems
can be applied to a solid sphere even if the density changes
from one shell to the next, as long as it remains uniform for
each shell. �

Sample Problem 14-4. Suppose a tunnel could be dug
through the Earth from one side to the other along a diameter, as
shown in Fig. 14-10. A particle of mass m is dropped into the tun-
nel from rest at the surface. (a) What is the force on the particle
when it is a distance r from the center? (b) What is the speed of
the particle when it is a distance r from the center? Evaluate the
speed at r � 0. Neglect all frictional forces and assume that the
Earth has a uniform density.

Solution (a) From shell theorem #2 we conclude that the gravita-
tional force on the particle is due only to that portion of the Earth
that lies inside the sphere of radius r, and from shell theorem #1
we conclude that we can consider that mass to be concentrated at
the center of the Earth. Let the mass inside the sphere of radius r
be M, and let the total mass of the Earth (of radius RE) be ME .
Then the fraction of the mass inside radius r is the same as the

M � 4�R2t�

F �
�Gt�mR

r 2  (4R) � G
mM

r 2 ,

fraction of the volume inside radius r (this is true only if the den-
sity is uniform, as we have assumed). Thus

Regarding this mass as concentrated at the center, we find the
gravitational force on mass m to be proportional to r :

If we let be the vector from the center of the Earth to m, then
from Eq. 14-3 we note that the force acting on the particle is op-
posite in direction to so we can write for
the vector form of the force law. With the minus sign, the form of
the force looks very much like that of the spring force, F � � kx.
(b) Given the similarity with the spring force, we can represent
the potential energy U of the system consisting of the Earth and
the falling particle as taking U � 0 at the center of the Earth.
Here k is the constant in the force law: Applying
conservation of energy at the surface and at radius r we have

Solving for v,
we have

At the center (r � 0) this has the value

14-6 GRAVITATIONAL
POTENTIAL ENERGY

In analyzing the motion of planets and satellites, it is often
easier and more informative to use energy rather than force.
In this section we shall evaluate the potential energy of a
system consisting of two bodies that interact through the
gravitational force. In Chapter 12 we obtained the potential
energy change due to gravity for a body that moves through
a height y near the Earth’s surface: �U � mgy (Eq. 12-9).

� 7.91 � 103 m/s.

v � √ GME

RE
� √ (6.67 � 10�11 N �m2/kg2)(5.98 � 1024 kg)

(6.37 � 106 m)

v � √ k

m
 (R2

E � r 2) � √ GME

R3
E

 (R2
E � r 2).

Ks � Us � Kr � Ur or 0 � 1
2 kRE

2 � 1
2 mv2 � 1

2 kr 2.

k � GmME /R3
E .

1
2 kr 2,

F
B

� � (GmME /R3
E)rBrB,

F
B

rB

F � G
mM

r 2 � G
mMEr 3

r 2R3
E

�
GmME

R3
E

r.

M

ME
�

4
3�r 3

4
3�R3

E
or M � ME

r 3

R3
E

.
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Figure 14-9. Gravitational attraction of a section of a spheri-
cal shell of matter on a particle of mass m at a point P inside the
shell.
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Figure 14-10. Sample Problem 14-4. A particle moves in a
tunnel through the Earth.



However, this applies only near the Earth’s surface, where
(for changes in height that are small compared with the dis-
tance from the center of the Earth) we can regard the gravi-
tational force as approximately constant. Our goal here is to
find a general expression that applies at all locations, such
as at the altitude of an orbiting satellite.

The potential energy difference can be found from Eq.
12-4: �U � Ub � Ua � � Wab , where Wab is the work done
by the force when the system changes from configuration a
to configuration b. However, this equation applies only if the
force is conservative. Is the gravitational force conservative?

Figure 14-11 shows a particle of mass m moving in a re-
gion where a gravitational force is exerted on it by a parti-
cle of mass M. Particle m moves from a to b along several
different paths: path 1 (aAb), path 2 (aBb), and path 3
(aCDEFGHb). The paths consist of straight segments along
a radius and curved segments along arcs of circles centered
at M. Along every curved segment such as aC,
for a small displacement because is perpendicular to

We therefore have, for the work done by the gravita-
tional force along path 1,

where the last step follows because rA � rb . Similarly,

with rB � ra . Finally, for path 3,

� �rD

ra

F
B

�d sB � �rF

rD

F
B

�d sB � �rb

rF

F
B

�d sB � �rb

ra

F
B

�d sB,

� �rD

rC

F
B

�d sB � �rF

rE

F
B

�d sB � �rH

rG

F
B

�d sB

� WCD � WEF � WGH

W3 � WaC � WCD � WDE � WEF � WFG � WGH � WHb

W2 � WaB � WBb � WBb � �rb

rB

F
B

�d sB � �rb

ra

F
B

�d sB

W1 � WaA � WAb � WaA � �rA

ra

F
B

�d sB � �rb

ra

F
B

�d sB,

d sB.
F
B

d sB,
F
B

�d sB � 0

where we have used the rules of calculus for combining in-
tegrals with identical upper and lower limits.

It is clear from this calculation that W1 � W2 � W3 ,
and you should convince yourself that any path from a to b
can be represented as a combination of such radial and tan-
gential segments and thus will give the same value for the
work. Clearly the work is independent of the path, and the
gravitational force is conservative.

Calculating the Potential Energy
Now that we have established that the gravitational force is
conservative, we can calculate the potential energy. Figure
14-12 shows a particle of mass m moving from a to b along
a radial path. A particle of mass M, which we assume to be
at rest at the origin, exerts a gravitational force on m. The
vector locates the position of m relative to M at any time.
As m moves from a to b, the work done on m by the gravi-
tational force is

(14-14)

The negative sign in the first line of this equation arises be-
cause the (attractive) force and the infinitesimal radial
vector point in opposite directions. Equation 14 -14
shows that, when (as in Fig. 14-12), the work Wab is
negative, as we expect. However, we can also show that Eq.
14-14 applies when m moves inward from a point a to an-
other point b; that is, when the force and displace-
ment are in the same direction and the work is positive,
consistent with Eq. 14-14.

Applying Eq. 12-4 we can find the
change in the potential energy of the system as m moves
between points a and b

(14-15)�U � Ub � Ua � �Wab � GMm � 1

ra

�
1

rb
� .

(�U � �Wab),

ra � rb,

rb � ra

d rB
F
B

� �GMm ��
1

r � �rb

ra

� GMm � 1

rb

�
1

ra
� .

� ��rb

ra

GMm

r 2 dr � �GMm �rb

ra

dr

r 2

Wab � �b

a
F
B

�d rB � ��b

a

F dr

rB
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Figure 14-11. A particle of mass m moves from a to b along
three different paths. A gravitational force is exerted on m by a
particle of mass M.
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If m moves outward from a to b, the change in potential en-
ergy is positive That is, if the particle passes
through point a with a certain kinetic energy Ka, as it trav-
els to b its gravitational potential energy increases as its ki-
netic energy decreases Conversely, if the parti-
cle is moving inward, its potential energy decreases as its
kinetic energy increases.

Instead of differences in potential energy, we can con-
sider the value of the potential energy at a single point if we
define a reference point. We choose our reference configu-
ration to be an infinite separation of the particles, and we
define the potential energy to be zero in that configuration.
Let us evaluate Eq. 14-15 for and If a rep-
resents any arbitrary point, where the separation between
the particles is r, then Eq. 14-15 becomes

(14-16)

or

(14-17)

Equation 14-17 shows that, with this choice of the refer-
ence configuration, the potential energy is negative at any
finite separation, and it increases toward zero as the sepa-
ration increases (consistent with our discussion of the sign
of following Eq. 14-15). This results from the attrac-
tive character of the gravitational force: as m moves out-
ward from separation r to infinity, the work done on m
by the gravitational force is negative,
is positive, and so is negative, in agreement with 
Eq. 14-17.

Equation 14-17 shows that the potential energy is a
property of the system consisting of the two particles M and
m, rather than of either body alone. The potential energy
changes whether M or m is displaced; each is acted on by
the gravitational force of the other. It also does not make
any sense to assign part of the potential energy to M and
part of it to m. Often, however, we do speak of the potential
energy of a body m (planet or stone, say) acted on by the
gravitational force of a much more massive body M (Sun or
Earth, respectively). The justification for speaking as
though the potential energy belongs to the planet or to the
stone alone is this: When the potential energy of a system
of two bodies changes into kinetic energy, the lighter body
gets most of the kinetic energy. The Sun is so much more
massive than a planet that the Sun receives hardly any of
the kinetic energy; the same is true for the Earth in the
Earth– stone system.

We can reverse the previous calculation and derive the
gravitational force from the potential energy. For spheri-
cally symmetric potential energy functions, the relation
F � � dU/dr gives the radial component of the force; see
Eq. 12-7. With the potential energy of Eq. 14-17, we obtain

(14-18)F � �
dU

dr
� �

d

dr ��
GMm

r � � �
GMm

r 2 .

U(r)
�U � U(�) � U(r)

�U

U(r) � �
GMm

r
.

U(�) � U(r) � GMm � 1

r
� 0�

Ub � 0.rb � �

(Kb � Ka).

(Ub � Ua ).
The minus sign here shows that the force is attractive, di-
rected inward along a radius.

We can show that the potential energy defined according
to Eq. 14-15 leads to the familiar mgy for a small difference
in elevation y near the surface of the Earth. Let us evaluate
Eq. 14-15 for the difference in potential energy between the
location at a height y above the surface (that is, rb � RE �
y, where RE is the radius of the Earth) and the surface (ra �
RE):

When y �� RE , which would be the case for small dis-
placements of bodies near the Earth’s surface, we can use
the binomial expansion to approximate the last term as

which gives

using Eq. 14-5 to replace with g. This shows that
Eq. 14-15 for the difference in gravitational potential en-
ergy is consistent with our previous use of mgy for situa-
tions near the Earth’s surface. In fact, we can use the ap-
proximation �U � mgy for the difference in potential
energy between two elevations at any distance R from the
center of the Earth, as long as y �� R and we use the value
of g (see Table 14-1) appropriate for that R.

Sample Problem 14-5. A satellite, orbiting at an alti-
tude of two Earth’s radii above its surface, launches an equipment
canister of mass m toward the Earth’s center with a speed of
vi � 525 m/s. With what speed vf does the canister enter the
Earth’s atmosphere (a distance of h � 100 km above its surface)?

Solution We can analyze this problem using conservation of en-
ergy. At the canister’s launch it has kinetic energy and
potential energy (where ri � 3RE), and when it
enters the atmosphere it has kinetic energy and poten-
tial energy (where rf � RE � h). With Ki �
Ui � Kf � Uf , we obtain

or, solving for and substituting ri � 3RE and rf � RE � h,

so vf � 9.05 � 103 m/s. Note that this value is independent of the
mass of the canister and of the path it follows.

� 8.18 � 107 m2/s2,

� � 1

3(6.37 � 106 m)
�

1

6.47 � 106 m �
� (525 m/s)2 � 2(6.67 � 10�11 N �m2/kg2)(5.98 � 1024 kg)

v2
f � v2

i � 2GME � 1

3RE
�

1

RE � h �
v2

f

1
2 mv2

i �
GME m

ri
� 1

2 mv2
f �

GME m

rf

Uf � �GMEm /rf

Kf � 1
2 mv 2

f

Ui � �GMEm /ri

Ki � 1
2 mv2

i

GME/R2
E

�U �
GMEm

RE
�1 � �1 �

y

RE
�	 �

GMEmy

R2
E

� mgy,

(1 � x)�1 � 1 � x � ��� � 1 � x,

�
GMEm

RE
�1 �

1

1 � y/RE
� .

�U � U(RE � y) � U(RE) � GMEm � 1

RE
�

1

RE � y �
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Sample Problem 14-6. On a straight-line path from
the Earth to the Moon, the (negative) gravitational potential en-
ergy of a projectile of mass m increases as the distance from the
Earth increases, reaches a maximum at point X somewhere be-
tween the two bodies, and then decreases again as the projectile
approaches the surface of the Moon. (a) Find the distance of point
X from the Earth’s center. (b) With what minimum kinetic energy
must we launch a 1-kg projectile from the Moon’s surface if we
want it to reach the Earth?

Solution (a) Let D represent the distance from the center of the
Earth to the center of the Moon (the Moon’s orbital radius). Then
when the projectile is a distance x from the center of the Earth
(and D � x from the center of the Moon), its potential energy is

To find where the maximum occurs, we take the derivative dU/dx
and set it equal to 0:

Solving, we find which evaluates to
3.44 � 108 m (about 90% of the way along the line from the
Earth to the Moon).
(b) As the projectile leaves the Moon, its kinetic energy decreases
as it moves toward point X, and then its kinetic energy increases
as it “coasts” back to Earth. The minimum launch kinetic energy
corresponds to the projectile arriving at point X with zero kinetic
energy. We apply conservation of energy in the form Ki � Ui �
KX � UX , where i represents the Moon’s surface. Taking KX to be
zero for the minimum condition, we have

Evaluating the numerical factors in this expression, we find Ki �
1.53 � 106 J, corresponding to a speed of about 1750 m/s.

Escape Speed
A projectile fired upward from the Earth’s surface will usu-
ally slow down, come momentarily to rest, and return to
Earth. For a certain initial speed, however, it will move up-
ward forever, with its speed decreasing gradually to zero
just as its distance from Earth approaches infinity. The ini-
tial speed for this case is called the escape speed.

We can find the escape speed v for the Earth (or any
other body from which a projectile might be launched) us-
ing conservation of energy. The projectile, of mass m,
leaves the surface of the body, of mass M and radius R, with
a kinetic energy and potential energy Ui �
� GMm/R. When the projectile reaches infinity, it has zero
potential energy and zero kinetic energy (since we are seek-
ing the minimum speed for escape). Thus Uf � 0 and Kf �
0, and with Ki � Ui � Kf � Uf we obtain

1
2 mv2 � � �GMm

R � � 0

Ki � 1
2 mv2

Ki � UX � Ui � �� GmME

x
�

GmMM

D � x � � �� GmMM

RM
� .

x � D(1 � √MM /ME )�1,

dU

dx
�

GmME

x2 �
GmMM

(D � x)2 � 0.

U(x) � �
GmME

x
�

GmMM

D � x
.

and solving for v we find

(14-19)

Table 14-2 shows values of the escape speed for Earth and
for some other bodies.

The escape speed does not depend on the direction in
which the projectile is fired. The Earth’s rotation—which
we have not considered in this calculation—does play a
role, however. Firing eastward has an advantage in that the
Earth’s tangential surface speed, which is 0.46 km/s at
Cape Canaveral, provides part of the kinetic energy needed
for escape, and thus less thrust from the rocket engines
would be required to escape the Earth’s gravity.

Potential Energy of Many-Particle Systems
We now consider another interpretation for U(r). Consider
two objects, of masses m and M, separated by an infinitely
large distance and at rest. We take one of the particles (m,
for example) and move it slowly and at constant velocity
toward the other, until the separation of the two particles is
r. To move the particle at constant velocity, the net work
done on the particle must be zero: Wnet � Wext � Wgrav � 0,
where Wext is the work done by our hand and Wgrav is the
work done by the gravitational force. From Eq. 14-14, the
work done by the gravitational force as the object moves
from infinite separation to a separation r is Wgrav � W�r �
GMm/r. Thus the work done by our hand is Wext �
� Wgrav � � GMm/r. Noting that this is equal to U(r) as
given in Eq. 14-17, we can give this alternative view of the
potential energy:

The potential energy of a system of particles is equal to
the work done by an external agent to assemble the sys-
tem, starting from the standard reference configuration.

Here “standard reference configuration” means that the par-
ticles start out at rest at infinite separation. As we have
seen, we also specify that the final assembled system is at
rest in the same reference frame in which the particles are
at rest in their initial state.

v � √ 2GM

R
.
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Mass Radius Escape Speed
Body (kg) (m) (km/s)

Ceresa 1.17 � 1021 3.8 � 105 0.64
Moon 7.36 � 1022 1.74 � 106 2.38
Earth 5.98 � 1024 6.37 � 106 11.2
Jupiter 1.90 � 1027 7.15 � 107 59.5
Sun 1.99 � 1030 6.96 � 108 618
Sirius Bb 2 � 1030 1 � 107 5200
Neutron star 2 � 1030 1 � 104 2 � 105

aThe most massive of the asteroids.
bA white dwarf, the companion of the bright star Sirius.

Table 14-2 Some Escape Speeds



These considerations also hold for systems that contain
more than two particles. Consider three bodies of masses
m1 , m2 , and m3 . Let them initially be at rest infinitely far
from one another. The problem is to compute the work
done by an external agent to bring them into the positions
shown in Fig. 14-13. We first bring m1 in from infinity to its
final position and hold it in place. No work is done by grav-
ity or the external agent because the separation between the
three particles remains infinite. Let us then bring m2 in to-
ward m1 from an infinite separation to the separation r12 and
then hold it in place. The work done by the external agent
in opposing the gravitational force exerted by m1 on m2 is
� Gm1m2/r1 2 . Now let us bring m3 in from infinity to the
separation r13 from m1 and r23 from m2 . The work done by
the external agent opposing the gravitational force exerted
by m1 on m3 is � Gm1m3/r13 , and that opposing the gravita-
tional force exerted by m2 on m3 is � Gm2m3/r23 . The total
potential energy of this system is equal to the total work
done by the external agent in assembling the system, or

(14-20)

Note that because work is a scalar, no vector calculations
are needed in this procedure.

No matter how we assemble the system— that is, re-
gardless of the order in which the particles are moved or the
paths they take—we always find this same amount of work
required to bring the bodies into the configuration of Fig.
14-13 from an initial infinite separation. The potential en-
ergy must therefore be associated with the system rather
than with any one or two bodies. If we wanted to separate
the system into three isolated masses once again, we would
have to supply an amount of energy

This energy is regarded as the binding energy holding the
particles together in the configuration shown.

These concepts occur again in connection with forces of
electric or magnetic origin, or, in fact, of nuclear origin.
Their application is rather broad in physics. An advantage
of the energy method over the dynamical method is that the
energy method uses scalar quantities and scalar operations
rather than vector quantities and vector operations. When
the actual forces are not known, as is often the case in nu-
clear physics, the energy method is essential.

E � �� Gm1m2

r12
�

Gm1m3

r13
�

Gm2m3

r23
� .

U � �� Gm1m2

r12
�

Gm1m3

r13
�

Gm2m3

r23
� .

14-7 THE MOTIONS OF
PLANETS AND SATELLITES

Using Newton’s laws of motion and law of universal gravi-
tation, we can understand and analyze the behavior of all
the bodies in the solar system: the orbits of the planets and
comets about the Sun and of natural and artificial satellites
about their planets. We make two assumptions that simplify
the analysis: (1) we consider the gravitational force only
between the orbiting body (the Earth, for instance) and the
central body (the Sun), ignoring the perturbing effect of the
gravitational force of other bodies (such as other planets);
(2) we assume that the central body is so much more mas-
sive than the orbiting body that we can ignore its motion
under their mutual interaction. In reality, both objects orbit
about their common center of mass, but if one object is
very much more massive than the other, the center of mass
is approximately at the center of the more massive body.

The empirical basis for understanding the motions of
the planets is three laws deduced by Kepler (1571–1630,
well before Newton) from studies of the motion of the
planet Mars. We now show how Kepler’s laws can be de-
rived from Newton’s laws of motion and his law of gravita-
tion.

1. The Law of Orbits: All planets move in elliptical or-
bits having the Sun at one focus. Newton was the first to re-
alize that there is a direct mathematical relationship be-
tween inverse-square (1/r 2) forces and elliptical orbits.
Figure 14-14 shows a typical elliptical orbit. The origin of
coordinates is at the central body, and the orbiting body is
located at polar coordinates r and 	. The orbit is described
by two parameters: the semimajor axis a and the eccentric-
ity e. The distance from the center of the ellipse to either fo-
cus is ea. A circular orbit is a special case of an elliptical
orbit with e � 0, in which case the two foci merge to a sin-
gle point at the center of the circle. For Earth and most
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m1

m2
m3

r13

r23

r12

Figure 14-13. Three masses brought together from infinity
and held in place by nongravitational forces.

Figure 14-14. A planet of mass m moving in an elliptical or-
bit around the Sun. The Sun, of mass M, is at one focus of the el-
lipse. F� marks the other or “empty” focus. The semimajor axis a
of the ellipse, the perihelion distance Rp , and the aphelion distance
Ra are also shown. The distance ea locates the focal points, e be-
ing the eccentricity of the orbit.

m

M

F'

Ra
Rp

ea

a

r



other planets in the solar system, the eccentricities are small
and the orbits are nearly circular, as shown in Appendix C.

The maximum distance Ra of the orbiting body from the
central body is indicated by the prefix apo- (or sometimes
ap-), as in aphelion (the maximum distance from the Sun)
or apogee (the maximum distance from Earth). Similarly,
the closest distance Rp is indicated by the prefix peri-, as in
perihelion or perigee. As you can see from Fig. 14-14,
Ra � a(1 � e) and Rp � a(1 � e). For circular orbits, Ra �
Rp � a.

2. The Law of Areas: A line joining any planet to the
Sun sweeps out equal areas in equal times. Figure 14-15 il-
lustrates this law; in effect it says that the orbiting body
moves more rapidly when it is close to the central body
than it does when it is far away. We now show that the law
of areas is identical with the law of conservation of angular
momentum.

Consider the small area increment � A covered in a 
time interval �t, as shown in Fig. 14-15b. The area of this
approximately triangular wedge is one-half its base, r �	,
times its height r. The rate at which this area is swept out is

In the instantaneous limit this be-
comes

Assuming we can regard the more massive body M as at
rest, the angular momentum of the orbiting body m relative

dA

dt
� lim

�t : 0

�A

�t
� lim

�t : 0

1
2 r 2 �	

�t
� 1

2 r 2�.

�A /�t � 1
2 (r �	)(r)/�t.

to the origin at the central body is, according to Eq. 10-12,
Lz � I� � mr 2� (choosing the z axis perpendicular to the
plane of the orbit). Thus

(14-21)

If the system of M and m is isolated, meaning that there is
no net external torque on the system, then (see Eq. 10-9) Lz

is a constant; therefore, according to Eq. 14-21, dA/dt is
also constant. That is, in every interval dt in the orbit, the
line connecting m and M sweeps out equal areas dA, which
verifies Kepler’s second law. The speeding up of a comet as
it passes close to the Sun is an example of this effect and is
thus a direct consequence of the law of conservation of an-
gular momentum.

3. The Law of Periods: The square of the period of any
planet about the Sun is proportional to the cube of the
planet’s mean distance from the Sun. Let us prove this re-
sult for circular orbits. The gravitational force provides the
necessary centripetal acceleration for circular motion:

(14-22)

Replacing the speed v with 2�r/T, where T is the rotational
period (the time for a full orbit), we obtain

(14-23)

A similar result is obtained for elliptical orbits, with the ra-
dius r replaced by the semimajor axis a.*

The relationship between T 2 and a3 should be deter-
mined by the quantity 4�2/GM. For all planets orbiting the
Sun, the ratio T 2/a3 should be a constant; Table 14-3 shows
that this is indeed the case. If we can measure T and a for
an orbiting body, we can determine the mass of the central
body. This procedure is independent of the mass of the or-
biting body, and so it gives no information about its mass.

T 2 � � 4� 2

GM � r 3.

GMm

r 2 � m
v2

r
.

dA

dt
�

Lz

2m
.
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Figure 14-15. (a) The equal shaded areas are covered in
equal times by a line connecting the planet to the Sun, demonstrat-
ing the law of areas. (b) The area � A is covered in a time �t, dur-
ing which the line sweeps through an angle �	.

M

(a)

(b)

M

r

∆

r∆

∆A
Semimajor Axis Period T 2/a3

Planet a (1010 m) T (y) (10�34 y2/m3)

Mercury 5.79 0.241 2.99
Venus 10.8 0.615 3.00
Earth 15.0 1.00 2.96
Mars 22.8 1.88 2.98
Jupiter 77.8 11.9 3.01
Saturn 143 29.5 2.98
Uranus 287 84.0 2.98
Neptune 450 165 2.99
Pluto 590 248 2.99

Table 14-3 Kepler’s Law of Periods for the Solar
System

*See, for example, Newtonian Mechanics, by A. P. French (Norton, 1971),
pp. 585–591.



Sample Problem 14-7. (a) Compute the mass of the
Sun from the period and radius of the Earth’s orbit. (b) Compute
the mass of Jupiter from the period (1.77 d) and orbital radius
(4.22 � 105 km) of its second closest moon, Io.

Solution (a) From Eq. 14-23, we have

(b)

Note that the mass of Jupiter cannot be obtained from the parame-
ters of its orbit about the Sun; to determine the mass of an object
from Kepler’s third law, we need to know the period and semima-
jor axis of objects that orbit about it as the central body.

Sample Problem 14-8. It is desired to place a commu-
nications satellite into orbit so that it remains fixed above a given
spot on the equator of the rotating Earth. What is the height above
the Earth of such an orbit?

Solution For the satellite to remain above a given point on the
Earth’s surface, it must rotate with the same angular velocity as
the point. The period of the satellite must therefore be 24 h or
86,400 s. The radius of the orbit must then be

and its height above the Earth’s surface is

This orbit is called the Clarke Geosynchronous Orbit after Arthur
C. Clarke, who first proposed the idea in 1948. Clarke is also well
known as the author of many works of science fiction, including
2001—A Space Odyssey.

Sample Problem 14-9. Halley’s comet (Fig. 14-16)
has a period of 76 years. In 1986, its closest approach to the Sun
(perihelion) was 8.8 � 1010 m (between the orbits of Mercury and
Venus). Find its aphelion, or farthest distance from the Sun, and
the eccentricity of its orbit.

Solution From Eq. 14-23 (in which M is the mass of the Sun) we
find the semimajor axis:

� 2.7 � 1012 m.

� � (6.67 � 10�11 N �m2/kg2)(2.4 � 109 s)2(2.0 � 1030 kg)

4� 2 �
1/3

a � � GT 2M

4� 2 �
1/3

� 3.58 � 107 m � 22,300 mi.
h � r � RE � 4.22 � 107 m � 6.37 � 106 m

� 4.22 � 107 m,

� � (6.67 � 10�11 N �m2/kg2)(86,400 s)2(5.98 � 1024 kg)

4� 2 �
1/3

r � � GT 2ME

4� 2 �
1/3

� 1.90 � 1027 kg.

M �
4� 2(4.22 � 108 m)3

(6.67 � 10�11 N �m2/kg2)(1.53 � 105 s)2

� 2.01 � 1030 kg.

M �
4� 2r 3

GT 2 �
4� 2(1.50 � 1011 m)3

(6.67 � 10�11 N �m2/kg2)(3.15 � 107 s)2

From Fig. 14-14 we see that Rp � Ra � 2a, so

between the orbits of Neptune and Pluto. Also from Fig. 14-14 we
have Rp � a � ea � a(1 � e), so

Such a large eccentricity (1.0 is the maximum possible) corre-
sponds to a long, thin ellipse.

Energy Considerations in Planetary and
Satellite Motion
Consider again the motion of a body of mass m (planet or
satellite, say) about a massive body of mass M (Sun or
Earth, say). We consider M to be at rest in an inertial refer-
ence frame, with the body m moving about it in a circular
orbit with tangential speed v and angular speed �. The po-
tential energy of the system is

where r is the radius of the circular orbit. The kinetic en-
ergy of the system is

the Sun being at rest. From Eq. 14-22 we obtain

so that (with v � �r)

(14-24)

The total mechanical energy is

(14-25)

This energy is constant and negative. The kinetic energy
can never be negative, but from Eq. 14-24 we see that it

E � K � U �
GMm

2r
�

GMm

r
� �

GMm

2r
.

K �
GMm

2r
.

�2r 2 �
GM

r
,

K � 1
2 mv2 � 1

2 m�2r 2,

U(r) � �
GMm

r
,

e � 1 �
Rp

a
� 1 �

8.8 � 1010 m

2.7 � 1012 m
� 0.97.

� 5.3 � 1012 m,
Ra � 2a � Rp � 2(2.7 � 1012 m) � 8.8 � 1010 m
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Figure 14-16. Halley’s comet, photographed during its 1986
approach to the Sun.



must go to zero as the separation goes to infinity. The po-
tential energy is always negative except for its zero value at
infinite separation. The meaning of the total negative en-
ergy then is that the system is a closed one, the planet m al-
ways being bound to the attracting solar center M and never
escaping from it (Fig. 14-17).

It can be shown* that Eq. 14-25 is also valid for ellipti-
cal orbits, if we replace r by the semimajor axis a. The total
energy is still negative, and it is also constant, because
gravitational forces are conservative. Hence both the total
energy and the total angular momentum are constant in
planetary motion. These quantities are often called con-
stants of the motion.

Because the total energy does not depend on the eccen-
tricity of the orbit, all orbits with the same semimajor axis a
have the same total energy. Figure 14-18 shows several dif-
ferent orbits that have the same energy.

If we supply the proper amount of kinetic energy, we can
arrange for the total energy to be zero or positive, in which
case the orbits are no longer elliptical. The orbits are para-
bolic for E � 0 and hyperbolic for E � 0. This case often
occurs in the scattering of particles from a nucleus, where
the electrostatic force also varies as 1/r2. The spacecraft Pi-
oneer 10 was given enough initial kinetic energy to allow it
to escape from the solar system; launched on March 3,
1972, it passed the orbit of Pluto, the outermost planet, on
June 14, 1983, outward bound on a hyperbolic path.

Equation 14-25 shows that we cannot change the speed
of an orbiting satellite without also changing the radius of

its orbit. For example, suppose two satellites are following
one another in the same circular orbit. If the trailing satel-
lite tries to catch the leading one by accelerating forward,
thereby increasing the kinetic energy, the total energy be-
comes less negative and the radius increases. Docking two
spacecraft is not just a simple exercise in edging one craft
forward! In fact, as the following sample problem shows,
the proper procedure to use in overtaking an orbiting space-
craft often involves slowing down rather than speeding up.

Sample Problem 14-10. Two identical spacecraft,
each with a mass of 3250 kg, are in the same circular orbit at a
height of 270 km above the Earth’s surface. Spacecraft A leads
spacecraft B by 105 s; that is, A arrives at any fixed point 105 s
before B. At a particular point P (Fig. 14-19), the pilot of B fires a
short rocket burst in the forward direction, reducing the speed of B
by 0.95%. Find the orbital parameters (energy, period, semimajor
axis) of B before and after the “burn,” and find the order of the
two ships when they next return to point P.

Solution For h � 270 km, r � RE � h � 6370 km � 270 km �
6640 km. Thus, before firing the rockets, a � 6640 km and, from
Eq. 14-25,

The period follows from Eq. 14-23:

Equations 14-24 and 14-25 show that (for a circular orbit only!)
the kinetic energy is numerically equal to the negative of the total
energy, so K � � 9.76 � 1010 J and

v � √ 2K

m
� √ 2(9.76 � 1010 J)

3250 kg
� 7.75 � 103 m/s.

� 5380 s.

� � 4� 2(6.64 � 106 m)3

(6.67 � 10�11 N �m2/kg2)(5.98 � 1024 kg) �
1/2

T � � 4� 2a3

GME
�

1/2

� �9.76 � 1010 J.

� �
(6.67 � 10�11 N �m2/kg2)(3250 kg)(5.98 � 1024 kg)

2(6.64 � 106 m)

E � �
GmME

2a
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Energy
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r

E = K + U
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*See reference on p. 312.

Figure 14-17. Kinetic energy K, potential energy U, and to-
tal energy E � K � U of a body in circular planetary motion. A
planet with total energy E0 � 0 will remain in an orbit with radius
r0 . The greater the distance from the Sun, the greater (that is, less
negative) its total energy E. To escape from the center of force and
still have kinetic energy at infinity, the planet would need positive
total energy.

M

0
0.5

0.8

0.9

Figure 14-18. All four orbits have the same semimajor axis
a and thus correspond to the same total energy E. Their eccentrici-
ties are marked.



After the burn, the speed decreases by the given amount of 0.95%
to v� � (1 � 0.0095)v � 7.68 � 103 m/s, and the new kinetic en-
ergy of B is

The potential energy of B at point P immediately after the short
burn is unchanged, equal to the initial value E � K or 2E, accord-
ing to Eq. 14-25. The total energy E� of B after the burn must then
be

and the new semimajor axis is, from Eq. 14-25,

a reduction of 1.8% from the value in the original orbit. The corre-
sponding period is

The difference in the periods is 140 s. That is, if A originally
passes through point P at t � 0 and B passes through (and fires its
rockets) at t � 105 s, then A returns to P at t � 5380 s (deter-
mined by the period T ), and B returns to P at 5240 s after its ini-
tial passage, or at t � 105 s � 5240 s � 5345 s. Thus B is now
35 s ahead of A at point P. Now B can fire a second rocket burst
identical in strength and duration to the first but in the reverse di-
rection. This returns B to the original circular orbit, now 35 s
ahead of A. Figure 14-19 shows the relationship between A and B
during the first orbit after the burn. Note that after the burn, B
moves in an elliptical orbit and so can pass A without colliding be-
cause A remains in the original circular orbit.

� 5240 s.

� � 4� 2(6.52 � 106 m)3

(6.67 � 10�11 N �m2/kg2)(5.98 � 1024 kg) �
1/2

T� � � 4� 2a�3

GME
�

1/2

� 6.52 � 106 m � 6520 km,

� �
(6.67 � 10�11 N �m2/kg2)(3250 kg)(5.98 � 1024 kg)

2(�9.94 � 1010 J)

a� � �
GmME

2E�

� �9.94 � 1010 J,

E� � K� � U� � 9.58 � 1010 J � 2(�9.76 � 1010 J)

K� � 1
2 (3250 kg)(7.68 � 103 m/s)2 � 9.58 � 1010 J.
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See Exercise 38 to help understand how B can reduce its speed
at P and still get ahead of A.

14-8 THE GRAVITATIONAL
FIELD (Optional)

A basic fact of gravitation is that two particles exert forces
on one another. We can think of this as a direct interaction
between the two particles, if we wish. This point of view is
called action-at-a-distance, the particles interacting even
though they are not in contact. Another point of view is the
field concept, which regards a particle as modifying the
space around it in some way and setting up a gravitational
field. This field, the strength of which depends on the mass
of the particle, then acts on any other particle, exerting the
force of gravitational attraction on it. The field therefore
plays an intermediate role in our thinking about the force
that one particle exerts on another.

According to this view we have two separate parts to
our problem. First, we must determine the gravitational
field established by a given distribution of particles. Sec-
ond, we must calculate the gravitational force that this field
exerts on another particle placed in it.

We use this same approach later in the text when we
study electromagnetism, in which case particles with elec-
tric charge set up an electric field, and the force on another
charged particle is determined by the strength of the electric
field at the location of the particle.

Let us consider the Earth as an isolated particle and ig-
nore all rotational and other nongravitational effects (so that
g and g0 are equivalent). We use a small test body of mass
m0 as a probe of the gravitational field. If this body is
placed in the vicinity of the Earth, it will experience a force
having a definite direction and magnitude at each point in
space. The direction is radially in toward the center of the
Earth, and the magnitude is m0g. We can associate with
each point near the Earth a vector which is the accelera-
tion that a body would experience if it were released at this
point. We define the gravitational field strength at a point as
the gravitational force per unit mass at that point or, in
terms of our test mass,

(14-26)

By moving the test mass to various positions, we can make
a map showing the gravitational field at any point in space.
We can then find the force on a particle at any point in that
field by multiplying the mass m of the particle by the value
of the gravitational field at that point: Figure
14-20 shows examples of gravitational fields.

The gravitational field is an example of a vector field,
each point in this field having a vector associated with it.
There are also scalar fields, such as the temperature field in
a heat-conducting solid. The gravitational field arising from

F
B

� mgB.gB

gB �
F
B

m 0
.

gB,

A

B
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A
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P'

a' (1 – e)

Figure 14-19. Sample Problem 14-10. The orbits of space-
craft A and B are shown. Note that B catches A by moving to a
noncircular orbit at lower height above the Earth. The relative size
of the Earth and the orbital heights is not to scale.



a fixed distribution of matter is also an example of a static
field, because the value of the field at a given point does not
change with time.

The field concept is particularly useful for understand-
ing electromagnetic forces between moving electric
charges. It has distinct advantages, both conceptually and in
practice, over the action-at-a-distance concept. The field
concept is particularly superior in the analysis of electro-
magnetic waves (for example, light or radio waves); action-
at-a-distance suggests that forces can be transmitted in-
stantly over any distance, whereas in theories based on
fields the forces propagate at a finite speed (at most the
speed of light). Gravitational waves, which have been pre-
dicted but not yet directly observed, would be similarly dif-
ficult to understand in the action-at-a-distance theory. The
field concept, which was not used in Newton’s day, was de-
veloped much later by Faraday for electromagnetism before
it was applied to gravitation. Subsequently, this point of
view was adopted for gravitation in the general theory of
relativity. All present theories dealing with the ultimate na-
ture of matter and the interactions between the fundamental
particles are field theories of one kind or another. �

14-9 MODERN DEVELOPMENTS
IN GRAVITATION (Optional)

Newton’s theory of gravitation provided the basis for un-
derstanding a wide variety of terrestrial and astronomical
observations. However, discoveries in the 20th century have

suggested areas in which the theory is incomplete. For ex-
ample, in locations where the gravitational force is strong,
such as near a neutron star (a very compact star) or a black
hole, Newton’s law gives incorrect results and must be re-
placed by a different approach, called the general theory of
relativity, which was developed by Albert Einstein in 1916.
Even in our own solar system, the planet Mercury moves
sufficiently close to the Sun that it experiences a gravita-
tional force strong enough to cause small but easily mea-
sured deviations from the Newtonian prediction for its or-
bit. Where the gravitational force is weaker, Einstein’s
theory reduces to Newton’s, so we are perfectly safe in us-
ing Newton’s theory to analyze the orbits of planets further
from the Sun or to calculate the trajectories necessary to
send space probes to the distant planets, which has been
done with truly incredible precision. In this section we dis-
cuss several areas in which Newton’s theory seems to be in-
complete or incorrect.

Dark Matter
Figure 14-21 shows galaxies whose spiral structures are
very similar to our own Milky Way galaxy. Such galaxies,
which typically contain 1011 stars, are characterized by a
bright central region and spiral arms in a flat disk. The en-
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Figure 14-20. Examples of gravitational field line diagrams.
The directions of the field lines (or that of the tangents to the lines,
if they are curved) give the field direction at any point, and the
density of field lines (number per unit area crossing a surface per-
pendicular to the lines) indicates the relative magnitudes of the
fields. (a) The uniform field close to the Earth’s surface. The field
has the same magnitude and direction at all locations. The number
of lines per unit area on plane surface A parallel to the surface is
the same as that on plane surface B, indicating that the fields have
the same magnitudes (b) The field of the Earth (or
any other isolated spherical body). The field points radially inward,
and the density of field lines (number per unit area) on spherical
surface C is smaller than that on surface D (� gBC � � � gBD �).

(� gBA � � � gBB �).

Figure 14-21. Typical spiral galaxies similar to our Milky
Way, viewed from two different perspectives, one normal to the
plane and one along the plane.



tire structure rotates about an axis perpendicular to the
plane of the disk. Our Sun lies in one of the spiral arms of
the Milky Way, about 2/3 of the way out from the center of
the galaxy, and moves with a tangential speed of about
220 km/s, which corresponds to a full rotation every 240
million years.

The bright central region contains most of the mass of
the galaxy. If we apply Kepler’s third law to the rotation of
a star like the Sun in one of the spiral arms a distance r
from the center, we can solve Eq. 14-22 for the tangential
speed of rotation v and obtain

(14-27)

where M refers to the mass contained within the radius r.
To the extent that we can ignore the effect of stars at larger
radii, we would expect that v should decrease at increasing
radii like r�1/2. Figure 14-22 shows this expectation for
stars in our galaxy and also shows that the observed data do
not agree with this behavior at radii beyond the Sun. In-
stead, the speed seems to increase at larger r. Similar obser-
vations have been made for other galaxies.

One possible explanation for this discrepancy is the
breakdown of Newton’s law of gravitation at these large
distances; that is, perhaps the form of the law contains an
additional term that is negligible at separation distances
where we have done careful measurements (in the labora-
tory and in the solar system) but becomes important at
much larger distances. Over the years, other such small cor-
rections to the dependence of Newton’s law on separation
distance have been investigated, but as yet there is no ex-
perimental evidence for anything but a 1/r 2 behavior. A dif-
ferent explanation for the discrepancy of Fig. 14-22 is
based on the existence of additional matter in the galaxies
that is not visible to us but which exerts the gravitational

v � √ GM

r
,

force necessary to account for the data of Fig. 14-22. Sev-
eral different forms for this so-called dark matter have been
proposed: burnt-out stars, Jupiter-sized objects, and free el-
ementary particles; however, no firm evidence for the exis-
tence of this form of matter in the quantities necessary to
account for Fig. 14-22 has yet been obtained. Nevertheless,
it shows our faith in Newton’s law of gravitation that we are
more willing to accept the existence of new forms of matter
than a breakdown of the law of gravitation.

Additional evidence for the existence of dark matter is
found in the nature of the grouping of galaxies into clusters
and superclusters. Some astronomers estimate that dark
matter, made evident only by its gravitational effects, may
constitute as much as 90% of all the matter in the universe.
The British Astronomer Royal, Sir Martin Rees, has writ-
ten, “The entities that conventional astronomers observe
and call galaxies are no more than traces of sediment
trapped in the centers of vast swarms of invisible objects of
quite unknown structure. The gravity of this dark matter
holds galaxies together and molds their structures.”

Inertial Mass and Gravitational Mass
In Chapter 3 we discussed a procedure for assigning mass
to an object, by comparing its response to a given force
(that is, its acceleration) to that of a standard mass. This
comparison is made on the basis of Newton’s second law,
and the mass that appears in F � ma is called inertial mass.
We can also use a procedure based on Newton’s law of
gravitation to measure the mass of an object. Let us mea-
sure the force on a standard kilogram in the Earth’s gravita-
tional field (that is, its weight), and let us then determine
the force on our unknown mass in the same manner. Ac-
cording to Eq. 14-1, the ratio between those forces should
be the same as the ratio of the masses, and we thus have a
second method of determining mass. In this case we are
measuring the gravitational mass.

It seems reasonable to ask whether these masses are in
fact the same. Is inertial mass equal to gravitational mass?
There is nothing in Newton’s framework of dynamics that
requires them to be equal. Their equality must be regarded
in Newton’s theory as an amazing coincidence, but as we
shall see it arises in a natural way in Einstein’s general the-
ory of relativity.

Newton was the first to test the equality of inertial and
gravitational mass, using a pendulum made in the form of
an empty box. He filled the box with different quantities of
material and measured the period of the resulting pendu-
lum, which can be shown to depend on the ratio between
the inertial mass and gravitational mass of the material in
the box. Newton concluded that inertial and gravitational
mass were the same to about one part in 103.

A considerable improvement in the experiment was
made by Eötvös in 1909. He used a torsion balance with
different materials on the two ends, and he compared for
each material the gravitational mass (its weight) and the in-
ertial mass (determined from the inertial centrifugal force
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Figure 14-22. Tangential speeds of stars in our galaxy. The
solid line shows the dependence of v on r given by Eq. 14-27 and
calculated from Kepler’s law of periods, assuming the stars to be
attracted only by the large central mass of the galaxy. The discrep-
ancy between the measured points and the curve suggests that
there is unseen matter attracting the stars in the outer region of the
galaxy.
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owing to the Earth’s rotation). Any difference in inertial and
gravitational mass for the two materials would be observed
as a rotation of the torsion balance. Eötvös concluded that
inertial and gravitational mass were equal to within one part
in 109. Later experiments by Dicke in 1964 and Braginsky
in 1972 extended the limits to one part in 1011 to 1012 using
a similar torsion balance technique but referring it to the
Sun’s gravitational attraction and to the inertial centrifugal
force produced by the Earth’s orbit about the Sun. These
exceedingly precise experiments suggest that there is no
difference between inertial and gravitational mass, and they
force us to re-examine our laws of dynamics to account for
this apparently accidental equality.*

The Principle of Equivalence
Here is how the idea occurred to Einstein: “I was sitting in
a chair in the patent office in Bern when all of a sudden a
thought occurred to me: If a person falls freely he will not
feel his own weight. I was startled. This simple thought
made a deep impression on me. It impelled me toward a
theory of gravitation.”

Figure 14-23a shows a person in an isolated chamber in
free fall in the Earth’s gravity, and Fig. 14-23b shows a per-
son floating freely in interstellar space where the gravita-
tional fields are negligibly weak. No measuring instruments
that operate completely inside the chamber are able to dis-
tinguish between the two cases.

Einstein went one step further, as shown in Fig. 14-24.
Consider the person in the chamber at rest on the Earth
(Fig. 14-24a). A ball is observed to accelerate toward the
floor at 9.8 m/s2. A simple pendulum of a specified length
has a certain period of oscillation. A mass hung from a

spring stretches the spring by a certain amount. The floor
exerts a certain normal force on bodies resting on it.

Now suppose the chamber is part of a rocket in inter-
stellar space, and further suppose that the engines are fired
to give the rocket an acceleration of exactly 9.8 m/s2 (see
Fig. 14-24b). Our traveler now releases a ball and observes
it to move relative to the floor with that acceleration. The
pendulum oscillates normally, the mass stretches the spring
by the proper amount, and the floor exerts its correct nor-
mal force. In short, there is no experiment that can be done
inside the chamber that will distinguish between Fig. 14-
24a— the condition of rest in an inertial frame in a gravita-
tional field —and Fig. 14-24b—acceleration 
relative to an inertial frame in space of negligible gravity.
This is the principle of equivalence.

The equality of inertial and gravitational mass follows
directly from the principle of equivalence. Let an object rest
on a spring scale on the floor of the chamber. When the
chamber accelerates in the rocket, the floor must exert an
upward force mia to accelerate the object; here mi is the in-
ertial mass, and the spring balance reads the reaction force
(also mia) exerted by the object. When the chamber is at
rest in a gravitational field, on the other hand, the scale
reads the weight mgg (which depends on the gravitational
mass mg). We have arranged our experiments so that a � g,
and if the scale readings are to be identical (as demanded
by the principle of equivalence) then the inertial and gravi-
tational masses must be equal.

The General Theory of Relativity
General relativity is essentially a theory of geometry. It pro-
vides a procedure for constructing a coordinate system
whose very shape depends on the presence of matter and en-
ergy. In Einstein’s theory, matter bends or curves space; our
familiar rectangular coordinate system is no longer strictly

aB � � gBgB
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Figure 14-23. The effects of freely falling in the Earth’s
gravity (a) are identical to those of freely floating in interstellar
space (b). No experiment done within the chamber could tell the
difference.

*See “Searching for the Secrets of Gravity,” by John Boslough, National
Geographic, May 1989, p. 563.

(a) (b)

(a) (b)

m m

g

a

Figure 14-24. The effects of resting in a gravitational field
of strength  (a) are identical to those of accelerating at 
in interstellar space (b). No experiment done within the chamber
could tell the difference. This illustrates Einstein’s principle of
equivalence.

aB � � gBgB



valid in the presence of matter. The effect of one gravitating
mass on another is then merely the movement of the second
mass in the distorted geometry established by the first.

This approach is similar to the concept of fields dis-
cussed earlier in this chapter. In field theory, one mass es-
tablishes a gravitational field, and the second mass then in-
teracts directly with the field (rather than directly with the
first mass, as in the action-at-a-distance approach).

Figure 14-25 shows a two-dimensional analogy for the
bending or curving of space. Imagine a rubber sheet with a
coordinate grid laid out on it. All motion is confined to the
coordinate system on the sheet. Now imagine a ball bearing
stretching the sheet. The shortest distance between two points
is no longer a straight line; in fact, in such a geometry we
must redefine just what we mean by the term “straight line.”

The relationship between matter and geometry in gen-
eral relativity has been summarized as follows: “Geometry
tells matter how to move, and matter tells geometry how to
curve.” The formulas of general relativity give the curvature
for any given distribution of matter and energy, and the sub-
sequent motion of beams of light or particles then follows
directly.

Many experimental tests have been done to study the
deviations between Newton’s gravitational theory and Ein-
stein’s. These differences are apparent only in strong gravi-
tational fields, and so measurements must be done close to
the Sun or another massive body. Among the most signifi-
cant experimental tests are:

1. Precession of the perihelion of Mercury. The orbit of
the planet Mercury is not quite a closed ellipse— the axis
of the ellipse rotates (or precesses) a bit upon each orbit.
Most of this effect can be accounted for by Newtonian
gravitation (due to the influence of the other planets, for ex-
ample), but a small amount (known since 1859) cannot.
This discrepancy, corresponding to a rotation of the axis of
the ellipse by 43 seconds of arc per century, is nicely ex-
plained by Einstein’s theory.

2. Bending of light. Light moving near a massive object
does not follow a straight path but bends due to the curving
of space as in Fig. 14-25b. This effect was first observed
during a solar eclipse in 1919 based on the shift (of about
1.75 arc seconds) in the apparent position of stars whose
light passed close to the Sun. Other observed effects of this
bending include gravitational lensing, in which light from a
distant galaxy headed toward Earth happens to pass close to

a massive object (such as a black hole or another galaxy),
and the bending of the light around the object causes us to
observe two images of the original galaxy.

3. Delay of radar echoes. Because a massive object
stretches the “fabric” of space and time, a radar signal trav-
eling from the Earth to another planet will be delayed
slightly if it passes close to the Sun. The expected delay of
a signal between Earth and Venus is only about 10�4 s, but
it has been verified to a precision of about 0.1%.

Much effort has been spent on these experimental tests of
general relativity*, and other significant tests are ongoing (in-
cluding the search for “gravity waves” and the measurement
of the change of the direction of the axis of a gyroscope in
Earth orbit). So far the predictions of general relativity have
been confirmed every time. Many of these effects are very
small, but there is one consequence of general relativity that
can be of great practical importance— the Global Positioning
System (GPS), which uses a network of satellites to deter-
mine your position on Earth to within a few meters, must use
general relativity to obtain this level of precision. �
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(a)

(b)

Figure 14-25. An analogy showing the bending or curving
of space that results from the presence of gravitating mass, ac-
cording to the general theory of relativity. Mass distorts the coor-
dinate grid and changes the geometry itself.

*For an elementary and highly readable account of these measurements,
see Was Einstein Right?, by Clifford M. Will (Basic Books, 1986).

MULTIPLE CHOICE

14-1 Origin of the Law of Gravitation

14-2 Newton’s Law of Universal Gravitation

1. The magnitude of the force of gravity between two identical
objects is given by F0 . If the mass of each object is doubled

but the distance between them is halved, then the new force of
gravity between the objects will be

(A) 16F0 . (B) 4F0 . (C) F0 . (D) F0/2.

2. The magnitude of the force of gravity between two identical
objects is given by F0 . If the mass of each object is doubled



and the distance between them is also doubled, then the new
force of gravity between the objects will be

(A) 4F0 . (B) 2F0 . (C) F0 . (D) F0/2.

3. Objects A and B are separated by a distance r. The magnitude
of the force of gravity on A from B is given by FAB , and the
magnitude of the force of gravity on B from A is FBA .
(a) If the mass of A is doubled while that of B is unchanged,
then

(A) FAB will double while FBA will remain the same.
(B) FAB will remain the same while FBA will double.
(C) both FAB and FBA will double.
(D) both FAB and FBA will remain unchanged.

(b) If instead the mass of A is doubled while the mass of B is
halved, then

(A) FAB will double while FBA will remain the same.
(B) FAB will remain the same while FBA will double.
(C) both FAB and FBA will double.
(D) both FAB and FBA will remain unchanged.

14-3 The Gravitational Constant G
4. The dimensions of G are equivalent to

(A) energy/momentum2. (B) velocity4/force.
(C) distance3/force2.
(D) velocity3/angular momentum.

14-4 Gravitation near the Earth’s Surface
5. Assuming the Earth is a uniform sphere of radius RE , the lo-

cal variation of the free-fall acceleration g0 with respect to
height h above the surface is approximately

(A) g0 � gref , there is no variation,
(B) g0 � gref (1 � h/RE),
(C) g0 � gref (1 � 2h/RE),
(D) g0 � gref (1 � 3h/RE),

where gref is the free-fall acceleration on the surface.

14-5 The Two Shell Theorems
6. A spherically symmetric nonrotating body has a density that

varies appreciably with the radial distance from the center. At
the center of the body the acceleration of free fall is

(A) definitely larger than zero.
(B) possibly larger than zero.
(C) definitely equal to zero.

7. The acceleration due to gravity in a hole dug into a nonuni-
form spherically symmetric body

(A) will increase as you go deeper, reaching a maximum at
the center.

(B) will increase as you go deeper, but eventually reach a
maximum, and then decrease until you reach the cen-
ter.

(C) can increase or decrease as you go deeper.
(D) must decrease as you go deeper.

(See “Gravity in a Mine Shaft,” by Peter M. Hall and David J.
Hall, The Physics Teacher, November 1995, p. 525.)

14-6 Gravitational Potential Energy
8. Consider a spherically symmetric planet with a mass density

that varies as a function of distance from the center of the

planet. The magnitude of the gravitational potential energy of
the system of the planet and a test mass would be

(A) zero at the center, and the maximum value would oc-
cur at the surface of the planet.

(B) nonzero at the center, and the maximum value would
occur at the surface of the planet.

(C) nonzero at the center, but the maximum value would
occur at some point beneath the surface but away from
the center.

(D) nonzero at the center, and the maximum value would
occur at the center.

14-7 The Motions of Planets and Satellites
9. Project Starshine was an inexpensive satellite launched to in-

volve school children in orbit observations. As the satellite
encountered friction from the Earth’s atmosphere the radius
of the near circular orbit slowly decreased over a period of
many months.
(a) As the radius of the orbit decreased, the total energy of
the satellite

(A) increased. (B) remained the same.
(C) decreased.

(b) As the radius of the orbit decreased, the kinetic energy of
the satellite

(A) increased. (B) remained the same.
(C) decreased.

(c) As the radius of the orbit decreased, the average speed of
the satellite

(A) increased. (B) remained the same.
(C) decreased.

10. Shown in Fig 14-26 are several possible elliptical orbits of a
satellite.
(a) Which orbit has the largest angular momentum?
(b) Which orbit has the largest total energy?
(c) On which orbit is the largest speed acquired?
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Figure 14-26. Multiple-choice question 10.

14-8 The Gravitational Field

14-9 Modern Developments in Gravitation



QUESTIONS

1. Modern observational astronomy and navigation procedures
make use of the geocentric (or Ptolemaic) point of view (by
using the rotating “celestial sphere”). Is this wrong? If not,
what criterion determines the system (the Copernican or
Ptolemaic) we use? When would we use the heliocentric (or
Copernican) system?

2. Two planets are never seen at midnight. Which ones and why
not? Can this be considered as evidence in favor of the helio-
centric and against the geocentric theory?

3. If the force of gravity acts on all bodies in proportion to their
masses, why does a heavy body not fall correspondingly
faster than a light body?

4. How does the weight of a space probe vary en route from the
Earth to the Moon? Would its mass change?

5. It is easy to calculate the ratio of the mass of the Earth to the
mass of the Sun knowing only the periods of revolution and
the orbital radii of the Moon around the Earth and the Earth
around the Sun. Is it possible to calculate G from only astro-
nomical observations? Explain.

6. Our analysis of the Cavendish experiment (see Fig. 14-5) con-
sidered the attraction of each large sphere only for the small
sphere closest to it. Each large sphere also attracts the small
sphere on the opposite end of the rod. What is the effect of
this attraction on the measurement of G?

7. Is the mutual gravitational force exerted by a pair of objects
affected by the nature of the intervening medium? By the
temperatures of the objects? By the orientation of the objects?
How could you check these effects by experiment?

8. Because the Earth bulges near the equator, the source of the
Mississippi River (at about 50° N latitude), although high
above sea level, is about 5 km closer to the center of the Earth
than is its mouth (at about 30°N latitude). How can the river
flow “uphill” as it flows south?

9. Would we have more sugar to the pound at the pole or at the
equator? What about sugar to the kilogram?

10. How could you determine the mass of the Moon?

11. One clock is based on an oscillating spring, the other on a
pendulum. Both are taken to Mars. Will they keep the same
time there that they kept on Earth? Will they agree with each
other? Explain. Mars has a mass about one-tenth that of the
Earth and a radius about one-half as great.

12. At the Earth’s surface, an object resting on a horizontal, fric-
tionless surface is given a horizontal blow by a hammer. The
object is then taken to the Moon, supported in the same man-
ner, and given an equal blow by the same hammer. To the best
of our knowledge, what would be the speed imparted to the
object on the Moon when compared with the speed resulting
from the blow on Earth (neglecting any atmospheric effects)?

13. The gravitational force exerted by the Sun on the Moon is
about twice as great as the gravitational force exerted by the
Earth on the Moon. Why then does the Moon not escape from
the Earth?

14. Explain why the following reasoning is wrong. “The Sun at-
tracts all bodies on the Earth. At midnight, when the Sun is
directly below, it pulls on an object in the same direction as

the pull of the Earth on that object; at noon, when the Sun is
directly above, it pulls on an object in a direction opposite to
the pull of the Earth. Hence, all objects should be heavier at
midnight (or night) than they are at noon (or day).”

15. The gravitational attraction of the Sun and the Moon on the
Earth produces tides. The Sun’s tidal effect is about half as
great as the Moon’s. The direct pull of the Sun on the Earth,
however, is about 175 times that of the Moon. Why is it then
that the Moon causes the larger tides?

16. Particularly large tides, called spring tides, occur at full moon
and at new moon, when the configurations of the Sun, Earth,
and Moon are as shown in Fig. 14-27. From the figure you
might conclude (incorrectly!) that the tidal effects of the Sun
and of the Moon tend to add at new moon but cancel at full
moon. Instead, they add at both these configurations. Explain
why.
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Figure 14-27. Question 16.

17. If lunar tides slow down the rotation of the Earth (owing to
friction), the angular momentum of the Earth decreases. What
happens to the motion of the Moon as a consequence of the
conservation of angular momentum? Does the Sun (and solar
tides) play a role here? (See “Tides and the Earth–Moon Sys-
tem,” by Peter Goldreich, Scientific American, April 1972,
p. 42.)

18. From Kepler’s second law and observations of the Sun’s motion
as seen from the Earth, how can we deduce that the Earth is
closer to the Sun during winter in the northern hemisphere than
during summer? Why is it not colder in summer than in winter?

19. How would the results of Sample Problem 14-4 for the force
and the speed at radius r differ if the density of the Earth were
not uniform, but instead (a) decreased with increasing r, or
(b) increased with increasing r?

20. Why can we learn more about the shape of the Earth by
studying the motion of an artificial satellite than by studying
the motion of the Moon?

21. A satellite in Earth orbit experiences a small drag force as it
starts to enter the Earth’s atmosphere. What happens to its
speed? (Be careful!)

22. Would you expect the total energy of the solar system to be
constant? The total angular momentum? Explain your answers.

23. Does a rocket always need the escape speed of 11.2 km/s to
escape from the Earth? If not, what then does “escape speed”
really mean?



24. Objects at rest on the Earth’s surface move in circular paths
with a period of 24 h. Are they “in orbit” in the sense that an
Earth satellite is in orbit? Why not? What would the length of
the “day” have to be to put such objects in true orbit?

25. Neglecting air friction and technical difficulties, can a satellite
be put into an orbit by being fired from a huge cannon at the
Earth’s surface? Explain your answer.

26. What advantage does Florida have over California for launch-
ing (nonpolar) U.S. satellites?

27. Can a satellite coast in a stable orbit in a plane not passing
through the Earth’s center? Explain your answer.

28. As measured by an observer on Earth, would there be any dif-
ference in the periods of two satellites, each in a circular orbit
near the Earth in an equatorial plane, but one moving east-
ward and the other westward?

29. Orbiting satellites occasionally burn up during their descent
to Earth. However, they do not burn up during their ascent
into orbit. Explain.

30. An artificial satellite is in a circular orbit about the Earth.
How will its orbit change if one of its rockets is momentarily
fixed (a) toward the Earth, (b) away from the Earth, (c) in a
forward direction, (d ) in a backward direction, and (e) at right
angles to the plane of the orbit?

31. Inside a spaceship, what difficulties would you encounter in
walking, in jumping, and in drinking?

32. We have all seen TV transmissions from orbiting shuttles and
watched objects floating around in effective zero gravity. Sup-
pose that an astronaut, braced against the shuttle frame, kicks
a floating bowling ball. Will a stubbed toe result? Explain
your answer.

33. If a planet of given density were made larger by accreting ma-
terial from space, its force of attraction for an object on its
surface would increase because of the planet’s greater mass
but would decrease because of the greater distance from the
object to the center of the planet. Which effect dominates?

34. The orbits of satellites around the Earth are elliptical (or cir-
cular) and yet we claimed in Chapter 4 that projectiles
launched from the Earth follow parabolic trajectories. Which
is correct?

35. Artificial Earth satellites can locate the mean sea level with
great precision. Above oil-bearing rock, however, the mean
sea level can be as much as 1 m higher than that above non-
oil-bearing rock (which is usually denser). Explain this.

36. (a) In order for two observers at any two positions on the
Earth’s equator to maintain radio communication by using
satellites in the geosynchronous orbit, there must be at least
three such satellites. Explain. (b) Find the maximum angular
separation of any two of these satellites.

37. A stone is dropped along the center of a deep vertical mine
shaft. Assume no air resistance but consider the Earth’s rota-
tion. Will the stone continue along the center of the shaft? If
not, describe its motion.

38. Why is there virtually no atmosphere on the Moon?

39. Does the law of universal gravitation require the planets of
the solar system to have the actual orbits observed? Would
planets of another star, similar to our Sun, have the same or-
bits? Suggest factors that might have determined the special
orbits observed.

40. Does it matter which way a rocket is pointed for it to escape
from Earth? Assume, of course, that it is pointed above the
horizon and neglect air resistance.

41. For a flight to Mars, a rocket is fired in the direction the Earth
is moving in its orbit. For a flight to Venus, it is fired back-
ward along that orbit. Explain why.

42. Saturn is about six times farther from the Sun than 
Mars. Which planet has (a) the greater period of revolution,
(b) the greater orbital speed, and (c) the greater angular
speed?

43. See Fig. 14-28. What is being plotted? Put numbers with units
on each axis.
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Figure 14-28. Question 43.
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44. How can the captain of a spaceship, coasting toward a previ-
ously unknown planet, infer the value of g at the surface of
the planet?

45. An iron cube is placed near an iron sphere at a location re-
mote from the Earth’s gravity. What can you say about the lo-
cation of the center of gravity of the cube? Of the sphere? In
general, does the location of the center of gravity of an object
depend on the nature of the gravitational field in which the
object is placed?

46. How could you determine whether two objects have (a) the
same gravitational mass, (b) the same inertial mass, and (c)
the same weight?

47. Consider an artificial satellite in a circular orbit about the
Earth. State how the following properties of the satellite vary
with the radius r of its orbit: (a) period, (b) kinetic energy,
(c) angular momentum, and (d) speed.

48. You are a passenger on the S.S. Arthur C. Clarke, the first in-
terstellar spaceship. The Clarke rotates about a central axis to
simulate Earth’s gravity. If you are in an enclosed cabin, how
could you tell that you are not on Earth?

49. Can one regard gravity as a “fictitious” force arising from the
acceleration of one’s reference frame relative to an inertial
reference frame, rather than a “real” force?

50. The “action-at-a-distance” view of the gravitational force im-
plies that the action is instantaneous. Actually, present physi-
cal theory assumes that gravitation propagates with a finite
speed and this is taken into account in the modification of



classical physics represented by general relativity theory.
What would happen to classical deductions if it were as-
sumed that the action is not instantaneous? (See also “Infi-

nite Speed of Propagation of Gravitation in Newtonian
Physics,” by I. J. Good, American Journal of Physics, July
1975, p. 640.)
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Figure 14-29. Exercise 10.

EXERCISES

14-1 Origin of the Law of Gravitation

14-2 Newton’s Law of Universal Gravitation
1. The Sun and Earth each exert a gravitational force on the

Moon. Calculate the ratio FS/FE of these two forces. (The av-
erage Sun–Moon distance is equal to the Sun–Earth dis-
tance.)

2. How far from the Earth must a space probe be along a line to-
ward the Sun so that the Sun’s gravitational pull balances the
Earth’s?

3. One of the Echo satellites consisted of an inflated aluminum
balloon 30 m in diameter and of mass 20 kg. A meteor having
a mass of 7.0 kg passes within 3.0 m of the surface of the
satellite. If the effect of all bodies other than the meteor and
satellite are ignored, what gravitational force does the meteor
experience at closest approach to the satellite?

14-3 The Gravitational Constant G
4. In the Cavendish balance (see Fig. 14-5), suppose M �

12.7 kg and m � 9.85 g. The length of the rod connecting the
small spheres is 52.4 cm. When the distance between the cen-
ters of the large and small spheres is 10.8 cm, find (a) the
gravitational force between a large sphere and the nearby
small sphere, and (b) the torque on the rod.

14-4 Gravitation near the Earth’s Surface
5. You weigh 120 lb at the sidewalk level outside the World

Trade Center in New York City. Suppose that you ride from
this level to the top of one of its 1350-ft towers. How much
less would you weigh there because you are slightly farther
away from the center of the Earth?

6. At what altitude above the Earth’s surface is the free-fall ac-
celeration equal to 7.35 m/s2 (three-quarters of its value at the
surface)?

7. A typical neutron star may have a mass equal to that of the
Sun but a radius of only 10.0 km. (a) What is the gravitational
acceleration at the surface of such a star? (b) How fast would
an object be moving if it fell from rest through a distance of
1.20 m on such a star?

8. (a) Calculate g0 on the surface of the Moon from values of the
mass and radius of the Moon found in Appendix C. (b) What
will an object weigh on the Moon’s surface if it weighs 100 N
on the Earth’s surface? (c) How many Earth radii must this
same object be from the surface of the Earth if it is to weigh
the same as it does on the surface of the Moon?

9. If g is to be determined by dropping an object through a dis-
tance of (exactly) 10 m, how accurately must the time be
measured to obtain a result good to 0.1%? Calculate a percent
error and an absolute error, in milliseconds.

14-5 The Two Shell Theorems
10. Two concentric shells of uniform density having masses M1

and M2 are situated as shown in Fig. 14-29. Find the force on
a particle of mass m when the particle is located at (a) r � a,

(b) r � b, and (c) r � c. The distance r is measured from the
center of the shells.

a

b

M1M2
c

11. Show that, at the bottom of a vertical mine shaft dug to depth
D, the measured value of g will be

gs being the surface value. Assume that the Earth is a uniform
sphere of radius R.

14-6 Gravitational Potential Energy
12. It is conjectured that a “burned-out” star could collapse to a

“gravitational radius,” defined as the radius for which the
work needed to remove an object of mass m from the star’s
surface to infinity equals the rest energy mc2 of the object.
Show that the gravitational radius of the Sun is GMS/c2 and
determine its value in terms of the Sun’s present radius. (For
a review of this phenomenon see “Black Holes: New Hori-
zons in Gravitational Theory,” by Philip C. Peters, American
Scientist, September–October 1974, p. 575.)

13. A spaceship is idling at the fringes of our galaxy, 80,000
light-years from the galactic center. What minimum speed
must it have if it is to escape entirely from the gravitational
attraction of the galaxy? The mass of the galaxy is 1.4 � 1011

times that of our Sun. Assume, for simplicity, that the matter
forming the galaxy is distributed with spherical symmetry.

14. Show that the velocity of escape from the Sun at the Earth’s
distance from the Sun is times the speed of the Earth in its
orbit, assumed to be a circle. (This is a specific case of a gen-
eral result for circular orbits:

15. A rocket is accelerated to a speed of near the
Earth’s surface and then coasts upward. (a) Show that it will
escape from the Earth. (b) Show that very far from the Earth
its speed is 

16. The Sun, mass 2.0 � 1030 kg, is revolving about the center of
the Milky Way galaxy, which is 2.2 � 1020 m away. It com-
pletes one revolution every 2.5 � 108 years. Estimate the
number of stars in the Milky Way. (Hint: Assume for simplic-
ity that the stars are distributed with spherical symmetry

v � √2gRE .

v � 2√gRE

vesc � √2vorb .)

√2

g � gs �1 �
D

R � ,



about the galactic center and that our Sun is essentially at the
galactic edge.)

17. A projectile is fired vertically from the Earth’s surface with an
initial speed of 9.42 km/s. Neglecting atmospheric friction,
how far above the Earth’s surface will it go?

18. (a) Calculate the escape speed on Europa, a satellite of the
planet Jupiter. The radius of Europa is 1569 km and the free-
fall acceleration at its surface is 1.30 m/s2. (b) How high will
a particle rise if it leaves the surface of the satellite with a ver-
tical velocity of 1.01 km/s? (c) With what speed will an ob-
ject hit the satellite if it is dropped from a height of 1000 km?
(d ) Calculate the mass of Europa.

19. Two neutron stars are separated by a center-to-center distance
of 93.4 km. They each have a mass of 1.56 � 1030 kg and a ra-
dius of 12.6 km. They are initially at rest with respect to one
another. (a) How fast are they moving when their separation
has decreased to one-half of its initial value? (b) How fast are
they moving just before they collide? Ignore relativistic effects.

20. Two particles of mass m and M are initially at rest an infinite
distance apart. Show that at any instant their relative velocity
of approach attributable to gravitational attraction is

where d is their separation at that instant.

21. Two point-like particles, each of mass m, are originally sepa-
rated by a distance d and moving in opposite directions each
with a speed of v. What is the maximum value for v so that
the particles will eventually move back together under the in-
fluence of the mutual gravitational attraction?

14-7 The Motion of Planets and Satellites
22. The mean distance of Mars from the Sun is 1.52 times that of

the Earth from the Sun. From this, calculate the number of
years required for Mars to make one revolution about the Sun;
compare your answer with the value given in Appendix C.

23. The planet Mars has a satellite, Phobos, which travels in an
orbit of radius 9400 km with a period of 7 h 39 min. Calcu-
late the mass of Mars from this information. (The mass of
Phobos is negligible compared with that of Mars.)

24. Determine the mass of the Earth from the period T and the ra-
dius r of the Moon’s orbit about the Earth: T � 27.3 days and
r � 3.82 � 105 km.

25. A satellite is placed in a circular orbit with a radius equal to
one-half the radius of the Moon’s orbit. What is its period of
revolution in lunar months? (A lunar month is the period of
revolution of the Moon.)

26. Spy satellites have been placed in the geosynchronous orbit
above the Earth’s equator. What is the greatest latitude L from
which the satellites are visible from the Earth’s surface? See
Fig. 14-30.

√2G(M � m)/d,

27. A reconnaissance spacecraft circles the Moon at very low alti-
tude. Calculate (a) its speed and (b) its period of revolution.
Take needed data for the Moon from Appendix C.

28. Use conservation of energy and Eq. 14-25 for the total energy
to show that the speed v of an object in an elliptical orbit sat-
isfies the relation

Here r is the distance of the orbiting body from the central
body of mass M.

29. A comet moving in an orbit of eccentricity 0.880 has a speed
of 3.72 km/s when it is most distant from the Sun. Find its
speed when it is closest to the Sun.

30. (a) Express the universal gravitational constant G that appears
in Newton’s law of gravity in terms of the astronomical unit
AU as a length unit, the solar mass MS as a mass unit, and the
year as a time unit. (1 AU � 1.496 � 1011 m, 1 MS � 1.99 �
1030 kg, 1 y � 3.156 � 107 s.) (b) What form does Kepler’s
third law (Eq. 14-23) take in these units?

31. Show how, guided by Kepler’s third law, Newton could de-
duce that the force holding the Moon in its orbit, assumed cir-
cular, must vary as the inverse square of the distance from the
center of the Earth.

32. As shown in Fig. 14-31, two bodies (of masses m and M ) in-
teracting through their mutual gravitational force will orbit
with the same angular speed � about their center of mass C.
(a) Show that in this case Kepler’s law of periods (Eq. 14-23)
becomes

(b) Evaluate the correction factor (1 � R /r)2 for the motion of
the Earth and the Sun and also for the motion of the Earth and
the Moon, in each case ignoring the gravitational effect of the
other bodies in the solar system.

T 2 � � 4� 2

GM � r 3 �1 �
R

r �
2

.

v2 � GM � 2

r
�

1

a � .
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Figure 14-30. Exercise 26.

Figure 14-31. Exercise 32.
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33. A pair of stars revolves about their common center of mass,
as in Fig. 14-31. One of the stars has a mass M that is twice
the mass m of the other; that is, M � 2m. Their centers are a
distance d apart, d being large compared to the size of either
star. (a) Derive an expression for the period of revolution of
the stars about their common center of mass in terms of d, m,
and G. (b) Compare the angular momenta of the two stars



about their common center of mass by calculating the ratio
Lm /LM . (c) Compare the kinetic energies of the two stars by
calculating the ratio Km /KM .

34. (a) Does it take more energy to get a satellite up to 1600 km
above the Earth than to put it in orbit once it is there?
(b) What about 3200 km? (c) What about 4800 km? Take the
Earth’s radius to be 6400 km.

35. The asteroid Eros, one of the many minor planets that orbit
the Sun in the region between Mars and Jupiter, has a radius
of 7.0 km and a mass of 5.0 � 1015 kg. (a) If you were stand-
ing on Eros, could you lift a 2000-kg pickup truck? (b) Could
you run fast enough to put yourself into orbit? Ignore effects
due to the rotation of the asteroid. (Note: The Olympic
records for the 400-m run correspond to speeds of 9.1 m/s for
men and 8.2 m/s for women.)

36. The orbit of the Earth about the Sun is almost circular. The
closest and farthest distances are 1.47 � 108 km and 1.52 �
108 km, respectively. Determine the maximum variations in
(a) potential energy, (b) kinetic energy, (c) total energy, and
(d ) orbital speed that result from the changing Earth–Sun
distance in the course of 1 year. (Hint: Use conservation of
energy and angular momentum.)

37. Assume that a geosynchronous communications satellite is in
orbit at the longitude of Chicago. You are in Chicago and
want to pick up its signals. In what direction should you point
the axis of your parabolic antenna? The latitude of Chicago is
47.5° N.

38. Using the data of Sample Problem 14-10, calculate (a) the
speed of spacecraft B as it passes through point P�, and (b)
the average speed of spacecraft B in the orbit after the burn.

Approximate the path of B as a circle. Compare these results
with the corresponding quantities of spacecraft A.

39. Project Starshine was an inexpensive satellite (of mass 39 kg)
launched to encourage worldwide participation of school chil-
dren in satellite orbit measurements. The data from part of the
orbit are shown in Fig. 14-32. (a) What was the orbital period
of the satellite at the turn of the century 1999/2000? (b) At
what rate was the satellite losing energy at the turn of the cen-
tury 1999/2000?
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Figure 14-32. Exercise 39.

Figure 14-33. Problem 4.
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14-8 The Gravitational Field

14-9 Modern Developments in Gravitation

PROBLEMS

1. Two point-like objects, each with mass m, are connected by a
massless rope of length l. The objects are suspended verti-
cally near the surface of Earth, so that one object is hanging
below the other. Then the objects are released. Show that the
tension in the rope is

where M is the mass of the Earth and R is its radius.

2. Show that on a hypothetical planet having half the diameter of
the Earth but twice its density, the acceleration of free fall is
the same as on Earth.

3. Consider an inertial reference frame whose origin is fixed at
the center of mass of the system Earth � falling object. (a)
Show that the acceleration toward the center of mass of either
body is independent of the mass of that body. (b) Show that
the mutual, or relative, acceleration of the two bodies depends
on the sum of the masses of the two bodies. Comment on the
meaning, then, of the statement that a body falls toward the
Earth with an acceleration that is independent of its mass.

4. Two objects, each of mass m, hang from strings of different
lengths on a balance at the surface of the Earth, as shown in
Fig. 14-33. If the strings have negligible mass and differ in
length by h, (a) show that the error in weighing, associated
with the fact that W� is closer to the Earth than W, is

T �
GMml

R3

in which � is the mean density of the
Earth (5.5 g/cm3). (b) Find the difference in length that will
give an error of one part in a million.

W� � W � 8�G�mh /3

h

m

W'

m

W

5. (a) Write an expression for the force exerted by the Moon,
mass M, on a particle of water, mass m, on the Earth at A, di-
rectly under the Moon, as shown in Fig. 14-34. The radius of
the Earth is R, and the center-to-center Earth–Moon distance
is r. (b) Suppose that the particle of water was at the center of



the Earth. What force would the Moon exert on it there? (c)
Show that the difference in these forces is given by

and represents the tidal force, the force on water relative to
the Earth. What is the direction of the tidal force? (d ) Repeat
for a particle of water at B, on the far side of the Earth from
the Moon. What is the direction of this tidal force? (e) Ex-
plain why there are two tidal bulges in the oceans (and solid
Earth), one pointing toward the Moon and the other away
from it.

FT �
2GMmR

r 3

where R is the radius of the cavern and d is the depth of its
center. (b) These values of �g, called anomalies, are usually
very small and expressed in milligals, where 1 gal � 1 cm/s2.
Oil prospectors doing a gravity survey find �g varying from
10.0 milligals to a maximum of 14.0 milligals over a 150-m
distance. Assuming that the larger anomaly was recorded di-
rectly over the center of a spherical cavern known to be in the
region, find its radius and the depth to the roof of the cavern
at that point. Nearby rocks have a density of 2.80 g/cm3. (c)
Suppose that the cavern, instead of being empty, is com-
pletely flooded with water. What do the gravity readings in (b)
now indicate for its radius and depth?
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Figure 14-34. Problem 5.

Figure 14-35. Problem 9.

Figure 14-36. Problem 11.
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6. An object is suspended on a spring balance in a ship sailing
along the equator with a speed v. Show that the scale reading
will be very close to where � is the angular
speed of the Earth and W0 is the scale reading when the ship
is at rest. Explain the plus or minus.

7. In 3001: The Final Odyssey, Arthur C. Clarke writes of a
tower that stretches from the Earth’s equator to geosynchro-
nous orbit. (a) The hero, Frank Poole, finds himself in the
tower and estimates the acceleration of free fall at his altitude
to be g/2. Taking into account rotational motion, what is
Poole’s altitude? (b) Calculate the work necessary to raise a
100-kg mass from the surface of the Earth up through the
tower to the geosynchronous altitude. Compare your result to
the energy expenditure of a rocket that can do the same thing
today. (Hint: Assume that the rotational correction is small,
and solve iteratively.)

8. The fastest possible rate of rotation of a planet is that for
which the gravitational force on material at the equator barely
provides the centripetal force needed for the rotation. (Why?)
(a) Show then that the corresponding shortest period of rota-
tion is given by

where � is the density of the planet, assumed to be homoge-
neous. (b) Evaluate the rotation period assuming a density of
3.0 g/cm3, typical of many planets, satellites, and asteroids.
No such object is found to be spinning with a period shorter
than found by this analysis.

9. Sensitive meters that measure the local free-fall acceleration g
can be used to detect the presence of deposits of near-surface
rocks of density significantly greater or less than that of the
surroundings. Cavities such as caverns and abandoned mine
shafts can also be located. (a) Show that the vertical compo-
nent of g a distance x from a point directly above the center of
a spherical cavern (see Fig. 14-35) is less than what would be
expected, assuming a uniform distribution of rock of density
�, by the amount

�g �
4�

3
R3G�

d

(d 2 � x2)3/2 ,

T � √ 3�

G�
,

W0(1 
 2�v/g),

x

R

d

10. Show that the acceleration of gravity in a vertical mine shaft
is independent of the depth if the local density of the Earth �l

is 2/3 of the average density of the Earth. Assume that the
Earth is a spherically symmetric, nonrotating body. (See
“Gravity in a Mine Shaft,” by Peter M. Hall and David J.
Hall, The Physics Teacher, November 1995, p. 525.)

11. The following problem is from the 1946 “Olympic” examina-
tion of Moscow State University (see Fig. 14-36): A spherical
hollow is made in a lead sphere of radius R, such that its sur-
face touches the outside surface of the lead sphere and passes
through its center. The mass of the sphere before hollowing
was M. With what force, according to the law of universal
gravitation, will the hollowed lead sphere attract a small
sphere of mass m, which lies at a distance d from the center of
the lead sphere on the straight line connecting the centers of
the spheres and of the hollow?

12. (a) How long does it take the particle in Sample Problem 14-4
to fall from the Earth’s surface to its center? (Hint: Use the
expression for given in the solution to Sample
Problem 14-4 to find an expression that you can integrate to
give t as a function of r. See also Section 12-5.) (b) After
reaching the center, how long does it take for the particle to
rise to the Earth’s surface? What is the total time interval for
the particle to make a complete round-trip and return to the
starting point? (c) Compare the total round-trip time with the

v(r) � dr /dt



time for one orbit of a satellite close to the Earth’s surface,
and explain the similarity of these two numbers.

13. Figure 14-37 shows, not to scale, a cross section through the in-
terior of the Earth. Rather than being uniform throughout, the
Earth is divided into three zones: an outer crust, a mantle, and
an inner core. The dimensions of these zones and the mass con-
tained within them are shown in the figure. The Earth has total
mass 5.98 � 1024 kg and radius 6370 km. Ignore rotation and
assume that the Earth is spherical. (a) Calculate g at the surface.
(b) Supose that a bore hole is driven to the crust–mantle inter-
face (the Moho); what would be the value of g at the bottom of
the hole? (c) Suppose that the Earth were a uniform sphere with
the same total mass and size. What would be the value of g at a
depth of 25 km? Use the result of Exercise 11. Precise measure-
ments of g are sensitive probes of the interior structure of the
Earth, although results can be clouded by local density varia-
tions and lack of a precise knowledge of the value of G.

crete? Assume that concrete has a maximum compressive
stress of 4.0 � 107 N/m2 and a density � � 3000 kg/m3.
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Figure 14-37. Problems 13 and 14.

Figure 14-38. Problem 15.

Figure 14-39. Problem 17.
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Crust, 3.94 x 1022 kg

14. Use the model of the Earth shown in Fig. 14-37 to examine
the variation of g with depth in the interior of the Earth. (a)
Find g at the core–mantle interface. How does g vary from
this interface to the center of the Earth? (b) Show that g has a
local minimum within the mantle; find the distance from the
Earth’s center where this occurs and the associated value of g.
(c) Make a sketch showing the variation of g within the Earth.

15. (a) Fig. 14-38a shows a planetary object of uniform density �
and radius R. Show that the compressive stress S (defined as
force per unit cross-sectional area) near the center is given by

(Hint: Construct a narrow column of cross-sectional area A
extending from the center to the surface. The weight of the
material in the column is mgav where m is the mass of material
in the column and gav is the value of g midway between center
and surface.) (b) In our solar system, objects (for example, as-
teroids, small satellites, comets) with “diameters” less than
600 km can be very irregular in shape (see Fig. 14-38b, which
shows Hyperion, a small satellite of Saturn), whereas those
with larger diameters are spherical. Only if the rocks have suf-
ficient strength to resist gravity can an object maintain a non-
spherical shape. Calculate the maximum compressive stress
that can be sustained by the rocks making up asteroids. As-
sume a density of 4000 kg/m3. (c) What is the largest possible
size of a nonspherical self-gravitating satellite made of con-

S �
2

3
�G�2R2.

R

A

m

(b)

(a)

16. A particle of mass m is located a distance y from an infinitely
long, thin rod of linear mass density �. Show that the gravita-
tional force between the rod and the particle is F � 2Gm�/y,
directed perpendicular to the rod. (Hint: Let the perpendicular
from the particle to the rod define the origin. Consider two
mass increments dm � � dx located at 
 x along the rod. Cal-
culate the total force dF (magnitude and direction) exerted on
the particle by these two mass increments. Then integrate
over x from zero to infinity.)

17. Consider a particle at a point P anywhere inside a spherical
shell of matter. Assume that the shell is of uniform thickness
and density. Construct a narrow double cone with apex at P in-
tercepting areas dA1 and dA2 , on the shell (Fig. 14-39). (a)
Show that the resultant gravitational force exerted on the parti-
cle at P by the intercepted mass elements is zero. (b) Show then
that the resultant gravitational force of the entire shell on an in-
ternal particle is zero. (This method was devised by Newton.)

dA1

dA2

r1

r2

P



18. A sphere of matter, of mass M and radius a, has a concentric
cavity of radius b, as shown in cross section in Fig. 14-40. (a)
Sketch the gravitational force F exerted by the sphere on a
particle of mass m, located a distance r from the center of the
sphere, as a function of r in the range 0 � r � �. Consider
points r � 0, b, a, and � in particular. (b) Sketch the corre-
sponding curve for the potential energy U(r) of the system.
(c) From these graphs, how would you obtain graphs of the
gravitational field strength due to the sphere?

cle falls from rest as a result of the attraction of the ring of
matter. Find an expression for the speed with which it passes
through the center of the ring.

23. Nine small particles, each with mass m, are evenly arranged
around a ring of radius R. (a) Calculate the net gravitational
force on one of the particles due to the other eight particles in
the ring. (b) Find the rotational period of the ring necessary to
prevent the ring from collapsing under the mutual gravita-
tional attraction of the particles.

24. Two point-like particles, each of mass m, are originally at rest
separated by a distance d. Show that the time for them to
come together under the influence of gravity is

(See “The Period of Harmonic Motion,” by
Chris Hirata and David Thiessen, The Physics Teacher, De-
cember 1995, p. 563.)

25. Consider two satellites A and B of equal mass m, moving in
the same circular orbit of radius r around the Earth but in op-
posite senses of revolution and therefore on a collision course
(see Fig. 14-42). (a) In terms of G, ME , m, and r, find the total
mechanical energy of the two-satellite-plus-Earth system be-
fore collision. (b) If the collision is completely inelastic so
that wreckage remains as one piece of tangled material, find
the total mechanical energy immediately after collision. (c)
Describe the subsequent motion of the wreckage.

F
B

� �kxn x̂

tmeet �
�

4 √ d 3

Gm
.
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Name a (108 m) T (days)

Io 4.22 1.77
Europa 6.71 3.55
Ganymede 10.7 7.16
Callisto 18.8 16.7

Figure 14-40. Problem 18.

Figure 14-41. Problem 22.

Figure 14-42. Problem 25.

b r

m

a

19. Spheres of masses 2.53 kg and 7.16 kg are fixed a distance
1.56 m apart (center to center). A 212-g sphere is positioned
42.0 cm from the center of the 7.16 kg sphere, along the line
of centers. How much work must be done by an external
agent to move the 212-g sphere along the line of centers and
place it 42.0 cm from the center of the 2.53-kg sphere?

20. A rocket burns out at an altitude h above the Earth’s surface.
Its speed v0 at burnout exceeds the escape speed vesc appropri-
ate to the burnout altitude. Show that the speed v of the rocket
very far from the Earth is given by

21. In a particular double-star system, two stars of mass 3.22 �
1030 kg each revolve about their common center of mass,
1.12 � 1011 m away. (a) Calculate their common period of
revolution, in years. (See Exercise 32.) (b) Suppose that a me-
teoroid (small solid particle in space) passes through this cen-
ter of mass moving at right angles to the orbital plane of the
stars. What must its speed be if it is to escape from the gravi-
tational field of the double star?

22. Several planets (the gas giants Jupiter, Saturn, Uranus, and
Neptune) possess nearly circular surrounding rings, perhaps
composed of material that failed to form a satellite. In addi-
tion, many galaxies contain ring-like structures. Consider a
homogeneous ring of mass M and radius R. (a) Find an ex-
pression for the gravitational force exerted by the ring on a
particle of mass m located a distance x from the center of the
ring along its axis. See Fig. 14-41. (b) Suppose that the parti-

v � (v2
0 � v2

esc)1/2.

m

M

R x

A

Earth

r
B

26. The Sun’s center is at one focus of the Earth’s orbit. How far
is it from the other focus? Express your answer in terms of
the radius of the Sun RS � 6.96 � 108 m. The eccentricity of
the Earth’s orbit is 0.0167 and the semimajor axis is 1.50 �
1011 m.

27. In the year 1610, Galileo made a telescope, turned it on
Jupiter, and discovered four prominent moons. Their mean or-
bit radii a and periods T are as follows.

(a) Plot log a (y axis) against log T (x axis) and show that you
get a straight line. (b) Measure its slope and compare it with
the value that you expect from Kepler’s law of periods. (c)
Find the mass of Jupiter from the intercept of this line with
the y axis. (Note: You may also use log-log graph paper.)



28. A certain triple-star system consists of two stars, each of mass
m, revolving about a central star, mass M, in the same circular
orbit. The two stars stay at opposite ends of a diameter of the
circular orbit; see Fig. 14-43. Derive an expression for the pe-
riod of revolution of the stars; the radius of the orbit is r.

31. Three identical stars of mass M are located at the vertices of
an equilateral triangle with side L. At what speed must they
move if they all revolve under the influence of one another’s
gravity in a circular orbit circumscribing, while still preserv-
ing, the equilateral triangle?

32. How long will it take a comet, moving in a parabolic path, to
move from its point of closest approach to the Sun at A (see
Fig. 14-44) through an angle of 90°, measured at the Sun, to
B? Let the distance of closest approach to the Sun be equal to
the radius of the Earth’s orbit, assumed circular.
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Figure 14-43. Problem 28.

Figure 14-44. Problem 32.

r

M

m

m

29. A satellite travels initially in an approximately circular orbit
640 km above the surface of the Earth; its mass is 220 kg. (a)
Determine its speed. (b) Determine its period of revolution.
(c) For various reasons the satellite loses mechanical energy
at the (average) rate of 1.40 � 105 J per orbital revolution.
Adopting the reasonable approximation that the trajectory is a
“circle of slowly diminishing radius,” determine the distance
from the surface of the Earth, the speed, and the period of the
satellite at the end of its 1500th orbital revolution. (d ) What
is the magnitude of the average retarding force? (e) Is angu-
lar momentum conserved?

30. A satellite is placed at the altitude of a geosynchronous orbit,
except that the plane of the orbit is inclined at an angle of 10°
with respect to the equatorial plane. Describe the motion of
the satellite against the background stars as seen from a point
on the equator.

33. Imagine a planet of mass M with a small moon of mass m and
radius a orbiting it and keeping the same face toward it. If the
moon now approaches the planet, there will be a critical dis-
tance from the planet’s center at which loose material lying
on the moon’s surface will be lifted off. Show that this dis-
tance is given by rc � a(3M/m)1/3. This critical distance is
called Roche’s limit.

90°

Sun

Earth

Comet
A

B

COMPUTER PROBLEMS

1. Larry Niven wrote a series of science fiction books about
Ringworld, an inhabited, manufactured ring of metal that cir-
cled a star. Consider a uniform ring of material with total
mass M and radius R. Assume that the ring is infinitesimally
thin. In terms of G, M, and R, (a) calculate the gravitational
potential energy at a point r � R /2 in the plane of the ring,
and (b) calculate the magnitude and direction of the force of
gravity on a 1-kg mass located at that same point. (c) Repeat
(a) and (b) for a point r � 3R /2 in the plane of the ring. (See

“Bound Orbits with Positive Energy,” by J. West, S. Das-
sanayake, and A. Daniel, American Journal of Physics, Janu-
ary 1998, p. 25.)

2. Repeat Problem 23 for 19 particles, 29 particles, 39 particles,
and so on up to 99 particles. Plot the results on a graph of
number of particles versus rotational period. Does the result
converge to a limit as the number of particles becomes infi-
nite? If so, what is that limit? Can the problem be solved ana-
lytically?
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FLUID STATICS

Most matter can conveniently be described as

being in one of three phases—solid, liquid, or gas. Solids and liquids (also called condensed matter) have a

certain set of properties in common; for example, they are relatively incompressible, and their densities stay

relatively constant as we vary the temperature (keeping other properties, such as pressure, constant).

Gases, on the other hand, are easily compressible, and their density changes substantially with temperature

if we hold the pressure constant.

From a different perspective, we can usually group gases and liquids together under the common desig-

nation fluids. The word “fluid” comes from a Latin word meaning “to flow.” Fluids will flow, for example,

to take the shape of any container that holds them; solids do not share this property. In this chapter we con-

sider the properties of fluids at rest and the laws that govern them. In the next chapter we discuss the dy-

namical properties of fluids in motion.

15-1 FLUIDS AND SOLIDS

When we apply a force to the surface of a material—for
example, a cube of copper—the material can exert a reac-
tion force according to Newton’s third law. If we apply the
force perpendicular to the surface, the cube may compress
(if our force is applied toward the surface) or stretch (if our
force is applied by pulling on the surface) by a very small
amount until the strong intermolecular forces, which can be
considered to behave approximately like springs, contribute
a reaction force that balances the applied force. The same
result occurs if we apply a force parallel to the surface
(called a shearing force)—the material may distort slightly
as the configuration of its molecules changes to provide the
reaction force to balance the applied force. Objects that we
classify as solids can normally be in equilibrium under ap-
plied compression, tensile, or shearing forces with only
minimal changes in their size or shape.

On the other hand, a liquid such as water is not able to
produce reaction forces to applied forces in arbitrary direc-
tions. Most liquids are nearly incompressible, so they can

provide reaction forces to compression forces with only im-
perceptible changes in the spacing of their molecules. (Hy-
draulic systems, which we discuss later in this chapter, de-
pend on this property of liquids.) To a limited extent,
liquids may support tensile forces, but substantial changes
in the material often result (think of blowing up a soap bub-
ble, which responds to the increased pressure of the air in-
side by stretching to become thinner and thinner until it
bursts when it cannot provide enough tensile force). Liq-
uids cannot support shearing forces, which cause molecules
of the liquid to flow in the direction of the force.

A third state of matter, gases, cannot support compres-
sional, tensile, or shearing forces. Compressional forces
cause substantial changes in the state of the gas, and shear-
ing forces also cause the molecules to flow in the direction
of the force.

Together, liquids and gases are classified as fluids.
These materials will easily flow under the action of a shear-
ing force. We commonly observe this effect when a fluid
flows to conform to the shape of its container. Even some
materials that we ordinarily might classify as solids—for
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example, pitch (“solid” tar) and glaciers (“solid” ice)—can
flow if we apply a strong enough force. Solid metals can be
drawn into fine wires by forcing them through a die at high
pressure, and where the Earth has been cut to build high-
ways you can often see evidence that “solid” rock also
flows under high pressure.

The differences between the properties of a fluid and a
solid depend on the forces that are exerted between their
molecules. We can picture a solid as a three-dimensional ar-
ray in which each molecule is bound to all its close neigh-
bors by strong, spring-like forces. As a result, a solid is able
to provide a reaction force to oppose an applied force in
any direction. In a liquid, the intermolecular forces are rela-
tively weak, and liquids lack the long-range order that gives
solids their stability. In gases, the intermolecular forces are
very weak, and the average spacing between the molecules
is larger than in liquids or solids. Both gases and liquids
can be made to flow by applying relatively modest forces.

The methods of classical mechanics (which we have so
far applied to particles) could be used to analyze the behav-
ior of fluids, but these methods are of limited usefulness due
to the large number of interacting particles in a fluid and the
difficulty of specifying all the forces between the particles as
well as the position and velocity of every particle. It is gener-
ally more convenient to analyze fluids using laws that de-
pend on the statistical behavior of the particles or that in-
volve average or bulk properties such as pressure, density,
and temperature. Our approach to fluid mechanics takes its
start from Newton’s laws, but we will develop special formu-
lations of these laws that apply to fluids at rest or in motion.

15-2 PRESSURE AND DENSITY

Pressure
The ability to flow makes a fluid unable to sustain a force
parallel to its surface. Under static conditions the only force
component that need be considered is one that acts normal
or perpendicular to the surface of the fluid. No matter what
the shape of a fluid, forces between the interior and exterior
are everywhere at right angles to the fluid boundary.

The magnitude of the normal force per unit surface area
is called the pressure. Pressure is a scalar quantity; it has no
directional properties. When you swim underwater, for ex-
ample, the water presses on your body from all directions.
Even though the pressure is produced by a force that has di-
rectional properties and is a vector, the pressure itself is a
scalar.

Microscopically, the pressure exerted by a fluid on a
surface in contact with it is caused by collisions of mole-
cules of the fluid with the surface. As a result of a collision,
the component of a molecule’s momentum perpendicular to
the surface is reversed. The surface must exert an impulsive
force on the molecule, and by Newton’s third law the mole-
cules exert an equal force perpendicular to the surface. The

net result of the reaction force exerted by many molecules
on the surface gives rise to the pressure on the surface. We
develop this picture more quantitatively in the case of gases
in Chapter 22.

A fluid under pressure exerts an outward force on any
surface in contact with it. Consider a closed surface con-
taining a fluid, as in Fig. 15-1. The fluid within the surface
pushes out against the environment. A small element of sur-
face area can be represented by the vector whose mag-
nitude is numerically equal to the element of area and
whose direction, by convention, is along the outward nor-
mal to the surface. The force exerted by the fluid
against this surface depends on the pressure p according to

(15-1)

Since the vectors representing the force and the area are
parallel, we can write the pressure in terms of the scalar re-
lationship

(15-2)

We take the element � A small enough that the pressure p
defined according to Eq. 15-2 is independent of the size of
the element. In general, the pressure may vary from point to
point along the surface.

Pressure has dimensions of force divided by area, and a
common unit for pressure is N/m2. This unit is given the SI
designation pascal (abbreviation Pa; 1 Pa � 1 N/m2). A
wide variety of other units can be found. Tire pressure
gauges usually read in lb/in.2 in the United States. The stan-
dard pressure exerted by the atmosphere of the Earth at sea
level is designated as 1 atmosphere (atm; 1 atm �
14.7 lb/in.2 � 1.01325 � 105 Pa, exactly). Because the pas-
cal is a small unit (1 Pa � 10�5 atm), weather forecasters
often use the unit of the bar (1 bar � 105 Pa, or approxi-
mately 1 atm) to express atmospheric pressure. Other units
for measuring pressure are discussed in Section 15-5.

Table 15-1 gives some representative pressures in pascal
units. The term “overpressure” indicates a pressure value in
excess of normal atmospheric pressure. Note that in the lab-
oratory we can produce pressures that range over 22 orders
of magnitude. In Appendix G you will find the conversion

p �
�F

�A
.

�F
B

� p �A
B

.

�F
B

�A
B

,
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Figure 15-1. An element of surface � A can be represented
by a vector of length equal to the magnitude of the area of the
element and of direction perpendicular to the element. The fluid
enclosed by the surface exerts a force against the element. The
force is perpendicular to the element and therefore parallel to �A

B
.

�F
B

�A
B

∆A

∆A
∆F



factors necessary to convert pressure measurements from
one set of units to another.

Density
The density � of a small element of any material is the mass
�m of the element divided by its volume �V:

(15-3)

The density at a point is the limiting value of this ratio as
the volume element becomes infinitesimally small. Density
has no directional properties and is a scalar.

If the density of an object has the same value at all
points, the density of the object is equal to the mass of the
entire object divided by its volume:

(15-4)

Table 15-2 gives some representative densities, which vary
by about 21 orders of magnitude in the laboratory and by
nearly 40 orders of magnitude from the densest objects in
the universe (a hypothetical black hole) to the near vacuum
of space itself.

The density of a material in general depends on environ-
mental factors, including the pressure and temperature. For
liquids and solids, the variation in density is very small
over wide ranges of variation of pressure and temperature.

When we increase the pressure on a material by an
amount �p, its density will correspondingly increase. The
fractional change in its volume is �V/V, which is negative
if the volume decreases. The ratio between these quantities
is called the bulk modulus B:

(15-5)

The minus sign is inserted in this definition to make B a
positive quantity, because �p and �V have opposite signs.

B � �
�p

�V/V
.

� �
m

V
.

� �
�m

�V
.

That is, an increase in pressure (�p � 0) causes a decrease
in volume (�V � 0). Note that B has the same dimension
as pressure, because �V/V is a dimensionless quantity.

If the bulk modulus of a material is large, then (accord-
ing to Eq. 15-5) a large pressure change �p produces only a
small change in its volume. In this case, we can regard the
material as being nearly incompressible. The bulk modulus
of water, for example, is 2.2 � 109 N/m2. At the pressure at
the bottom of the Pacific Ocean (4.0 � 107 N/m2, about
400 atm), the relative change in volume caused by pressure
alone is only 1.8%. Solids usually have higher bulk moduli
than liquids, because of the tighter coupling of the atoms in
solids. A given pressure thus produces a smaller change in
volume of a solid than a liquid. Under ordinary circum-
stances, we can therefore regard both solids and liquids as
incompressible; that is, their densities do not change as the
applied pressure changes.

If B is small, the volume can be changed by a modest
change in pressure, and the material is said to be compress-
ible. Typical gases have bulk moduli of about 105 N/m2. A
small pressure change of 0.1 atm can change the volume of
a gas by 10%. Gases are thus easily compressible.

15-3 VARIATION OF PRESSURE
IN A FLUID AT REST

If a fluid is in equilibrium, every portion of the fluid is in
equilibrium. That is, both the net force and the net torque
on every element of the fluid must be zero. Consider a
small element of fluid volume submerged within the body
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System Pressure (Pa)

Center of the Sun
Center of the Earth
Highest sustained laboratory pressure
Deepest ocean trench (bottom)
Spiked heels on a dance floor
Automobile tire (overpressure)
Atmosphere at sea level
Normal blood pressurea

Loudest tolerable soundb 30
Faintest detectable soundb

Best laboratory vacuum 10�12

a The systolic overpressure, corresponding to 120 mm Hg on the physi-
cian’s pressure gauge.
b Overpressure at the eardrum, at 1000 Hz.

3 � 10�5

1.6 � 104
1.0 � 105

2 � 105
2 � 107

1.1 � 108
1.5 � 1010

4 � 1011
2 � 1016

Table 15-1 Some Pressures

Material or Object Density (kg /m3)

Interstellar space 10�20

Best laboratory vacuum 10�17

Air: 20°C and 1 atm 1.21
20°C and 50 atm 60.5

Styrofoam
Ice
Water: 20°C and 1 atm

20°C and 50 atm
Seawater: 20°C and 1 atm
Whole blood
Iron
Mercury
The Earth: average

core
crust

The Sun: average
core

White dwarf star (core) 1010

Uranium nucleus
Neutron star (core) 1018

Black hole (1 solar mass) 1019

3 � 1017

1.6 � 105
1.4 � 103
2.8 � 103
9.5 � 103
5.5 � 103

13.6 � 103
7.8 � 103

1.060 � 103
1.024 � 103
1.000 � 103
0.998 � 103
0.917 � 103

1 � 102

Table 15-2 Some Densities



of the fluid. Let this element have the shape of a thin disk
and be a distance y above some reference level, as shown in
Fig. 15-2a. The thickness of the disk is dy and each face
has area A. The mass of this element is dm � � dV � �A dy,
and its weight is (dm)g � �gA dy. The forces exerted on the
element by the surrounding fluid are perpendicular to its
surface at each point (Fig. 15-2b).

The resultant horizontal force is zero, because the ele-
ment has no horizontal acceleration. The horizontal forces
are due only to the pressure of the fluid, and by symmetry
the pressure must be the same at all points within a hori-
zontal plane at y.

The fluid element is also unaccelerated in the vertical
direction, so the resultant vertical force on it must be zero.
A free-body diagram of the fluid element is shown in Fig.
15-2c. The vertical forces are due not only to the pressure
of the surrounding fluid on its faces but also to the weight
of the element. If we let p be the pressure on the lower 
face and p 	 dp the pressure on its upper face, the upward
force on the lower face is pA, and the downward forces are
( p 	 dp)A on the upper face and the weight of the element
(dm)g � �gA dy. Hence, for vertical equilibrium,

from which we obtain

(15-6)

This equation tells us how the pressure varies with eleva-
tion above some reference level in a fluid in static equilib-
rium. As the elevation increases (dy positive), the pressure
decreases (dp negative). The cause of this pressure variation
is the weight per unit cross-sectional area of the layers of
fluid lying between the points whose pressure difference is
being measured.

The quantity �g is often called the weight density of the
fluid; it is the weight per unit volume of the fluid. For 
water, for example, the weight density is 9800 N/m3 �
62.4 lb/ft3.

dp

dy
� ��g.

� Fy � pA � (p 	 dp)A � �gA dy � 0,

If p1 is the pressure at elevation y1 , and p2 the pressure
at elevation y2 above some reference level, integration of
Eq. 15-6 gives

or

(15-7)

For liquids, which are nearly incompressible, � is practi-
cally constant, and differences in level are rarely so great
that any change in g need be considered. Hence, taking �
and g as constants, we obtain

(15-8)

for a homogeneous liquid.
If a liquid has a free surface, this is the natural level

from which to measure distances (Fig. 15-3). Let y2 be the
elevation of the surface, at which point the pressure p2 act-
ing on the fluid is usually that exerted by the Earth’s atmo-

p2 � p1 � ��g(y2 � y1)

p2 � p1 � ��y2

y1

�g dy.

�p2

p1

dp � ��y2

y1

�g dy
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(p + dp)A

(a) (b) (c)

Area A

Thickness
dy (dm)g

y

pA

dy

y

Reference level, y = 0

(dm)g
(p + dp)A

pA

Figure 15-2. (a) A small volume el-
ement of the fluid at rest. (b) The forces
on the element. (c) A free-body diagram
of the element.

Figure 15-3. A container holds a quantity of a liquid whose
top surface is open to the atmosphere. The pressure at any point in
the liquid depends on the depth h.



sphere p0 . We take y1 to be at any level in the fluid, and we
represent the pressure there as p. Then

However, y2 � y1 is the depth h below the surface at which
the pressure is p (see Fig. 15-3), so that

(15-9)

This shows clearly that the pressure in a homogeneous, in-
compressible liquid increases with depth but is the same at
all points at the same depth. The second term on the right
of Eq. 15-9 gives the contribution to the pressure at a point
in the liquid due to the weight of the fluid of height h above
that point.

Equation 15-8 gives the relation between the pressures
at any two points in a fluid, regardless of the shape of the
containing vessel— for no matter what the shape of the
containing vessel, two points in the fluid can be connected
by a path made up of vertical and horizontal steps. For ex-
ample, consider points A and B in the homogeneous liquid
contained in the U-tube of Fig. 15-4a. Along the zigzag
path from A to B there is a difference in pressure �g �y for
each vertical segment of length �y, whereas along each
horizontal segment there is no change in pressure. Hence
the difference in pressure pB � pA is �g times the algebraic
sum of the vertical segments from A to B, or �g(y2 � y1).

If the U-tube contains different immiscible liquids—
say, a dense liquid in the right tube and a less dense one in
the left tube, as shown in Fig. 15-4b— the pressure can be
different at the same level (points A and B) on different
sides. The liquid below the line CC is in equilibrium; thus
the force exerted by the left column above C must equal the
force exerted by the right column above C. The pressure at
C is the same on both sides, but the pressure falls less from
C to A than from C to B, because the liquid on the left is
less dense than the liquid on the right. Thus the pressure at
A is greater than at B.

p � p0 	 �gh.

p0 � p � ��g(y2 � y1).

Variation of Pressure in the Atmosphere
For gases � is comparatively small, and the difference in
pressure at two nearby points is usually negligible (see Eq.
15-8). Thus in a reasonably small vessel containing a gas,
the pressure can be taken as the same everywhere. How-
ever, this is not the case if y2 � y1 is very great. The pres-
sure of the air varies greatly as we ascend to great heights
in the atmosphere. Moreover, since gases are compressible,
the variation in pressure causes a variation in the density �
with altitude, and � must be known as a function of y before
we can integrate Eq. 15-7.

We can get a reasonable idea of the variation of pressure
with altitude in the Earth’s atmosphere if we assume that
the density � is proportional to the pressure. This would be
very nearly true (according to the ideal gas law, which we
discuss in Chapter 22) if the temperature of the air remained
the same at all altitudes. Using this assumption, and also as-
suming that the variation of g with altitude is negligible, we
can find the pressure p at any altitude y above sea level.

From Eq. 15-6 we have

Since � is proportional to p, we have

(15-10)

where �0 and p0 are the values of density and pressure at
sea level. Then

so that

(15-11)

Integrating Eq. 15-11 from the pressure p0 at the altitude 
y � 0 (sea level) to the pressure p at the altitude h, we obtain

which gives

or
(15-12)

which we can write as

(15-13)

where

Using the values g � 9.80 m/s2, �0 � 1.21 kg/m3 (at 20°C),
and p0 � 1.01 � 105 Pa, we obtain a � 8.55 km. The 

a �
p0

g�0
.

p � p0e�h/a,

p � p0e�(g�0 /p0)h,
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� �
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Figure 15-4. (a) The difference in pressure between two
points A and B in a homogeneous liquid depends only on their dif-
ference in elevation y2 � y1 . (b) Two points A and B at the same
elevation can be at different pressures if the densities there differ.
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constant a gives the difference in altitude over which the
pressure drops by a factor of e. Put another way, the atmo-
spheric pressure drops by a factor of 10 when the altitude
changes by a ln 10 � 2.30a � 20 km. At an altitude of h �
20 km above sea level, the atmospheric pressure would thus
be 0.1 atm; at h � 40 km above sea level, it would be 
0.01 atm. Figure 15-5 shows a comparison between the
pressure variation with altitude predicted by Eq. 15-13 and
that measured for the atmosphere.

For gases at uniform temperature the density � of any
layer is proportional to the pressure p at that layer. Liquids,
however, are almost incompressible, so the lower layers are
not noticeably compressed by the weight of the upper lay-
ers superimposed on them, and the density � is practically
constant at all levels. Thus the variation of pressure with
distance above the bottom of the fluid for a gas is different
from that for a liquid, as indicated by Eq. 15-9 for a liquid
and Eq. 15-13 for a gas.

Sample Problem 15-1. A U-tube, in which both ends
are open to the atmosphere, is partly filled with water. Oil, which
does not mix with water, is poured into one side until it stands a
distance d � 12.3 mm above the water level on the other side,
which has meanwhile risen a distance a � 67.5 mm from its orig-
inal level (Fig. 15-6). Find the density of the oil.

Solution In Fig. 15-6 points C are at the same pressure. (If this
were not true, then the U-shaped fluid element below the CC level
would experience a net unbalanced force and would accelerate, vi-
olating the static assumption we make in this problem.) The pres-
sure drop from C to the surface on the water side is �wg2a, where
2a is the height of the water column above C. The pressure drop
on the other side from C to the surface is �g(2a 	 d ), where � is
the unknown density of the oil. Equating the pressures at point C
on each side, we obtain

p0 	 �wg2a � p0 	 �g(2a 	 d ),

and so

The ratio of the density of a substance to the density of water
is called the relative density (or the specific gravity) of that sub-
stance. In this case the specific gravity of the oil is 0.916.

Note that in solving this problem, we have assumed that the
pressure is continuous across the interface between the oil and the
water at point C on the left side of the tube. If this were not so and
the pressures were different, then the force exerted by the fluid on
one side of the interface would differ from that of the fluid on the
other side, and the interface would accelerate under the influence
of the unbalanced force. Since we are assuming a static situation,
there can be no motion and the pressures must therefore be the
same. When we first pour the oil into the tube, however, there may
be a difference in pressure and an unbalanced force that would
cause the system to move until it reached the static situation
shown in Fig. 15-6.

15-4 PASCAL’S PRINCIPLE AND
ARCHIMEDES’ PRINCIPLE

When you squeeze a tube of toothpaste, the toothpaste
flows out of the open top of the tube. This demonstrates the
action of Pascal’s principle. When pressure is applied any-
where on the tube, it is felt everywhere in the tube and
forces the toothpaste out of the top. Here is the statement of
Pascal’s principle, which was first stated by Blaise Pascal in
1652:

Pressure applied to an enclosed fluid is transmitted
undiminished to every portion of the fluid and to the
walls of the containing vessel.

That is, if you increase the external pressure on a fluid at
one location by an amount �p, the same increase in pres-
sure is experienced everywhere in the fluid.

� 916 kg/m3.

� (1.000 � 103 kg /m3) 
2(67.5 mm)

2(67.5 mm) 	 12.3 mm

� � �w
2a

(2a 	 d )
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Figure 15-5. Comparison of standard atmospheric pressure
data (dashed line) with predictions of Eq. 15-13 (solid line). The
two curves differ because our calculation neglected the variation
of the density with temperature as the altitude increases.

Figure 15-6. Sample Problem 15-1. A U-tube is filled partly
with water and partly with oil of unknown density.

Initial
water
level

Water

Oil

d

a

a

C C



Pascal’s principle is the basis for the operation of all hy-
draulic force-transmitting mechanisms, such as might be
found in earth-moving machinery or the brake system of
your car. It enables us to amplify a relatively small applied
force to raise a much greater weight (as in the automobile
lift or the dentist’s chair) and to transmit forces over long
distances to relatively inaccessible locations (as in the con-
trol mechanisms for the wing flaps used in aircraft).

We shall prove Pascal’s principle for an incompressible
liquid. Figure 15-7 shows the liquid in a cylinder that is fit-
ted with a piston. An external force is applied to the piston,
for instance, by the weight of some objects stacked on it.
The external force results in an external pressure pext being
applied to the liquid immediately beneath the piston. If the
liquid has a density �, then from Eq. 15-9 we can write the
pressure at an arbitrary point P a distance h below the sur-
face:

(15-14)

Suppose now the external pressure is increased by an
amount �pext , perhaps by adding some more weight to the
piston. How does the pressure p in the fluid change as a re-
sult of this change in the external pressure? We assume the
liquid to be incompressible, so that the density � remains
constant. The change in external pressure results in a
change in pressure in the fluid that follows from Eq. 15-14:

(15-15)

Since the liquid is incompressible, the density is constant,
and the second term on the right of Eq. 15-15 equals zero.
In this case, we obtain

(15-16)

The change in pressure at any point in the fluid is simply
equal to the change in the externally applied pressure. This
result confirms Pascal’s principle and shows that it follows
directly from our previous consideration of the static pres-
sure in a fluid. It is therefore not an independent principle
but a direct consequence of our formulation of fluid statics.

�p � �pext .

�p � �pext 	 �(�gh).

p � pext 	 �gh.

Although we derived the above result for incompress-
ible liquids, Pascal’s principle is true for all real (compress-
ible) fluids, gases as well as liquids. The change in external
pressure causes a change in density that quickly spreads
throughout the fluid, but once the disturbance has died out
and equilibrium has been established, Pascal’s principle is
found to remain valid.

The Hydraulic Lever
Figure 15-8 shows an arrangement that is often used to lift
a heavy object such as an automobile. An external force Fi

is exerted on a piston of area Ai . The object to be lifted ex-
erts a force Mg on the larger piston of area Ao . In equilib-
rium, the magnitude of the upward force Fo exerted by the
fluid on the larger piston must equal that of the downward
force Mg of the weight of the object (neglecting the weight
of the piston itself ). We wish to find the relationship be-
tween the applied force Fi and the “output force” Fo that the
system can exert on the larger piston.

The pressure on the fluid at the smaller piston, due 
to our externally applied force, is pi � Fi /Ai . According to
Pascal’s principle, this “input” pressure must be equal 
to the “output” pressure po � Fo /Ao , which is exerted by
the fluid on the larger piston. Thus pi � po , and so

or

(15-17)

The ratio Ai /Ao is generally much smaller than 1, and thus
the applied force can be much smaller than the weight Mg
that is lifted.

The downward movement of the smaller piston through
a distance di displaces a volume of fluid V � diAi . If the
fluid is incompressible, then this volume must be equal to
the volume displaced by the upward motion of the larger
piston:

or

(15-18)do � di
Ai

Ao
.

V � diAi � doAo ,

Fi � Fo
Ai

Ao
� Mg

Ai

Ao
.

Fi

Ai
�

Fo

Ao
,
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Figure 15-8. The hydraulic lever. A Force applied to the
smaller piston can give a much larger force on the larger pis-
ton, which can lift a weight Mg.
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iFigure 15-7. A fluid in a cylinder fitted with a movable pis-
ton. The pressure at any point P is due not only to the weight of the
fluid above the level of P but also to the force exerted by the piston.
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If Ai /Ao is a small number, then the distance moved by the
larger piston is much smaller than the distance the applied
force moves the smaller piston. The price we pay for gain-
ing the ability to lift a large load is losing the ability to
move it very far.

By combining Eqs. 15-17 and 15-18, we see that Fidi �
Fo do , which shows that the work done by the external force
on the smaller piston is equal to the work done by the fluid
on the larger piston. Thus (ignoring friction and other dissi-
pative forces), there is no net gain (or loss) in energy in us-
ing this hydraulic system.

Sample Problem 15-2. Figure 15-9 shows a schematic
view of a hydraulic jack used to lift an automobile. The hydraulic
fluid is oil (density � 812 kg/m3). A hand pump is used, in which
a force of magnitude Fi is applied to the smaller piston (of diame-
ter 2.2 cm) when the hand applies a force of magnitude Fh to the
end of the pump handle. The combined mass of the car to be lifted
and the lifting platform is M � 1980 kg, and the large piston has a
diameter of 16.4 cm. The length L of the pump handle is 36 cm,
and the distance x from the pivot to the piston is 9.4 cm. (a) What
is the applied force Fh needed to lift the car? (b) For each down-
ward stroke of the pump, in which the hand moves a vertical dis-
tance of 28 cm, how far is the car raised?

Solution (a) From Eq. 15-17,

Taking torques on the pump handle about an axis perpendicular to
the page through the pivot point O, neglecting the masses of the
pump handle and the small piston, and assuming the pump handle
moves with a negligibly small angular acceleration, we obtain

where we have used Newton’s third law to relate the force ex-
erted by the pump handle on the piston to the force � exerted
by the piston on the pump handle. Solving for Fh , we find that

Such a force, about 20 lb, can easily be applied by hand.

Fh � Fi
x

L
� (349 N) 

9.4 cm

36 cm
� 91 N.

F
B

i

F
B

i

� 
 � FhL � Fi x � 0,

Fi � Mg
Ai

Ao
� (1980 kg)(9.8 m/s2) 

� (1.1 cm)2

� (8.2 cm)2 � 349 N.

(b) When the hand moves through a vertical distance h, the
smaller piston will move through the distance

Equation 15-18 then gives the distance moved by the larger pis-
ton:

Raising the car by only such a tiny distance is the price we pay for
exerting such a small force to lift the car. Of course, to make a
useful device we must be able to lift the car by a larger distance,
which is accomplished through many strokes of the pump. To
keep the car from moving downward during the upward stroke of
the pump, the valve arrangement shown in Fig. 15-9 is used. Dur-
ing the downstroke, the valves are in the positions shown in Fig.
15-9, and the car is raised by the distance do . During the return
stroke valve 2 is closed, trapping fluid in the right side of the
chamber and keeping the car at a fixed height, and valve 1 is
opened, so the return stroke draws additional fluid from the reser-
voir into the left side of the chamber. For the next downstroke, the
valves return to the positions shown in the figure, and the car is
raised by another increment do . In effect, the volume of hydraulic
fluid drawn into the left side of the chamber during the upstroke is
pumped into the right side of the chamber during the downstroke.
When the process is completed, the car can be lowered by opening
both valves and allowing fluid to drain directly into the reservoir.

How does the operation of the hydraulic jack change as the car
is raised and the height of the fluid in the right-hand column in-
creases? Make a numerical estimate.

Archimedes’ Principle
Figure 15-10a shows a volume of water contained in a thin
plastic sack placed underwater. The water in the sack is in
static equilibrium. Therefore its weight must be balanced by
an upward force of equal magnitude. This upward force is
the vector sum of all the inward forces exerted by the fluid
that surrounds the sack. The arrows in Fig. 15-10a represent
the forces exerted on the volume of liquid as a result of the
pressure of the surrounding fluid. Note that the upward
forces on the bottom of the sack are greater than the down-
ward forces on the top, because the pressure increases with
depth. The net upward force resulting from this pressure
difference is called the buoyant force or buoyancy.

The pressure exerted on a submerged object by the sur-
rounding fluid certainly cannot depend on the material of
which the object is made. We could therefore replace the
sack of water by a piece of wood of exactly the same size
and shape, and the buoyant force would be unchanged. The
upward force is still equal to the weight of the original vol-
ume of water. This leads us to Archimedes’ principle:

A body wholly or partially immersed in a fluid is buoyed
up by a force equal in magnitude to the weight of the
fluid displaced by the body.

F
B

b

do � di
Ai

Ao
� (7.3 cm) 

� (1.1 cm)2

� (8.2 cm)2 � 0.13 cm � 1.3 mm.

di � h
x

L
� (28 cm) 

9.4 cm

36 cm
� 7.3 cm.

338 Chapter 15 / Fluid Statics

Figure 15-9. Sample Problem 15-2. A hydraulic pump is
used to lift a car. For the downstroke, valve 1 is closed and valve 2
is open. During the upstroke, valve 1 is opened and valve 2 is
closed, permitting additional fluid to be drawn into the hydraulic
chamber.

Fluid
reservoir Valve 1

(closed)
Valve 2
(open)

Fo

Fi

Fh

L
x

O



An object of density greater than water (Fig. 15-10b)
displaces a volume of water whose weight is less than the
weight of the object. The object therefore sinks in the wa-
ter, because the magnitude of the buoyant force is less than
the weight of the object. If the submerged object were rest-
ing on a spring scale at the bottom of the water, the scale
would read the upward force on the object, which is equal
in magnitude to mg � Fb ; thus submerged objects appear
to weigh less than they normally do. Astronauts prepare for
their voyages by practicing tasks under water in huge tanks,
to simulate somewhat the weightless condition of space.

An object of density less than water (Fig. 15-10c) expe-
riences a net upward force when completely submerged,
because the weight of the water displaced is greater than
the weight of the object. The object therefore rises until it
breaks the surface, and it continues to rise until the only
part of it still submerged is that volume necessary to dis-
place water whose weight is equal to the total weight of the
object. In that situation the object floats in equilibrium.

The buoyant force can be regarded as acting at the cen-
ter of gravity of the fluid displaced by the submerged part
of a floating object. This point is known as the center of
buoyancy. The weight acts at the center of gravity of the en-
tire object. These two points are in general not the same
(Fig. 15-11a). If the two points lie on the same vertical line,
then the object can float in equilibrium: both the net force
and the net torque are zero. If the floating object is tipped
slightly from its equilibrium position, then in general the
shape of the displaced fluid changes, and the center of
buoyancy shifts its position with respect to the center of
gravity of the floating object. Thus a torque acts on the
floating object that might tip the object back to its equilib-
rium position (Fig. 15-11b), or it might act in the other di-
rection to tip it completely over (Fig. 15-11c).

Sample Problem 15-3. What fraction of the total vol-
ume of an iceberg is exposed?

Solution The weight of the iceberg is

where Vi is the volume of the iceberg. The weight of the volume
Vw of seawater displaced (or, equivalently, the volume of the sub-
merged part of the iceberg) is the buoyant force

However Fb equals Wi , because the iceberg is in equilibrium, so
that

and, using densities from Table 15-2,

The volume of water displaced Vw is the volume of the submerged
portion of the iceberg, so that 10.4% of the iceberg is exposed.

Vw

Vi
�

�i

�w
�

917 kg/m3

1024 kg/m3 � 0.896 � 89.6%.

�wVwg � �iVig,

Fb � �wVwg.

Wi � �iVig,
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Figure 15-10. (a) A thin plastic sack
full of water in equilibrium underwater.
The water surrounding the sack exerts
pressure forces on its surface, the resultant
being an upward buoyant force acting
on the sack. (b) For a stone of the same
volume, the buoyant force is the same, but
the weight exceeds the buoyant force so
the stone is not in equilibrium. (c) For a
piece of wood of the same volume, the
weight is less than the buoyant force.
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Figure 15-11. (a) A cross section of a ship floating upright.
The buoyant force acts at the center of buoyancy B, and the
weight acts at the center of gravity C. The ship is in equilibrium
under the action of these forces. (b) When the ship tips, the center
of buoyancy may no longer lie on the same vertical line as the
center of gravity, and a net torque may act on the ship. Here the
torque about C acts to restore the ship to the upright position. (c)
Here the center of gravity lies higher, so that the torque about C
due to the buoyant force tends to tip the ship even further.
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15-5 MEASUREMENT OF
PRESSURE

The pressure exerted by a fluid can be measured using ei-
ther static or dynamic techniques. The dynamic methods
are based on the speed of flow of a moving fluid and are
discussed in Chapter 16. In this section, we discuss static
methods for measuring pressure.

Most pressure gauges use atmospheric pressure as a
reference level and measure the difference between the 
actual pressure and atmospheric pressure, called the gauge
pressure. The actual pressure at a point in a fluid is called
the absolute pressure, which is then the atmospheric pres-
sure plus the gauge pressure. Gauge pressure is given 
either above or below atmospheric pressure and may thus
be positive or negative; absolute pressure is always posi-
tive.

The mercury barometer is a long glass tube that has
been filled with mercury and then inverted into a dish of
mercury, as in Fig. 15-12. The space above the mercury
column is in effect a vacuum containing only mercury va-
por, whose pressure p2 is so small at ordinary temperatures
that it can be neglected. The pressure p1 on the surface of
the dish of mercury is the unknown pressure p we wish to
measure. From Eq. 15-8, we obtain

or

(15-19)

Measuring the height of the column above the surface of
the dish then gives the pressure.

p � �gh.

p2 � p1 � 0 � p � ��g(y2 � y1) � ��gh,

The mercury barometer is often used for measuring at-
mospheric pressure p0 . The height of a column of mercury
at normal atmospheric pressure (1 atm � 1.01325 � 105

N/m2) is, according to Eq. 15-19:

where we have used a standard value for g and the density
of mercury at 0°C. It is thus often said that 1 atm �
760 mm of Hg; equivalently, 1 mm of Hg � 1/760 atm.
The pressure exerted by a column of mercury 1 mm high
(again at 0°C and with g at its standard value) is called 1
torr, and so

We can also express 1 atm as 29.9 inches of Hg; ordinary
barometers (and TV weather forecasters) often give atmo-
spheric pressure in inches of mercury. These calculations
may suggest why mercury, with its large density, is chosen
to measure atmospheric pressure; a liquid of smaller den-
sity would require a proportionately higher column. To
measure atmospheric pressure using a “water” barometer
would require a column more than 10 m high!

Normal atmospheric pressure can also be expressed as
14.7 lb/in.2, which means that the weight of the vertical col-
umn of air that extends from each square inch of the Earth’s
surface to the top of the atmosphere has a weight of 14.7
pounds. You should be able to show that a column of mer-
cury 760 mm high and one square inch in cross-sectional
area also weighs 14.7 pounds.

The mercury barometer was invented by the Italian
Evangelista Torricelli (1608–1647), after whom the unit
torr was named. Pascal, also working in the 17th century,
was the first to use the barometer to show that atmospheric
pressure varied with altitude. These experiments had signif-
icant impact because they demonstrated for the first time
that it was possible to create a vacuum (in this case in the
small volume at the top of the vertical tube). This demon-
stration led to the development of the vacuum pump in the
latter part of the 17th century.

The open-tube manometer (Fig. 15-13) measures
gauge pressure. It consists of a U-shaped tube containing
a liquid, one end of the tube being open to the atmosphere
and the other end being connected to the system (tank)
whose pressure p we want to measure. From Eq. 15-9 we
obtain

Thus the gauge pressure, p � p0 , is proportional to the dif-
ference in height of the liquid columns in the U-tube. If the
vessel contains gas under high pressure, a dense liquid
such as mercury is used in the tube; water or other low-
density liquids can be used when low gas pressures are in-
volved.

p � p0 � �gh.

1 torr � 1 mm of Hg � 133.322 Pa.

� 0.7600 m � 760.0 mm,

h �
p0

�g
�

1.01325 � 105 Pa

(13.5955 � 103 kg/m3)(9.80665 m/s2)
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Figure 15-12. The mercury barometer. The mercury in the
dish is in equilibrium under the influence of atmospheric pressure
and the weight of the mercury in the vertical column.
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h = y2 – y1

y2

y1



Sample Problem 15-4. The mercury column in a
barometer has a measured height h of 740.35 mm. The tempera-
ture is � 5.0°C, at which temperature the density of mercury is
1.3608 � 104 kg/m3. The free-fall acceleration g at the site of the
barometer is 9.7835 m/s2. What is the atmospheric pressure?

Solution From Eq. 15-19 we have

Note that the value of the pressure in torr (739.31 torr) is numeri-
cally close to the value of the height h of the mercury column ex-
pressed in mm (740.35 mm). These two quantities will be numeri-
cally equal only if the barometer is located at a place where g has
its standard value and where the mercury temperature is 0°C.

Another way to express the result of this sample problem
would be as 0.98566 bar or 985.66 millibar, where 1 bar �
105 Pa.

15-6 SURFACE TENSION
(Optional)

Leaves and insects can be observed to float on the surface
of a body of water. They are not partially submerged and
thus not buoyed up because of Archimedes’ principle. In
this case the object is completely on the surface and none
of it is submerged.

The object is kept afloat by the surface tension of the
liquid. You can demonstrate the surface tension of water by
carefully floating a steel needle or a razor blade (Fig. 15-
14a). There is of course no way for steel to float by
Archimedes’ principle, since its density is greater than that

� 9.8566 � 104 Pa � 739.31 torr.
� (1.3608 � 104 kg /m3)(9.7835 m/s2)(0.74035 m)

p0 � �gh

of water. If you submerge the needle or the razor blade, it
will sink as Archimedes’ principle predicts. Only when it is
entirely on the surface can it float. You can add to the water
a chemical, called a surface-active agent or surfactant,
which reduces the surface tension (by reducing the cohe-
sive force between molecules) and makes it more difficult
to float the object. Detergents are common surfactants. If
you carefully introduce detergent into the water on which a
razor blade is floating, the surface tension suddenly de-
creases and the razor blade sinks to the bottom.

A floating object, such as that shown in Fig. 15-14a, de-
presses the surface layer of the fluid slightly (Fig. 15-14b),
which stretches the surface layer and thus tends to increase
its potential energy. Somewhat like a trampoline, the
stretched surface layer exerts a restoring force, the vertical
component of which can maintain equilibrium with the
weight of the object. We shall soon see, however, that this
analogy of the behavior of the surface layer is not strictly
correct.

Figure 15-15 shows a way of measuring the surface ten-
sion of a liquid. A thin wire is bent into the shape of three
sides of a rectangle and fitted with a sliding wire as the
fourth side. If a film of the liquid covers the vertical loop
(established perhaps by dipping the loop into a container of
the liquid), the surface tension will tend to draw the sliding
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Figure 15-13. An open-tube manometer, which might be
used to measure the pressure of a fluid in a tank.
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Figure 15-14. (a) A razor blade floating on the surface of
water, supported only by surface tension. (b) The surface is dis-
torted by the floating object, which is kept afloat by the vertical
components of the surface force F
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wire downward. We apply an external upward force P nec-
essary to maintain the sliding wire in equilibrium. This up-
ward force must balance the total downward force on the
sliding wire, equal to its weight plus the force F due to the
surface tension.

By experiment we find that the force F depends on the
length d of the slide wire but does not depend at all on the
height h of the rectangle. Although it is tempting to regard
the surface layer as a sort of elastic sheet stretched over the
liquid, this observation shows that such a picture is incor-
rect. Imagine the film of Fig. 15-15 to be cut into a large
number N of narrow vertical strips of length h and width
�d � d/N. If the film behaved like an elastic sheet, each
strip would behave like a spring, and so the total force
would depend both on the number of spring-like strips (and
hence on d ) and on the length h of each strip. Because the
surface tension depends only on d and not on h, the analogy
of the elastic sheet is not correct.

The surface tension � is defined as the surface force F
per unit length L over which it acts, or

(15-20)

Note that the surface tension � is not a force but a force per
unit length. Our previous use of the term tension has always
indicated a force, but here the usage is somewhat different.

For the film of Fig. 15-15, the force acts over a length L
of 2d, because there are two surface layers each of length d.
For this arrangement the surface tension would be � �
F/2d.

We can also analyze the surface tension in terms of en-
ergy rather than force. Suppose we move the sliding wire of
Fig. 15-15 through an upward displacement �x. The work
W done by the downward-acting surface force is � F �x,
and we can associate the work done by this conservative

� �
F

L
.

force with a change in potential energy �U � � W �
F �x. Moving the wire upward increases the area of the
surface by � A � L �x. Equation 15-20 then becomes

(15-21)

According to Eq. 15-21 we can also regard the surface ten-
sion � as the surface potential energy per unit area of sur-
face.

For water at room temperature, the value of the surface
tension is � � 0.073 N/m. Adding soap reduces the surface
tension to 0.025 N/m. Organic liquids and aqueous solu-
tions typically have surface tensions in this range. The 
surface tension of liquid metals is typically an order of
magnitude larger than that of water. Liquid mercury at
room temperature, for example, has a surface tension of 
0.487 N/m. (This higher surface tension in metals occurs
because the forces between molecules are typically an order
of magnitude larger in metals than in water. For this same
reason, the boiling points of metals are typically much
higher than that of water.)

Surface tension causes suspended droplets of a liquid to
acquire a spherical shape (Fig. 15-16). For a drop of a
given mass or volume, the surface energy (equal to � times
the surface area) is least when the area is smallest, and a
sphere has the smallest surface-to-volume ratio of any geo-
metric shape. If no other forces act on the drop, it will natu-

� �
F

L
�

F �x

L �x
�

�U

�A
.
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Figure 15-15. (a) Schematic diagram of an experiment to
measure the surface tension of a liquid. A film of the liquid is sup-
ported in the vertical rectangular area, the top border of which is a
sliding wire. An external force balances the weight of the sliding
wire plus the total downward force of the surface tension. (b) A
cross-sectional sketch of the film, showing that the surface tension
acts on two surfaces.
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Figure 15-16. Freely floating droplets of liquid naturally as-
sume a spherical shape. Here astronaut Dr. Joseph P. Allen, in
Earth orbit on space shuttle Columbia, watches a ball of orange
juice he created using a beverage dispenser.



rally assume a spherical shape. In equilibrium, the surface
tension gives a net inward force on an element of surface,
which is balanced by an equal outward force due the pres-
sure of the liquid within the drop. In a soap bubble (which
has two surfaces and therefore twice the surface tension of
a liquid drop of equal size), the gauge pressure of the gas
confined in the bubble provides the outward force needed
for equilibrium.

Because the protons and neutrons in the nucleus experi-
ence short-range forces somewhat like the molecules in a
liquid, a nucleus experiences a surface tension similar to
that of a liquid drop. For many nuclei, the shape is deter-
mined by the balance between the outward force due to the
electrical repulsion of the protons and the inward force due
to surface tension. For such nuclei, the preferred shape is
usually spherical, like the liquid drop. Analyzing the nu-
cleus as a charged liquid drop has been especially success-
ful in helping us to understand nuclear fission, in which the
nucleus splits into two parts of comparable size.

Sample Problem 15-5. In the experiment shown in
Fig. 15-15a, it is found that the movable wire is in equilibrium
when the upward force P is 3.45 � 10�3 N. The wire has a length

d of 4.85 cm and a linear mass density  of 1.75 � 10�3 kg/m.
Find the surface tension of the liquid.

Solution From the equilibrium condition of Fig. 15-15b, we have

or

With F � 2d� (because there are two surface layers each of
length d ) and m � d, we obtain

or

� 0.027 N/m.

�
3.45 � 10�3 N � (1.75 � 10�3 kg /m)(0.0485 m)(9.80 m/s2)

2(0.0485 m)

� �
P � dg

2d

2d� � P � dg

F � P � mg.

� Fy � P � F � mg � 0,
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MULTIPLE CHOICE

15-1 Fluids and Solids
1. Consider the following types of forces: (A) compressional,

(B) tensile, or (C) shearing. Which of these forces can be sup-
ported by
(a) a solid? (b) a liquid?

15-2 Pressure and Density
2. Object B has twice the density and half of the mass of object

A. The ratio of the volume of A to the volume of B is
(A) 4. (B) 2. (C) 1.
(D) 1/2. (E) 1/4.

3. A suction cup is attached a smooth metal ceiling. The maxi-
mum weight that can be supported by the suction cup is de-
pendent on

(A) its area of contact with the ceiling.
(B) the air pressure outside the cup.
(C) both (A) and (B).
(D) neither (A) nor (B).

15-3 Variation of Pressure in a Fluid at Rest
4. The top surface of an incompressible liquid is open to the at-

mosphere. The pressure at a depth h1 below the surface is p1.
How does the pressure p2 at depth h2 � 2h1 compare with p1?

(A) p2 � 2p1 (B) p2 � 2p1 (C) p2 � 2p1

15-4 Pascal’s Principle and Archimedes’ Principle
5. A large rock is tied to a balloon filled with air. Both are

placed in a lake. As the balloon sinks:
(a) The air pressure inside the balloon

(A) increases. (B) remains the same. (C) decreases.

(D) varies in an unpredictable manner.

(b) The average density of the balloon 	 air 	 rock

(A) increases. (B) remains the same. (C) decreases.
(D) varies in an unpredictable manner.

(c) The magnitude of the net force on the balloon 	 air 	 rock

(A) increases. (B) remains the same. (C) decreases.
(D) varies in an unpredictable manner.

6. The (average) human body floats in water. SCUBA divers
wear weights and a flotation vest that can fill with a varying
amount of air to establish neutral buoyancy. Assume that a
diver originally establishes neutral buoyancy at one depth. To
establish neutral buoyancy at a lower depth, the diver should

(A) let some air out of the vest.
(B) add some air to the vest.
(C) do nothing, because neutral buoyancy already exists.

7. An automobile tire is filled completely with water. The tire is
mounted on an axle so that the tire is in a vertical plane. How
does the pressure vary inside the tire with (a) no additional
force applied; (b) a strong force pushing up on the bottom 
of the tire; (c) a strong force pushing down on the top of the
tire?

(A) The pressure is significantly greater at the top.
(B) The pressure is approximately the same everywhere.
(C) The pressure is significantly greater at the bottom.
(D) The pressure variation cannot be determined without

more information.

8. A wooden block floats in water in a sealed container. When
the container is at rest, 25% of the block is above the water.



Consider the following five situations: (a) The container is
lifted up at constant speed. (b) The container is lowered at
constant speed. (c) The container is lifted up at an increasing
speed. (d ) The container is lowered at a decreasing speed. (e)
The air pressure above the water in the container is in-
creased. What happens in each situation?

(A) The block floats higher in the water.
(B) The block floats at the same level in the water.
(C) The block floats lower in the water.
(D) The fraction of the block above the water cannot be

determined from the information given.

9. Bucket A contains only water; an identical bucket B contains
water, but also contains a solid object in the water. Consider
the following four situations: (a) The object floats in bucket
B, and the buckets have the same water level. (b) The object
floats in bucket B, and the buckets have the same volume of
water. (c) The object sinks completely in bucket B, and the
buckets have the same water level. (d) The object sinks com-
pletely in bucket B, and the buckets have the same volume of
water.

In each of the above situations, which bucket has the greater
total weight?

(A) Bucket A
(B) Bucket B
(C) Both buckets have the same weight.
(D) The answer cannot be determined from the informa-

tion given.

15-5 Measurement of Pressure

15-6 Surface Tension
10. A spherical soap bubble has a radius r and a surface tension �

and contains air at a pressure p. More air is blown into the
bubble, causing the radius to increase to 2r.
(a) The surface tension in this now inflated soap bubble is

(A) slightly less than �. (B) equal to �.
(C) slightly more than �. (D) 2�.

(b) The pressure of the air inside this now inflated soap bub-
ble is

(A) slightly less than p. (B) equal to p.
(C) slightly more than p. (D) 2p.

344 Chapter 15 / Fluid Statics

Figure 15-17. Question 7.

QUESTIONS

1. Explain how it can be that pressure is a scalar quantity when
forces, which are vectors, can be produced by the action of
pressures.

2. Make an estimate of the average density of your body. Ex-
plain a way in which you could get an accurate value using
ideas in this chapter.

3. In Chapter 19 we shall learn that an overpressure of only 20
Pa corresponds to the threshold of pain for intense sound. Yet
a diver 2 m below the surface of water experiences a much
greater pressure than this (how much?) and feels no pain.
Why this difference?

4. Persons confined to bed are less likely to develop sores on
their bodies if they use a water bed rather than an ordinary
mattress. Explain.

5. Explain why one could lie on a bed of nails without pain.

6. Explain the statement “water seeks its own level.”

7. Water is poured to the same level in each of the vessels
shown, all having the same base area (Fig. 15-17). If the pres-
sure is the same at the bottom of each vessel, the force experi-
enced by the base of each vessel is the same. Why then do the
three vessels have different weights when put on a scale? This
apparently contradictory result is commonly known as the hy-
drostatic paradox.

9. A spherical bob made of cork floats half submerged in a pot
of tea at rest on the Earth. Will the cork float or sink aboard a
spaceship (a) coasting in free space and (b) on the surface of
Mars?

10. How does a suction cup work?

11. Is the buoyant force acting on a submerged submarine the
same at all depths?

12. Explain how a submarine rises, falls, and maintains a fixed
depth. Do fish use the same principles? (See “The Buoyancy
of Marine Animals,” by Eric Denton, Scientific American,
July 1960, p. 118, and “Submarine Physics,” by G. P. Harn-
well, American Journal of Physics, March 1948, p. 127.)

13. A block of wood floats in a pail of water in an elevator. When
the elevator starts from rest and accelerates down, does the
block float higher above the water surface?

14. Two identical buckets are filled to the rim with water, but one
has a block of wood floating in the water. Which bucket, if ei-
ther, is heavier?

15. Estimate with some care the buoyant force exerted by the at-
mosphere on you.

16. According to Sample Problem 15-3, 89.6% of an iceberg is
submerged. Yet occasionally icebergs turn over, with possibly
disastrous results to nearby shipping. How can this happen
considering that so much of their mass is below sea level?

17. Can you sink an iron ship by siphoning seawater into it?

18. SCUBA divers are warned not to hold their breath when
swimming upward. Why?

19. A beaker is exactly full of liquid water at its freezing 
point and has an ice cube floating in it, also at its freezing
point. As the cube melts, what happens to the water level in
these three cases: (a) the cube is solid ice; (b) the cube con-
tains some grains of sand; and (c) the cube contains some
bubbles?

8. Does Archimedes’ principle hold in a vessel in free fall? In a
satellite moving in a circular orbit?



20. Although parachutes are supposed to slow your fall, they are
often designed with a hole at the top. Explain why.

21. A ball floats on the surface of water in a container exposed to
the atmosphere. Will the ball remain immersed at its former
depth or will it sink or rise somewhat if (a) the container is
covered and the air is removed or (b) the container is covered
and the air is compressed?

22. Explain why an inflated balloon will rise only to a definite
height once it starts to rise, whereas a submarine will always
sink to the very bottom of the ocean once it starts to sink, if
no changes are made.

23. Why does a balloon weigh the same when empty as when
filled with air at atmospheric pressure? Would the weights be
the same if measured in a vacuum?

24. Liquid containers tend to leak when taken aloft in an airplane.
Why? Does it matter whether or not they are right-side up?
Does it matter whether or not they are initially completely
full?

25. During World War II, a damaged freighter that was barely
able to float in the North Sea steamed up the Thames estuary
toward the London docks. It sank before it could arrive. Why?

26. Is it true that a floating object will be in stable equilibrium
only if its center of buoyancy lies above its center of gravity?
Illustrate with examples.

27. Logs dropped upright into a pond do not remain upright, but
float “flat” in the water. Explain.

28. Why will a sinking ship often turn over as it becomes im-
mersed in water?

29. A barge filled with scrap iron is in a canal lock. If the iron is
thrown overboard, what happens to the water level in the
lock? What if it is thrown onto the land beside the canal?

30. A bucket of water is suspended from a spring balance. Does
the balance reading change when a piece of iron suspended
from a string is immersed in the water? When a piece of cork
is put in the water?

31. If enough iron is added to one end of a uniform wooden stick
or log, it will float vertically, rather than horizontally (see
Question 27). Explain.

32. Although there are practical difficulties, it is possible in prin-
ciple to float an ocean liner in a few barrels of water. How
would you go about doing this?

33. An open bucket of water is on a frictionless plane inclined at
an angle � to the horizontal. Find the equilibrium inclination
to the horizontal of the free surface of the water when (a) the
bucket is held at rest; (b) the bucket is allowed to slide down
at constant speed (a � 0, v � constant); and (c) the bucket
slides down without restraint (a � constant). If the plane is
curved so that a � constant, what will happen?

34. In a barometer, how important is it that the inner diameter of
the barometer be uniform? That the barometer tube be ab-
solutely vertical?

35. An open-tube manometer has one tube twice the diameter of
the other. Explain how this would affect the operation of the
manometer. Does it matter which end is connected to the
chamber whose pressure is to be measured?

36. We have considered liquids under compression. Can liquids
be put under tension? If so, will they tear under sufficient ten-
sion as do solids? (See “The Tensile Strength of Liquids,” by
Robert E. Apfel, Scientific American, December 1972, p. 58.)

37. Explain why two glass plates with a thin film of water be-
tween them are difficult to separate by a direct pull but can
easily be separated by sliding.

38. Give a molecular explanation of why surface tension de-
creases with increasing temperature.

39. Soap films are much more stable than films of water. Why?
(Consider how surface tension reacts to stretching.)

40. Explain why a soap film collapses if a small hole appears in
it.

41. Explain these observations: (a) water forms globules on a
greasy plate but not on a clean one; (b) small bubbles on the
surface of water cluster together.

42. If soap reduces the surface tension of water, why do we blow
soap bubbles instead of water bubbles?

43. Some water beetles can walk on water. Estimate the maxi-
mum weight such an insect can have and still be supported in
this way.

44. What is the source of the energy that allows a fluid in a capil-
lary (e.g., a thin, hollow, glass tube) to rise?

45. What does it mean to say that certain liquids can exert a small
negative pressure?

Exercises 345

EXERCISES

15-1 Fluids and Solids

15-2 Pressure and Density

1. Find the pressure increase in the fluid in a syringe when a
nurse applies a force of 42.3 N to the syringe’s piston of di-
ameter 1.12 cm.

2. Three liquids that will not mix are poured into a cylindrical
container. The amounts and densities of the liquids are 
0.50 L, 2.6 g/cm3; 0.25 L, 1.0 g/cm3; and 0.40 L, 0.80 g/cm3

(L � liter). Find the total force on the bottom of the con-
tainer. (Ignore the contribution due to the atmosphere.) Does
it matter whether the fluids mix?

3. An office window is 3.43 m by 2.08 m. As a result of the pas-
sage of a storm, the outside air pressure drops to 0.962 atm,
but inside the pressure is held at 1.00 atm. What net force
pushes out on the window?

4. A solid copper cube has an edge length of 85.5 cm. How
much pressure must be applied to the cube to reduce the edge
length to 85.0 cm? The bulk modulus of the copper is 
140 GPa.

5. An airtight box having a lid with an area of 12 in.2 is partially
evacuated. If a force of 108 lb is required to pull the lid off
the box, and the outside atmospheric pressure is 15 lb/in.2,
what was the pressure in the box?



15-3 Variation of Pressure in a Fluid at Rest
6. The human lungs can operate against a pressure differential of

less than 0.050 atm. How far below the water level can a
diver, breathing through a snorkel (long tube), swim?

7. Calculate the hydrostatic difference in blood pressure in a
person of height 1.83 m between the brain and the foot.

8. Find the total pressure, in pascal, 118 m below the surface of
the ocean. The density of seawater is 1.024 g/cm3 and the at-
mospheric pressure at sea level is 1.013 � 105 Pa.

9. The sewer outlets of a house constructed on a slope are 
8.16 m below street level. If the sewer is 2.08 m below street
level, find the minimum pressure differential that must be cre-
ated by the sewage pump to transfer waste of average density 
926 kg/m3.

10. According to the constant temperature model of the Earth’s
atmosphere, (a) what is the pressure (in atm) at an altitude of
5.00 km, and (b) at what altitude is the pressure equal to
0.500 atm? Compare your answers with Fig. 15-5.

11. A simple U-tube contains mercury. When 11.2 cm of water is
poured into the right arm, how high does the mercury rise in
the left arm from its initial level?

12. A swimming pool has the dimensions 80 ft � 30 ft � 8.0 ft.
(a) When it is filled with water, what is the force (due to the
water alone) on the bottom? On the ends? On the sides? (b) If
you are concerned with whether or not the concrete walls will
collapse, is it appropriate to take the atmospheric pressure
into account?

13. What would be the height of the atmosphere if the air density
(a) were constant and (b) decreased linearly to zero with
height? Assume a sea-level density of 1.21 kg/m3.

14. Crew members attempt to escape from a damaged submarine
112 m below the surface. How much force must they apply to
a pop-out hatch, which is 1.22 m by 0.590 m, to push it out?

15. The surface of contact of two fluids of different densities that
are at rest and do not mix is horizontal. Prove this general re-
sult (a) from the fact that the potential energy of a system
must be a minimum in stable equilibrium, (b) from the fact
that at any two points in a horizontal plane in either fluid the
pressures are equal.

16. Two identical cylindrical vessels with their bases at the same
level each contain a liquid of density �. The area of either
base is A, but in one vessel the liquid height is h1 and in the
other h2 . Find the work done by gravity in equalizing the lev-
els when the two vessels are connected.

15-4 Pascal’s Principle and Archimedes’ Principle
17. The tension in a string holding a solid block below the surface

of a liquid (of density greater than the solid) is T0 when the
containing vessel (Fig. 15-18) is at rest. Show that the tension

T, when the vessel has an upward vertical acceleration a, is
given by T0(1 	 a/g).

18. (a) If the small piston of a hydraulic lever has a diameter of
3.72 cm, and the large piston one of 51.3 cm, what weight on
the small piston will support 18.6 kN (e.g., a car) on the large
piston? (b) Through what distance must the small piston
move to raise the car 1.65 m?

19. A boat floating in fresh water displaces 35.6 kN of water. (a)
What weight of water would this boat displace if it were float-
ing in salt water of density 1024 kg/m3? (b) Would the vol-
ume of water displaced change? If so, by how much?

20. A block of wood floats in water with 0.646 of its volume sub-
merged. In oil it has 0.918 of its volume submerged. Find the
density of (a) the wood and (b) the oil.

21. A tin can has a total volume of 1200 cm3 and a mass of 130 g.
How many grams of lead shot could it carry without sinking
in water? The density of lead is 11.4 g/cm3.

22. About one-third of the body of a physicist swimming in the
Dead Sea will be above the water line. Assuming that the hu-
man body density is 0.98 g/cm3, find the density of the water
in the Dead Sea. Why is it so much greater than 1.0 g/cm3?

23. Assume the density of brass weights to be 8.0 g/cm3 and that
of air to be 0.0012 g/cm3. What fractional error arises from
neglecting the buoyancy of air in weighing an object of den-
sity 3.4 g/cm3 on a beam balance?

24. An iron casting containing a number of cavities weighs 
6130 N in air and 3970 N in water. What is the volume of the
cavities in the casting? The density of iron is 7870 kg/m3.

25. A cubic object of dimensions L � 0.608 m on a side and
weight W � 4450 N in a vacuum is suspended by a wire in an
open tank of liquid of density � � 944 kg/m3, as in Fig. 15-
19. (a) Find the total downward force exerted by the liquid
and the atmosphere on the top of the object. (b) Find the total
upward force on the bottom of the object. (c) Find the tension
in the wire. (d) Calculate the buoyant force on the object us-
ing Archimedes’ principle. What relation exists among all
these quantities?
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Figure 15-18. Exercise 17.

Figure 15-19. Exercise 25.
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26. A fish maintains its depth in seawater by adjusting the air
content of porous bone or air sacs to make its average density
the same as that of the water. Suppose that with its air sacs
collapsed a fish has a density of 1.08 g/cm3. To what fraction
of its expanded body volume must the fish inflate the air sacs
to reduce its average density to that of the water? Assume that
the air density is 0.00121 g/cm3.



27. It has been proposed to move natural gas from the North Sea
gas fields in huge dirigibles, using the gas itself to provide
lift. Calculate the force required to tether such an airship to
the ground for off-loading when it arrives fully loaded with
1.17 � 106 m3 of gas at a density of 0.796 kg/m3. The density
of the air is 1.21 kg/m3. (The weight of the airship is negligi-
ble by comparison.)

28. The Goodyear blimp Columbia (see Fig. 15-20) is cruising
slowly at low altitude, filled as usual with helium gas. 
Its maximum useful payload, including crew and cargo, is 
1280 kg. How much more payload could the Columbia carry
if you replaced the helium with hydrogen? Why not do it?
The volume of the helium-filled interior space is 5000 m3.
The density of helium gas is 0.160 kg/m3 and the density of
hydrogen is 0.0810 kg/m3.

29. Three children each of weight 82.4 lb make a log raft by lash-
ing together logs of diameter 1.05 ft and length 5.80 ft. How
many logs will be needed to keep them afloat? Take the den-
sity of the wood to be 47.3 lb/ft3.

30. (a) What is the minimum area of a block of ice 0.305 m thick
floating on water that will hold up an automobile of mass
1120 kg? (b) Does it matter where the car is placed on the
block of ice? The density of ice is 917 kg/m3.

15-5 Measurement of Pressure
31. A student constructs a water barometer out of a 15-m-long

tube. The student attempts to measure the air pressure near
sea-level when the temperature is 25°C. Estimate the relative
error in pressure caused by neglecting the vapor pressure of
water.

32. Estimate the density of the red wine that Pascal used in his
14-m-long barometer. Assume that the wine filled the tube.

33. The pressure at the surface of the planet Venus is 90 atm (i.e.,
90 times the pressure at the surface of the Earth). How long
would a mercury barometer have to be to measure this pres-
sure? Assume that the mercury is maintained at 0°C.

15-6 Surface Tension
34. How much energy is stored in the surface of a soap bubble

2.1 cm in radius if its surface tension is 4.5 � 10�2 N/m?

35. A thin film of water of thickness 80.0 pm is sandwiched be-
tween two glass plates and forms a circular patch of radius
12.0 cm. Calculate the normal force needed to separate the
plates if the surface tension of water is 0.072 N/m.

36. Using a soap solution for which the surface tension is 
0.025 N/m, a child blows a soap bubble of radius 1.40 cm.
How much energy is expended in stretching the soap surface?
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Figure 15-20. Exercise 28.

Figure 15-21. Problem 1. Figure 15-22. Problem 2.

PROBLEMS

1. In 1654 Otto von Guericke, Burgermeister of Magdeburg and
inventor of the air pump, gave a demonstration before the Im-
perial Diet in which two teams of horses could not pull apart
two evacuated brass hemispheres. (a) Show that the force F
required to pull apart the hemispheres is F � �R2�p, where
R is the (outside) radius of the hemispheres and �p is the dif-
ference in pressure outside and inside the sphere (Fig. 15-21).
(b) Taking R equal to 0.305 m and the inside pressure as
0.100 atm, what force would the team of horses have had to
exert to pull apart the hemispheres? (c) Why were two teams
of horses used? Would not one team prove the point just as
well?

2. Figure 15-22 displays the phase diagram of carbon, showing
the ranges of temperature and pressure in which carbon will
crystallize either as diamond or graphite. What is the mini-
mum depth at which diamonds can form if the local tempera-
ture is 1000°C and the subsurface rocks have density 3.1
g/cm3. Assume that, as in a fluid, the pressure is due to the
weight of material lying above.
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3. Water stands at a depth D behind the vertical upstream face of
a dam, as shown in Fig. 15-23. Let W be the width of the
dam. (a) Find the resultant horizontal force exerted on the
dam by the gauge pressure of the water and (b) the net torque
due to the gauge pressure of the water exerted about a line
through O parallel to the width of the dam. (c) Where is the
line of action of the equivalent resultant force?

6. (a) Show that the density � of water at a depth y in the ocean
is related to the surface density �s by

where B � 2.2 GPa is the bulk modulus of water. Ignore tem-
perature variations. (b) By what fraction does the density at a
depth of 4200 m exceed the surface density?

7. (a) Show that Eq. 15-13, the variation of pressure with alti-
tude in the atmosphere (temperature assumed to be uniform),
can be written in terms of density � as

where �0 is the density at the ground (h � 0). (b) Assume that
the drag force D due to the air on an object moving at speed v
is given by D � CA�v2 where C is a constant, A is the frontal
cross-sectional area of the object, and � is the local air den-
sity. Find the altitude at which the drag force on a rocket is a
maximum if the rocket is launched vertically and moves with
constant upward acceleration ar .

8. (a) Consider a container of fluid subject to a vertical upward
acceleration a. Show that the pressure variation with depth in
the fluid is given by

where h is the depth and � is the density. (b) Show also that if
the fluid as a whole undergoes a vertical downward accelera-
tion a, the pressure at depth h is given by

(c) What is the state of affairs in free fall?

9. (a) Consider the horizontal acceleration of a mass of liquid in
an open tank. Acceleration of this kind causes the liquid sur-
face to drop at the front of the tank and to rise at the rear.
Show that the liquid surface slopes at an angle � with the hor-
izontal, where tan � � a/g, a being the horizontal accelera-
tion. (b) How does the pressure vary with h, the vertical
depth below the surface?

10. Derive the expression for the pressure as a function of the ra-
dial distance from the center of a spherical planet of radius R
and uniform density �.

p � �h(g � a).

p � �h(g 	 a),

� � �0e�h/a,

� � �s[1 	 (�sg /B)y],
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Figure 15-23. Problem 3.

Figure 15-24. Problem 4.

Figure 15-25. Problem 5.

O
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4. A cylindrical barrel has a narrow tube fixed to the top, as
shown with dimensions in Fig. 15-24. The vessel is filled with
water to the top of the tube. Calculate the ratio of the hydro-
static force exerted on the bottom of the barrel to the weight
of the water contained inside. Why is the ratio not equal to
one? (Ignore the presence of the atmosphere.)

5. In analyzing certain geological features of the Earth, it is of-
ten appropriate to assume that the pressure at some horizontal
level of compensation, deep in the Earth, is the same over a
large region and is equal to that exerted by the weight of the
overlying material. That is, the pressure on the level of com-
pensation is given by the hydrostatic (fluid) pressure formula.
This requires, for example, that mountains have low-density
roots; see Fig. 15-25. Consider a mountain 6.00 km high. The
continental rocks have a density of 2.90 g/cm3; beneath the
continent is the mantle, with a density of 3.30 g/cm3. Calcu-
late the depth D of the root. (Hint: Set the pressure at points a
and b equal; the depth y of the level of compensation will
cancel out.)

4.6 cm2

1.8 m

1.8 m

1.2 m

Mountain

6.0 km

Mantle
3.3 g/cm3 D y

b a Compensation level

Continent
2.9 g/cm3 32 km



11. Show that the variation of pressure with altitude for a plane-
tary atmosphere (assuming constant temperature) is

p � p0ek(1/r�1/R)

where g is taken to vary as 1/r2 (with r being the distance
from the center of the planet), p0 is the pressure at the surface,
R is the radius of the planet, and k is a constant. Verify that
this result reduces to Eq. 15-12 for locations close to the sur-
face.

12. (a) A fluid is rotating at constant angular velocity � about the
central vertical axis of a cylindrical container. Show that the
variation of pressure in the radial direction is given by

(b) Take p � pc at the axis of rotation (r � 0) and show that
the pressure p at any point r is

(c) Show that the liquid surface is of paraboloidal form (Fig.
15-26); that is, a vertical cross section of the surface is the
curve (d) Show that the variation of pressure
with depth is p � �gh.

y � �2r 2 /2g.

p � pc 	 1
2 ��2r 2.

dp

dr
� ��2r.

14. A block of wood has a mass of 3.67 kg and a density of 
594 kg/m3. It is to be loaded with lead so that it will float in
water with 0.883 of its volume immersed. What mass of lead
is needed (a) if the lead is on top of the wood and (b) if 
the lead is attached below the wood? The density of lead is 
1.14 � 104 kg/m3.

15. An object floating in mercury has one-fourth of its volume
submerged. If enough water is added to cover the object,
what fraction of its volume will remain immersed in mer-
cury?

16. A car has a total mass of 1820 kg. The volume of air space
in the passenger compartment is 4.87 m3. The volume of the
motor and front wheels is 0.750 m3, and the volume of the
rear wheels, gas tank, and luggage is 0.810 m3. Water can-
not enter these areas. The car is parked on a hill; the hand-
brake cable snaps and the car rolls down the hill into a lake;
see Fig. 15-28. (a) At first, no water enters the passenger
compartment. How much of the car, in cubic meters, is be-
low the water surface with the car floating as shown? (b) As
water slowly enters, the car sinks. How many cubic meters
of water are in the car as it disappears below the water sur-
face? (The car remains horizontal, owing to a heavy load in
the trunk.
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Figure 15-26. Problem 12.

Figure 15-27. Problem 13.

Figure 15-28. Problem 16.

Figure 15-29. Problem 17.

y = ω2

2g
r 2

ω

r

y

13. A hollow spherical iron shell floats almost completely sub-
merged in water; see Fig. 15-27. The outer diameter is 
58.7 cm and the density of iron is 7.87 g/cm3. Find the inner
diameter of the shell.

17. You place a glass beaker, partially filled with water, in a
sink (Fig. 15-29). It has a mass of 390 g and an interior vol-
ume of 500 cm3. You now start to fill the sink with water
and you find, by experiment, that if the beaker is less than
half full, it will float; but if it is more than half full, it re-
mains on the bottom of the sink as the water rises to its rim.
What is the density of the material of which the beaker is
made?

18. The surface tension of liquid 4He is 0.35 mN/m and the 
liquid density is 145 kg/m3. Estimate (a) the number 
of atoms/m2 in the surface and (b) the energy per bond, in
eV, in the liquid at this temperature. The mass of a helium
atom is 6.64 � 10�27 kg. Picture each atom as a cube and



assume that each atom interacts only with its four nearest
neighbors.

19. Show that the pressure difference between the inside and the
outside of a bubble of radius r is 4� /r, where � is the surface
tension of the liquid from which the bubble is blown.

20. A soap bubble floating in a vacuum bell jar has a radius of 
1.0 mm when the pressure inside the jar is 100 kPa. The
pump is turned on for a short time and the soap bubble is seen
to expand to a radius of 1.0 cm. Find the new pressure inside
the bell jar. Assume that pV is a constant, where p is the pres-
sure of the gas inside the bubble and V is the volume of the
bubble.

21. A solid glass rod of radius r � 1.3 cm is placed inside and
coaxial with a glass cylinder of internal radius R � 1.7 cm.
Their bottom ends are aligned and placed in contact with, and
perpendicular to, the surface of an open tank of water (see
Fig. 15-30). To what height will the water rise in the region
between the rod and the cylinder? Assume that the angle of
contact is 0° and use 72.8 mN/m for the surface tension of
water.

22. A soap bubble in air has a radius of 3.20 cm. It is then blown
up to a radius of 5.80 cm. Use 26.0 mN/m for the (constant)
surface tension of the bubble. (a) What is the initial pressure
difference across the bubble film? (b) Find the pressure differ-
ence across the film at the larger size. (c) How much work
was done on the atmosphere in blowing up the bubble? (d )
How much work was done in stretching the bubble surface?
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Figure 15-30. Problem 21.

COMPUTER PROBLEM

1. (a) Show that the equations that govern the pressure as a
function of the radial distance from the center of a spherical
gaseous planet, in which the density is proportional to the
pressure (� � kp), are dp/dr � �(Gm/r2)kp and dm/dr �
4�r2kp, where m is the mass contained within the sphere of

radius r. (b) Numerically integrate these coupled equations
outward from the point r0 , where r0 � 103 m, p0 � 2 � 1016

Pa, m0 � 7 � 1014 kg. Take the constant k to be 8 � 10�12

s2/m2. Generate a graph of pressure against radial distance. (c)
At what distance is the pressure less than one atmosphere?
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FLUID DYNAMICS

We now turn from fluid statics to the dynamics of

fluids in motion. We use familiar concepts to analyze fluid dynamics, including Newton’s laws of motion and

the conservation of energy. In this chapter we apply these principles to fluids, which are described using

variables such as pressure and density that we introduced in Chapter 15.

We begin with a simplified model of fluid flow, in which we ignore dissipative forces. This approach is

similar to our previous study of particle dynamics, in which we at first ignored dissipative (frictional)

forces. An advantage of this approach is that it permits an analysis in terms of conservation of mechanical

energy, as we did in Chapter 12 in the case of particles. Later in this chapter we give a brief description of

the interesting and unusual results that occur in real fluids when dissipative forces, called viscous forces,

are taken into account.

16-1 GENERAL CONCEPTS OF
FLUID FLOW

One way of describing the motion of a fluid is to divide the
fluid into infinitesimal volume elements, which we may call
fluid particles, and to follow the motion of each particle. If
we knew the forces acting on each fluid particle, we could
then solve for the positions and velocities of each particle
as functions of the time. This procedure, which is a direct
generalization of particle mechanics, was first developed by
Joseph Louis Lagrange (1736–1813). Because the number
of fluid particles is generally very large, using this method
is a formidable task.

There is a different treatment, developed by Leonhard
Euler (1707–1783), that is more convenient for most pur-
poses. In it we give up the attempt to specify the history of
each fluid particle and instead specify the density and the
velocity of the fluid at each point in space at each instant of
time. This is the method we shall use. We describe the mo-
tion of the fluid by specifying the density �(x, y, z, t) and
the velocity (x, y, z, t) at the point x, y, z at the time t. We
thus focus our attention on what is happening at a particular

vB

point in space at a particular time, rather than on what is
happening to a particular fluid particle. Any quantity used
in describing the state of the fluid—for example, the pres-
sure p—will have a definite value at each point in space
and at each instant of time. Although this description of
fluid motion focuses attention on a point in space rather
than on a fluid particle, we cannot avoid following the fluid
particles themselves, at least for short time intervals dt. Af-
ter all, the laws of mechanics apply to particles and not to
points in space.

We first consider some general characteristics of fluid
flow.

1. Fluid flow can be steady or nonsteady. We describe
the flow in terms of the values of such variables as pressure,
density, and flow velocity at every point of the fluid. If
these variables are constant in time, the flow is said to be
steady. The values of these variables will generally change
from one point to another, but they do not change with time
at any particular point. This condition can often be achieved
at low flow speeds; a gently flowing stream is an example.
In nonsteady flow, as in a tidal bore, the velocities are
functions of the time. In the case of turbulent flow, such as

vB
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rapids or a waterfall, the velocities vary erratically from
point to point as well as from time to time.

2. Fluid flow can be compressible or incompressible. If
the density � of a fluid is a constant, independent of x, y, z,
and t, its flow is called incompressible flow. Liquids can
usually be considered as flowing incompressibly. However,
even for a highly compressible gas the variation in density
may be insignificant, and for practical purposes we can
consider its flow to be incompressible. For example, in
flight at speeds much lower than the speed of sound in air
(described by subsonic aerodynamics), the flow of the air
over the wings is nearly incompressible.

3. Fluid flow can be viscous or nonviscous. Viscosity in
fluid motion is the analogue of friction in the motion of
solids—kinetic energy associated with the fluid flow can
be transformed into internal energy by viscous forces. The
greater the viscosity, the greater the external force or pres-
sure that must be applied to maintain the flow; under simi-
lar conditions, honey and motor oil are more viscous than
water and air. The viscosity of fluids depends on the tem-
perature; motor oils, for example, are rated not only accord-
ing to their viscosity but also by its variation with tempera-
ture. Although viscosity is present in all fluid flow, in some
cases its effects (like those of friction in the mechanics of
solids) may be negligible, in which case we can regard the
flow as being nonviscous.

4. Fluid flow can be rotational or irrotational. Imagine
a tiny bit of matter, such as a small insect, that is carried
along by a flowing stream. If the particle, as it moves with
the stream, does not rotate about an axis through its center
of mass, the flow is irrotational; otherwise it is rotational.
An element of fluid may move in a circular path and still
experience irrotational flow—for example, the vortex
formed when water drains from a bathtub. A mechanical
analogy can be found in the motion of a Ferris wheel; even
though the wheel rotates, the passengers do not rotate about
their centers of mass.

We will mostly consider the motion of ideal fluids,
which can be regarded as steady, incompressible, nonvis-
cous, and irrotational. This greatly simplifies the mathemat-
ics of fluid dynamics and is often a good approximation to
the behavior of real fluids. However, as in the case of fric-
tion in the dynamics of solids, in each application we must
take care to examine the validity of these assumptions and
the consequences if they are found not to be valid.

16-2 STREAMLINES AND THE
EQUATION OF CONTINUITY

In steady flow the velocity at a given point is constant in
time. Consider the point P (Fig. 16-1) within the fluid.
Since at P does not change in time in steady flow, every
fluid particle arriving at P will pass on with the same speed
in the same direction. The motion of every particle passing
through P thus follows the same path, called a streamline.
Every fluid particle that passes through P will later pass

vB
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through points further along the streamline, such as Q and
R in Fig. 16-1. Moreover, every fluid particle that passes
through R must have previously passed through P and Q.

The magnitude of the velocity vector of the fluid parti-
cle will, in general, change as it moves along the stream-
line. The direction of the velocity vector at any point along
the streamline is always tangent to the streamline.

No two streamlines can cross one another, for if they
did, an oncoming fluid particle could go either one way or
the other, and the flow could not be steady. In steady flow
the pattern of streamlines does not change with time. Figure
16-2 shows an example of streamlines in fluid flow.

In principle we can draw a streamline through every
point in the fluid. Assuming steady flow, we select a finite
number of streamlines to form a bundle, like the streamline
pattern of Fig. 16-3. This tubular region is called a tube of
flow. Because the boundary of such a tube consists of
streamlines, no fluid can cross the boundaries of a tube of
flow, and the tube behaves somewhat like a pipe of the
same shape. The fluid that enters at one end must leave at
the other. The tube must be narrow enough that we can take
the velocity of the fluid to be nearly constant over the cross
section of the tube.

Let us consider in detail the flow of fluid through the
tube of flow shown in Fig. 16-3. Fluid enters at P where the
cross-sectional area is A1 and leaves at Q where the area is
A2 . Let the speed be v1 for fluid particles at P and v2 for
fluid particles at Q. In the time interval �t a fluid element
travels approximately the distance v �t. Then the fluid that
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Figure 16-1. In steady flow, a fluid particle passing through
P traces out a streamline, later passing through downstream points
Q and R. Any other particle passing through P must follow this
same path.

Figure 16-2. In a wind tunnel, the aerodynamics of a car can
be evaluated by examining the streamlines of the air flow, here
made visible by the addition of smoke to the air.

P
Q

R

vP vQ

vR



crosses A1 in the time interval �t has a volume �V1 of ap-
proximately A1v1 �t. If its density at that location is �1 , then
the mass of fluid �m1 crossing A1 is approxi-
mately

The mass flux, defined as the mass of fluid per unit time
passing through any cross section, is thus approximately
�m1/�t � �1A1v1 at P. We must take �t small enough so that
in this time interval neither v nor A varies appreciably over
the distance the fluid travels. In the limit as �t : 0, we ob-
tain the precise result:

and, from a similar analysis,

where �2 , A2 , and v2 represent, respectively, the density,
cross-sectional area, and flow speed at Q.

We have assumed that fluid enters the tube only at P and
leaves only at Q. That is, between P and Q there are no
other “sources” where fluid can enter the tube or “sinks”
where it can leave. Furthermore, the flow is steady, so the
density of fluid between P and Q does not change with time
(even though it may change from place to place). Under
these conditions, fluid mass enters the tube at P at the same
rate as it leaves at Q. Thus the mass flux at P must equal
that at Q:

(16-1)

or, in more general terms referring to any location in the
tube of flow,

(16-2)

This result expresses the law of conservation of mass in
fluid dynamics.

If the fluid is incompressible, as we shall assume from
now on, then �1 � �2 , and Eq. 16-1 takes on the simpler
form

(16-3)A1v1 � A2v2 ,

�Av � constant.

�1A1v1 � �2A2v2 ,

mass flux at Q � �2A2v2 ,

mass flux at P � �1A1v1 ,

�m 1 � �1A1v1 �t.

(� �1 �V1)

or, defining R to be the volume flow rate (or volume flux)
Av,

(16-4)

The SI units of R are m3/s. Note that Eq. 16-3 predicts that
in steady incompressible flow the speed of flow varies in-
versely with the cross-sectional area, being larger in nar-
rower parts of the tube.

Equations 16-2 and 16-4 are examples of mathematical
relationships known as equations of continuity, which are in
effect conservation laws for mass. The equation of continuity
states that if within any volume element of space (not vol-
ume of fluid) there are no sources (where additional matter is
introduced into the flow) or sinks (where matter is removed
from the flow), then the total mass within that volume ele-
ment must remain constant. In more general cases, if sources
or sinks are present, the equation of continuity gives the
mathematical representation of the very reasonable assertion
that the rate of outflow or inflow of matter is equal to the rate
at which the mass contained within the volume element is
changing. Equations of continuity are common in physics
and appear in any subject in which a flow is involved. For ex-
ample, there is an equation of continuity for electric charge
that is a conservation law for charge rather than mass.

The constancy of the volume flux along a tube of flow
gives an important graphical interpretation to the stream-
lines, as shown in Fig. 16-4. In a narrow part of the tube,
the streamlines must crowd closer together than in a wide
part. Hence, as the distance between streamlines decreases,
the fluid speed must increase. Therefore we conclude that
widely spaced streamlines indicate regions of relatively low
speed, and closely spaced streamlines indicate regions of
relatively high speed.

We can obtain another interesting result by applying
Newton’s second law of motion to the flow of fluid between
P and Q (Fig. 16-4). A fluid particle at P with speed v1 must
be accelerated in the forward direction in acquiring the
higher forward speed v2 at Q. This acceleration can come
about only from a force exerted in the direction PQ, and (if
there is no other external force, for instance, gravity) the
force must arise from a change in pressure within the fluid.
To provide this force, the pressure must be greater at P than
at Q. Therefore, in the absence of other sources of accelera-
tion, regions of higher fluid velocity must be associated with
lower fluid pressure. We make this preliminary conclusion
about fluid dynamics more rigorous in the next section.

R � Av � constant.
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Figure 16-3. A bundle of streamlines forms a tube of flow,
which has cross-sectional area A1 at P and A2 at Q.

Q

v1

P

A1 A2

v2

Figure 16-4. As the area of a horizontal tube narrows, the
flow velocity must increase. If no other force acts on the fluid, the
pressure at P must be greater than the pressure at Q, so that a force
acts in the direction PQ to provide the necessary acceleration.

P
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Sample Problem 16-1. Figure 16-5 shows how the
stream of water emerging from a faucet “necks down” as it falls.
The cross-sectional area A1 is 1.2 cm2 and that of A2 is 0.35 cm2.
The two levels are separated by a vertical distance h
At what rate does water flow from the tap?

Solution From the equality of the volume flux (Eq. 16-3) we have

where v1 and v2 are the water speeds at the corresponding levels.
Applying conservation of energy in the form of Eq. 12-15 to an 
element of fluid of mass m, we have or

Thus

Eliminating v2 between these two equations and solving for v1 , we
obtain

The volume flow rate R is then

At this rate, it would take about 3 s to fill a 100-mL beaker.

16-3 BERNOULLI’S EQUATION*

As an ideal fluid flows through a pipe or a tube of flow, its
condition may change in several ways: (1) the cross-
sectional area of the pipe may change; (2) the inlet and out-
let of the pipe may be at different elevations; (3) the inlet
and outlet pressures may be different. We have already used

R � A1v1 � (1.2 cm2)(28.6 cm/s) � 34 cm3/s.

� 0.286 m/s � 28.6 cm/s.

v1 � √ 2ghA2
2

A2
1 � A2

2
� √ (2)(9.8 m/s2)(0.045 m)(0.35 cm2)2

(1.2 cm2)2 � (0.35 cm2)2

v2
2 � v2

1 � 2gh.

1
2 mv2

2 � 0 � 1
2 mv2

1 � mgh.
K2 � U2 � K1 � U1 ,

A1v1 � A2v2 ,

(�  45 mm).

the equation of continuity (Eq. 16-4) to relate changes in
area to changes in velocity. Because both a pressure differ-
ence and a difference in elevation can accelerate an element
of fluid as it travels through a tube, we also expect changes
in velocity to be related to pressure and elevation. Thus
changes of types 1, 2, and 3 are not independent of one 
another. In this section we will consider the connections be-
tween those changes.

Our analysis is based on applying conservation of en-
ergy, (Eq. 13-1), to the fluid flow, which
we assume to be ideal, as described in Section 16-1 (steady,
incompressible, nonviscous, and irrotational). Figure 16-6
represents a pipe or tube of flow for this fluid. At the inlet
(left-hand end), the pipe has a uniform cross-sectional area
A1 and is at an elevation y1 above some reference level. The
pipe gradually widens and rises; at the outlet (right-hand
end), the pipe has a uniform cross-sectional area A2 and an
elevation y2 . As the area changes, the speed of the fluid
changes from v1 at the inlet to v2 at the outlet.

We will apply conservation of energy to the system con-
sisting of the entire shaded fluid between the inlet and outlet
of the pipe at a particular instant of time. A pressure p1 (ex-
erted, perhaps, by additional fluid in the pipe to the left of
our system) acts on this fluid at the inlet end and results in a
force F1 � p1A1 that pushes the system to the right. At the
outlet end, there is a pressure p2 (due, perhaps, to additional
fluid in the pipe to the right of our system) that results in a
force F2 � p2A2 that acts on our system to the left.

Under the net influence of the two pressure forces and
gravity, the system moves to the right. Figure 16-6a shows

�K � �U � Wext
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*Daniel Bernoulli (1700–1782) was a Swiss mathematician, physician,
and physicist who made significant discoveries not only in fluid dynamics
but also in astronomy, physiology, and geology. His father and uncle were
also famous for their contributions to mathematics.

Figure 16-5. Sample Problem 16-1. As water falls from a
tap, its speed increases. Because the flow rate must be the same at
all cross sections, the stream must become narrower as it falls.
(Effects associated with surface tension are neglected.)

Figure 16-6. Fluid flows through a pipe at a steady rate. Dur-
ing the interval from (a) to (b), the net effect of the flow is the
transfer of the element of fluid indicated by the dark shading from
the inlet end of the tube to the outlet end.
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the system at time t, and Fig. 16-6b shows the same system
an instant of time �t later. In this short time interval, the
left-hand end of the system has moved a distance �x1 to the
right, while the right-hand end has moved a distance �x2 .
These distances are different, because the area of the pipe
has changed and the fluid is incompressible.

The overall effect of the motion of the system is the
same as if we simply moved the dark shaded element of
fluid, of mass �m, from the inlet end of the pipe to the out-
let end. The remainder of the light-shaded fluid is unaf-
fected by the flow.

There are three contributions to the net external work on
our system: (1) At the inlet end, the pressure force does
work (a positive quantity, since the
force and displacement are in the same direction). (2) At
the outlet end, the pressure force does work 

(a negative quantity, because the
force and displacement are in opposite directions). (3) The
work done by gravity, as the dark-shaded fluid element �m
moves through the vertical displacement is

which is a negative quantity be-
cause the force and displacement are in opposite directions.
In Eq. 13-1 for conservation of energy, �U represents the
potential energy due to conservative forces that act among
objects within the system. Here we assume that no such
forces act within the fluid, so �U � 0.

The net external work done on the system is then

(16-5)

The volume �V of the small dark-shaded fluid element can
be written as �V � A1�x1 and also as �V � A2�x2 , since we
have assumed the fluid to be incompressible. In terms of the
(uniform and constant) fluid density �, the volume element
is �V � �m/�. Making these substitutions in Eq. 16-5, we
obtain

(16-6)

The change in kinetic energy of the dark-shaded fluid
element is

(16-7)

Finally, applying conservation of energy, in the form
with �U � 0, we obtain

which, after rearranging the terms and canceling the com-
mon factor of �m, becomes

(16-8)

Since the subscripts 1 and 2 refer to two arbitrary locations
in the pipe, we can drop the subscripts and write

(16-9)

Equation 16-9 is Bernoulli’s equation for steady, incom-
pressible, nonviscous, and irrotational flow. Strictly speak-

p � 1
2 �v2 � �gy � constant.

p1 � 1
2 �v2

1 � �gy1 � p2 � 1
2 �v2

2 � �gy2 .

1
2 �m v 2

2 � 1
2 �m v2

1 � (p1 � p2)(�m/�) � (�m) g(y2 � y1),

�K � �U � Wext

�K � 1
2 �m v2

2 � 1
2 �m v2

1 .

Wext � ( p1 � p2)(�m/�) � �m g(y2 � y1).

� p1A1�x 1 � (�p2A2�x 2) � [��m g(y2 � y2)].
Wext � W1 � W2 � Wg

Wg � ��m g(y2 � y1),
y2 � y1 ,

�F2�x 2 � �p2A2�x 2

W2 �

W1 � F1�x 1 � p1A1�x 1

ing, the points to which we apply this equation should be
along the same streamline. However, if the flow is irrota-
tional, the value of the constant is the same for all stream-
lines in the tube of flow, so Bernoulli’s equation can be ap-
plied to any two points in the flow.

We have obtained two very powerful tools for analyz-
ing the flow of fluids: the equation of continuity (Eq. 16-
4), which is in effect a statement of conservation of mass,
and Bernoulli’s equation (Eq. 16-9), which is a statement
of conservation of energy. In the next section, we apply
these two equations to the analysis of several practical
problems.

For now, we consider several features of Bernoulli’s
equation:

1. Static pressure. Just as statics for particles is a spe-
cial case of particle dynamics, so fluid statics is also a spe-
cial case of fluid dynamics. To illustrate this, consider Eq.
16-8 if the fluid is not flowing (v1 � v2 � 0):

or

which is identical with Eq. 15-8. The pressure p � �gy,
which would be present in the fluid even if v � 0, is called
the static pressure.

2. Dynamic pressure. Suppose the fluid flows horizon-
tally, so that gravity need not be considered. In this case Eq.
16-8 becomes, with y1 � y2 ,

(16-10)

Equation 16-10 suggests that where the speed is large, the
pressure must be small, and the converse. This verifies the
discussion at the end of Section 16-2 concerning Fig. 16-4.
The quantity (which you should check to have the di-
mension of pressure) is called the dynamic pressure.

3. Compressible, viscous flow. If the fluid is compress-
ible, its internal potential energy �Uint can change as the
molecules become closer together or further apart. If the
flow is viscous, the internal kinetic energy �Kint of the mol-
ecules in the fluid can change in the same way that fric-
tional forces between objects can increase their internal 
kinetic energies. The complete analysis of fluids using con-
servation of energy should therefore include an internal en-
ergy term that might account for
both of these effects: which is our
generalized statement of conservation of energy (Eq. 13-2,
with �U � 0). If necessary, Bernoulli’s equation could be
modified to account for these other energy transformations.
However, if the flow is approximately incompressible and
nonviscous, these corrections are negligibly small.

Sample Problem 16-2. A storage tower of height h �
32 m and diameter D � 3.0 m supplies water to a house (Fig. 16-
7). A horizontal pipe at the base of the tower has a diameter d �
2.54 cm typical of the supply pipes for many homes in
the United States). To satisfy the needs of the home, the supply

(�  1 in.,

�K � �Eint � Wext ,
�Eint � �Uint � �Kint

1
2 �v2

p1 � 1
2 �v2

1 � p2 � 1
2 �v2

2 .

p2 � p1 � ��g(y2 � y1),

p1 � �gy1 � p2 � �gy2
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pipe must be able to deliver water at a rate R � 0.0025 m3/s
(about of a gallon per second). (a) If water were flowing at the
maximum rate, what would be the pressure in the horizontal pipe?
(b) A smaller pipe, of diameter d� � 1.27 cm supplies
the third floor of the house, a distance of 7.2 m above the ground
level. What are the flow speed and water pressure in this pipe? Ne-
glect the viscosity of the water.

Solution (a) We apply Bernoulli’s equation along the streamline
ABC shown in Fig. 16-7. At points A and B we have

At A, the pressure is that of the atmosphere, p0 . With yA � h and
yB � 0, we obtain, for the unknown pressure,

We can find vA and vB from the equation of continuity (Eq. 16-4),
which gives

where R is the constant volume flow rate. Thus

Note that the term in the expression for pB is negligible com-
pared with the term That is, the flow speed at the top of the
tank is quite small, owing to its large cross-sectional area.

We can now solve for the pressure in the pipe:

If the water in the horizontal pipe were not flowing (that is, if the
valve were closed), the static pressure at B would include only the
first two terms above, which give 4.15 	 105 Pa. The pressure
when the water is flowing is reduced from this static value by the
amount of the dynamic pressure.
(b) If the narrower pipe to the third floor is to have the same flow
rate R, the velocity at C must be

or four times the value at B. Bernoulli’s equation gives

or

Because of the larger flow velocity through the smaller pipe, the
dynamic contribution to the pressure is much larger at C than it is
at B. Both the static and dynamic effects tend to reduce the pres-
sure at this location relative to B.

� 1.49 	 105 Pa � 1.5 atm.
� 1.01 	 105 Pa � 1.95 	 105 Pa � 2.43 	 105 Pa

� (1.0 	 103 kg /m3)(9.8 m/s2)(32 m � 7.2 m)
� 1.01 	 105 Pa � 1

2(1.0 	 103 kg /m3)(19.7 m/s)2
pC � p0 � 1

2� (v2
A � v2

C) � �g(yA � yC)

pA � 1
2 �v2

A � �gyA � pC � 1
2 �v2

C � �gyC

vC �
R

AC

�
0.0025 m3 /s


 (0.00635 m)2 � 19.7 m/s,

� 4.03 	 105 Pa � 4 atm.
� 1.01 	 105 Pa � 3.14 	 105 Pa � 0.12 	 105 Pa

� 1
2 (1.0 	 103 kg /m3)(4.9 m/s)2

� 1.01 	 105 Pa � (1.0 	 103 kg /m3)(9.8 m/s2)(32 m)
pB � p0 � �gh � 1

2 �v2
B

1
2 �v2

B .

1
2 �v2

A

vB �
R

AB

�
0.0025 m3/s


 (0.0127 m)2 � 4.9 m/s.

vA �
R

AA

�
0.0025 m3/s


 (1.5 m)2 � 3.5 	 10�4 m/s,

vAAA � vBAB � R,

pB � p0 � �gh � 1
2 �(v2

A � v2
B).

pA � 1
2 �v2

A � �gyA � pB � 1
2 �v2

B � �gyB .

(�  0.5 in.),

2
3

16-4 APPLICATIONS OF
BERNOULLI’S EQUATION AND THE
EQUATION OF CONTINUITY

In this section, we consider a number of applications of
Bernoulli’s equation, which illustrate its use and demon-
strate the range of its applicability.

The Venturi Meter
This device (Fig. 16-8) is a gauge to measure the flow
speed of a fluid in a pipe. A fluid of density � flows through
a pipe of cross-sectional area A1 . At the throat the area is
reduced to A2 , and a manometer tube is attached, as shown.
Let the manometer liquid, such as mercury, have a density
��. By applying Bernoulli’s equation and the equality of the
volume flux at points 1 and 2, you can show (see Problem
8) that the speed of flow at point 1 is

(16-11)

The Pitot Tube
This device (Fig. 16-9) is used to measure the flow speed of
a gas. Consider the gas— say, air—flowing with density �
and velocity parallel to the planes of a number of small
openings that we collectively label as point 1. The pressure

vB1

v � A2√ 2(�� � �)gh

�(A2
1 � A2

2)
.
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Figure 16-7. Sample Problem 16-2.

Figure 16-8. A Venturi meter, used to measure the speed of
flow of a fluid in a pipe.

h

2
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v
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in the left arm of the manometer, which is connected to
these openings, is then the static pressure in the gas stream,
p1 . The opening of the right arm of the manometer is at
right angles to the stream. The velocity is reduced to zero at
2, and the gas is stagnant at that point. Applying Bernoulli’s
equation to points 1 and 2, we obtain

Substituting the manometer reading ��gh for the pressure
difference p2 � p1 , we can solve for v1 to obtain

(16-12)

This device can be calibrated to read v1 directly. Pitot tubes
can be commonly observed protruding from airplane
wings; their readings appear as air-speed indicators on the
airplane’s control panel.

Dynamic Lift
Dynamic lift is the force that acts on a body, such as an air-
plane wing, a hydrofoil, or a helicopter rotor, by virtue of
its motion through a fluid. It is not the same as static lift,
which is the buoyant force that acts on a balloon or an ice-
berg in accord with Archimedes’ principle (Section 15-4).

Familiar examples of dynamic lift occur in the flight of
a baseball, tennis ball, or golf ball. The dynamic lift, which
originates with the rotation of the ball in flight, can cause
the ball to curve or to rise or fall relative to the parabolic
trajectory that it would follow if no air were present. Be-
cause the fluid (in this case air) is somewhat viscous, there
is friction as the ball travels, and the ball tends to carry with
it a thin layer of fluid called the boundary layer. Viewed
from the rest frame of a nonrotating ball, the fluid speed
drops from its value beyond the boundary layer (equal to
the flight speed of the ball) to zero at the surface of the ball.

Figure 16-10a shows, in the rest frame of the ball,
streamlines for the steady flow of air rushing past a nonro-
tating ball, at speeds low enough so that turbulence does not
occur. Figure 16-10b shows streamlines for the air carried
around by a rapidly rotating ball. Without viscosity and the
boundary layer, the spinning ball could not carry air around

v1 � √ 2gh��

�
.

p1 � 1
2 �v2

1 � p2 .

in this way and this circulation (as it is called) would not ex-
ist. Golf balls are systematically roughened by means of
dimples to increase this circulation and the dynamic lift that
results from it. Baseballs are sometimes artificially (and ille-
gally) roughened by pitchers for the same reason.

Figure 16-10c shows the effect of combining the circu-
lation (resulting from the rotation of the ball) and the steady
flow (resulting from the translation of the ball through the
air). For the case shown, the two velocities add above the
ball and subtract below. From the spacing of the resultant
streamlines, we see that the velocity of air below the ball is
less than that above the ball. From Bernoulli’s equation, the
pressure of air below the ball must then be greater than that
above, so the ball experiences a dynamic lift force.

A pitched baseball curves for essentially the same rea-
son. For example, if Fig. 16-10 represents a top view of the
spinning ball as it travels toward the batter, the “lift” acts in
a sidewise direction to move the ball horizontally toward or
away from the batter, as in the case of a curveball. If Fig.
16-10 represents a side view, the ball is thrown with back-
spin, as in the case of a fastball. The lift acts upward, caus-
ing the ball to rise relative to its parabolic trajectory.
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Figure 16-9. A Pitot tube, which is used to measure the flow
speed of a gas.

Figure 16-10. (a) Streamline flow around a nonrotating ball.
(b) The circulation of air around a rotating ball, which results
from the boundary layer. (c) The combined effects of both mo-
tions. From Bernoulli’s equation, we see that a dynamic lift acts
upward on the ball. The fluid exerts on the ball a net force hav-
ing a component transverse to the fluid flow (lift) and a compo-
nent parallel to the fluid flow (drag).

F
B

(a)

(b)

(c)
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The lift acting on an airplane wing has a similar explana-
tion. Figure 16-11 shows the streamlines about an airfoil (or
wing cross section) attached to an aircraft. Let us choose the
aircraft as our frame of reference, as in a wind tunnel experi-
ment, and let us assume that the air is moving past the wing
from left to right. Note the similarities between Figs. 16-11
and 16-10c. (In fact, the explanation of the lift on an air-
plane wing involves a circulation similar to Fig. 16-10b.)

Figure 16-11 shows that the streamlines are closer to-
gether above the wing than they are below it; thus the air-
flow speed is greater above the wing, and the pressure is
smaller. This pressure difference between the upper and
lower surfaces of the wing contributes to the lift. However,
as shown in Fig. 16-11, there is another way to account for
the lift: the wing is designed so that the air flowing past it is
deflected downward, and the lift is in effect the Newton’s
third law reaction force to the downward force exerted by
the wing on the air. Either of these explanations may be
used for the lift on an airplane.*

Thrust on a Rocket
As our final example, let us compute the thrust on a rocket
produced by the escape of its exhaust gases. Consider a
chamber (Fig. 16-12) of cross-sectional area A filled with a
gas of density � at a pressure p. Let there be a small orifice
of cross-sectional area A0 at the bottom of the chamber. We
wish to find the speed v0 with which the gas escapes
through the orifice.

Let us write Bernoulli’s equation (Eq. 16-8) as

p � p0 � �g(y0 � y) � 1
2 �(v2

0 � v2),

where p0 represents atmospheric pressure just outside the
orifice. For a gas the density is so small that we can neglect
the variation in pressure with height in a chamber, which
gives

or

(16-13)

where v is the speed of the flowing gas inside the chamber
and v0 is the speed of the gas through the orifice. Although
a gas is compressible and the flow may become turbulent,
we can treat the flow as steady and incompressible for pres-
sure and exhaust speeds that are not too high.

Now let us assume continuity of mass flow (in a rocket
engine this is achieved when the mass of escaping gas
equals the mass of gas created by burning the fuel), so that
(for an assumed constant density)

If the orifice is very small so that A0 �� A; then v0 �� v,
and we can neglect v2 compared to in Eq. 16-13. Hence
the exhaust speed is

(16-14)

If our chamber is the exhaust chamber of a rocket, the
thrust on the rocket (Section 7-6) is v0 dM/dt. The mass of
gas flowing out in time dt is dM � �A0v0 dt, so that

and using Eq. 16-14 the thrust is

(16-15)v0
dM

dt
� 2A0(p � p0).

v0
dM

dt
� v0(�A0v0) � �A0v

2
0 ,

v0 � √ 2(p � p0)

�
.

v2
0

Av � A0v0 .

v2
0 �

2( p � p0)

�
� v2,

p � p0 � 1
2 �(v2

0 � v2)
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Figure 16-11. Streamlines around an airfoil or airplane
wing. The velocity of the approaching air is horizontal, while
the air receding from the airfoil has a velocity with a down-
ward component. The airfoil has thus exerted a downward force
on the air, and by Newton’s third law the air must therefore have
exerted an upward force on the airfoil. This upward force is repre-
sented by the lift F

B
.

vBr

vBa

*For more information on how airplanes fly, see “The Science of Flight,”
by Peter P. Wegener, American Scientist, May– June 1986, p. 268. Also see
“Bernoulli’s Law and Aerodynamic Lifting Force,” by Klaus Weltner, The
Physics Teacher, February 1990, p. 84. Several articles about the effect of
dynamic lift in various sports are collected in The Physics of Sports, edited
by Angelo Armenti, Jr. (American Institute of Physics, 1992). Dynamic lift
can also be used to provide a horizontal force that propels a ship; see “The
Flettner Ship,” by Albert Einstein, in Essays in Science (Philosophical Li-
brary, 1955), p. 92.
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Figure 16-12. Fluid streaming out of a chamber, which
might represent the exhaust chamber of a rocket.

p

p0

A

A0



16-5 FIELDS OF FLOW (Optional)

In Section 14-8 we showed how to represent the space near
masses by a gravitational field. Associated with each point
in the field is a vector the gravitational force per unit
mass at that point. We can make a graphical representation
of the field by drawing lines in the direction of the field
whose spacing suggests the strength of the field (large spac-
ing where the field is small and small spacing where the
field is large).

In fluid dynamics, we can make a similar graphical rep-
resentation of the moving fluid in terms of a vector field,
but in this case the field lines indicate the flow velocity at
a point. For a steady flow, the velocity at each point in
space has a constant magnitude and direction, so the pattern
of velocity field lines does not change with time.

We can represent the velocity field by drawing stream-
lines, which represent the direction of the fluid velocity at
each point. The magnitude of the velocity is represented by
the spacing of the streamlines: through each unit area per-
pendicular to the flow, we draw a number of streamlines
that is proportional to the velocity at that point. That is,
where the streamlines are close together the velocity is
large (many lines per unit area), and where they are far
apart the velocity is small (few lines per unit area).

We will illustrate the use of these field diagrams to repre-
sent the velocity field by several two-dimensional examples.
In each of these, the flow velocity is the same everywhere on
a line perpendicular to the plane of the drawing at each point.

Figure 16-13 shows a uniform field of flow, such as
might occur in the steady, nonviscous flow of a liquid
through a pipe with smooth interior walls. Here the stream-
lines are parallel lines, and the equal spacing suggests that
the flow velocity has the same magnitude everywhere.

In Fig. 16-14 we show the field for uniform rotational
flow, such as might be produced by rotating a bucket of wa-
ter on a turntable (see Problem 12, Chapter 15). Here v is
proportional to r, because the angular velocity  is con-
stant. In Fig. 16-15 we draw the field of flow of a vortex,
such as might be obtained by pulling the plug in a bathtub
full of water. In this case v is proportional to 1/r, because
the angular momentum L � mvr is constant, and the flow is
irrotational (see Problem 11). Note that both uniform rota-
tion and vortex motion are represented by circular stream-
lines but are entirely different kinds of flow. Obviously, the
shapes of the streamlines give only limited information;
their spacing is needed too.

vB

gB,
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Figure 16-13. Streamlines (horizontal lines) for a homoge-
neous nonviscous field of flow.

Figure 16-14. (a) A uniform rotational field of flow. (b) In-
crease of fluid velocity from the center, indicated in part (a) by the
decreasing spacing of the field lines.

r

(b)

(a)

v

r

v

(a)

(b)

Figure 16-15. (a) Field of flow of a vortex. (b) Variation of
fluid velocity from the center.
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Figure 16-16 represents the field of flow for a source. All
streamlines are directed radially outward. The source is a line
through the center perpendicular to the paper. The field of
flow around a linear sink is the same as that of a source except
for the sign of the flow, which is directed radially inward.

For a linear source and linear sink that have the same
flow rate and are slightly separated, we obtain the com-
bined field called linear dipole flow, shown in Fig. 16-17.

As we shall see later the electrostatic field, the magnetic
field, and the field of flow for an electric current are also
vector fields. In this connection, the homogeneous field
(Fig. 16-13) corresponds to the electric field of a plane ca-
pacitor, the source field or sink field (Fig. 16-16) corre-
sponds to the electric field of a cylindrical capacitor or
straight wire of positive or negative charge, respectively,
and the linear dipole field (Fig. 16-17) corresponds to the
electric field of two oppositely charged wires.

Figure 16-16. Flow from a linear source. 

Figure 16-17. Linear dipole flow. The source is on the
left and the sink is on the right. 

The homogeneous field of Fig. 16-13 also represents the
magnetic field inside a solenoid. The vortex field of Fig. 16-
15 represents the magnetic field around a straight current-
carrying wire. This last is an example of a field that is rota-
tional (about the vortex axis).

Because of these analogies between fluid and electro-
magnetic fields, we can often determine a field of flow,
which is difficult to calculate by present mathematical
methods, by experimental measurements on appropriate
electrical devices.

As we have seen throughout this chapter, the basic field
ideas and conservation principles find application in many
areas of physics. We shall encounter them many times
again. �

16-6 VISCOSITY, TURBULENCE,
AND CHAOTIC FLOW (Optional)

Viscosity in fluid flow is similar to friction in the motion of
solid bodies. When we slide one solid body over another,
we must supply an external force to oppose the frictional
force if we wish to keep the body in motion at constant
velocity. In the case of fluid motion, we can consider a fluid
between two parallel plates, illustrated in Fig. 16-18. A

f
B

F
B

force is applied to the upper plate, so that it is in motion
at constant velocity relative to the lower plate, which we
assume to be at rest. The force opposes the viscous drag
on the upper plate to keep its velocity constant.

F
B

vB
F
B

D

y

dy

x

FA

Figure 16-18. A viscous fluid fills the space between two
flat plates separated by a distance D. The lower plate is at rest and
the upper plate is pulled to the right with a constant force The
velocity of each layer of fluid decreases uniformly from the upper
plate to the lower plate.

F
B

.



The fluid can be imagined to be divided into layers par-
allel to the plates. Viscosity acts not only between the fluid
and the upper plate, but between each layer of fluid and the
adjacent layers. The speed of each layer differs by an
amount dv from the one below it. Fluid flow in which the
speed varies layer-by-layer is called laminar flow. For this
discussion, we assume that the top fluid layer has the same
speed v as the top plate and the bottom fluid layer has the
same speed as the bottom plate—namely, zero.

The external force F that must be exerted to set up a
laminar flow in the fluid is found to be directly proportional
to the area A of the plate— the larger the plate, the more
viscous drag and the greater the force that must be exerted.
The force is also directly proportional to the change in ve-
locity dv that occurs across each layer of thickness dy; that
is, if the plates are very close together it takes a large force
to maintain a particular velocity at the top plate. (Imagine a
laminar flow with only two layers, one at rest in contact
with the bottom plate and one moving at velocity v with the
top plate. The energy dissipated depends on the relative ve-
locity between the layers, which is large. If there are more
layers, the relative velocities between the layers are smaller,
which means less energy dissipation and less force neces-
sary to maintain the motion.) We therefore have F �
A dv/dy or, introducing a constant of proportionality �,

(16-16)

The constant of proportionality � (Greek letter eta) is called
the coefficient of viscosity (or simply the viscosity) of the
fluid. The SI unit of viscosity is the N � s/m2. The equivalent
cgs unit is the dyne � s/cm2, which is called the poise.*
Comparing the units shows that 1 poise � 0.1 N � s/m2.

F � �A
dv

dy
.

The viscosity � is large for fluids that offer a large resis-
tance to flow and small for fluids that flow easily. Table 16-
1 shows some viscosities for various fluids. Note that � de-
pends on the temperature of the fluid.

In the case of the rectangular plates shown in Fig. 16-
18, the velocity gradient dv/dy is a constant for all layers,
because the velocity increases by the same amount dv
across each layer of thickness dy. With dv/dy � v/D, where
D is the spacing between the plates, Eq. 16-16 becomes

(16-17)

A practical application of viscosity occurs in the fluid
flow through cylindrical pipes. The flow is again laminar,
but in this case the layers of fluid are thin-walled cylinders
of varying radii. The flow velocity varies with the radius; its
maximum value occurs on the axis and its minimum value,
which we assume to be zero, at the walls (Fig. 16-19). The
variation of the velocity with location across the pipe is not
linear. Assuming once again that the layer next to the walls
is at rest, the speed in the cylindrical shell of radius r can be
shown to be (see Problem 14)

(16-18)

which depends on the pressure difference �p across the
length L of the pipe. The speed at the center of the pipe is

(16-19)v0 �
�p R2

4�L
.

v �
�p

4�L
 (R2 � r 2),

F � �A
v

D
.
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*The unit is named for the French physician Jean-Louis-Marie Poiseuille
(1799–1869), who first investigated the flow of viscous fluids through
tubes as an aid in understanding the circulation of blood.

Fluid

Glycerine (20°C) 1.5
Motor oila (0°C) 0.11
Motor oila (20°C) 0.03
Blood (37°C)
Water (20°C)
Water (90°C)
Gasoline (20°C)
Air (20°C)
CO2 (20°C)

a Medium weight (S.A.E. 30).

1.5 	 10�5
1.8 	 10�5
2.9 	 10�4

0.32 	 10�3
1.0 	 10�3
4.0 	 10�3

� (N �s/m2)

Table 16-1 Viscosities of Selected Fluids

Figure 16-19. Fluid flows through a cylindrical pipe of ra-
dius R. The variation in the velocity from the wall to the center is
shown.

v

R

By considering the flow through each thin cylindrical shell,
we can show (see Problem 15) that the total mass flux
dm/dt (fluid mass flowing through the pipe per unit time) is

(16-20)
dm

dt
�

�
R4 �p

8�L
.



This result is known as Poiseuille’s law. Knowing the coef-
ficient of viscosity of the fluid, we can then determine the
pressure difference that must be provided by an external
agent (a pump, perhaps) to sustain a given mass flux
through the pipe. Equivalently, if we force fluid through a
pipe with a known pressure difference, measuring the mass
flux permits us to determine the coefficient of viscosity of
the fluid.

Viscosity in liquids originates with the intermolecular
cohesive forces. As the temperature increases, the coeffi-
cient of viscosity of a liquid decreases, because the increas-
ing kinetic energy of the molecules weakens the effect of
the intermolecular forces. In gases, on the other hand, the
viscosity increases with increasing temperature, because
the molecules themselves can migrate between the layers.
At higher temperatures, there is more molecular motion and
therefore more mixing. However, note that in a pipe there
are always more slow molecules near the walls than there
are fast molecules near the central axis, so more mixing al-
ways means more slow molecules moving toward the axis
and impeding the motion of the faster-moving molecules.
(The effect is similar to that of slow-moving traffic merging
into the fast lane of a highway.)

Sample Problem 16-3. Castor oil, which has a density
of 0.96 	 103 kg/m3 at room temperature, is forced through a
pipe of circular cross section by a pump that maintains a gauge
pressure of 950 Pa. The pipe has a diameter of 2.6 cm and a
length of 65 cm. The castor oil emerging from the free end of the
pipe at atmospheric pressure is collected. After 90 s, a total of
1.23 kg has been collected. What is the coefficient of viscosity of
the castor oil at this temperature?

Solution The mass flux is

The coefficient of viscosity can now be found directly from Eq.
16-20 if we first solve for �, which gives

Heavy oils typically have viscosities in this range.

Turbulence
After rising a short distance, the smooth column of smoke
from a cigarette breaks up into an irregular and seemingly
random pattern (Fig. 16-20). In a similar fashion, a stream

� 1.15 N �s /m2.

� �
�
R4 �p

8(dm/dt)L
�

(0.96 	 103 kg /m3)
 (0.013 m)4(950 Pa)

8(0.0137 kg/s)(0.65 m)

dm

dt
�

1.23 kg

90 s
� 0.0137 kg/s.

of fluid flowing past an obstacle breaks up into eddies and
vortices (Fig. 16-21), which give the flow irregular veloc-
ity components transverse to the flow direction. An exam-
ple of this case is the flapping of a flag in a breeze— if the
flow of air were laminar, the flag would occupy a fixed po-
sition along streamlines, but the flagpole breaks the flow
into an irregular pattern similar to Fig. 16-21, which
causes the transverse flapping motion of the flag. These 
are examples of turbulent fluid flow. Other examples in-
clude the wakes left in water by moving ships and in air by
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Figure 16-20. Rising smoke is at first in laminar flow, but
the flow soon becomes turbulent.

Figure 16-21. Fluid flowing left to right past a cylindrical
obstacle clearly goes from laminar to turbulent. Note the eddies
and vortices that form downstream from the obstacle.



moving cars and airplanes. The sounds produced by
whistling and by wind instruments result from the turbu-
lent flow of air.

In a viscous fluid, the flow at low speed can be de-
scribed as laminar, which suggests layers sliding smoothly
over one another. When the flow speed is sufficiently
large, the motion becomes disordered and irregular; this 
is turbulent flow. An analogy from mechanics is a block
that is pushed across a rough surface. If the frictional
force is small, the block will slide across the surface if 
the applied force F is at least as great as the frictional
force f. If the frictional force were greater, the applied
force F must also be greater, eventually becoming great
enough that it tips the block over. The tipping of the block
is analogous to the transition from laminar to turbulent
flow.

We can determine the critical speed at which the flow
becomes turbulent through a dimensional analysis. We let
vc represent the critical speed, which we take to be an aver-
age over the pipe, because, as Fig. 16-19 suggests, the
speed varies over the cross section of the pipe. We expect
this critical speed to depend on the viscosity � and density
� of the fluid and the diameter D of the pipe. Using our
standard technique of dimensional analysis (Section 1-7),
we proceed as follows:

where the dimensions of viscosity have been obtained from
its units of N � s/m2. Solving, we obtain

Thus the critical speed can be written

or, introducing a constant of proportionality R,

(16-21)

The dimensionless constant R is called the Reynolds num-
ber. Solving Eq. 16-21 for R, we can write the Reynolds
number for any flow speed v as

(16-22)

In this interpretation, the Reynolds number can be used to
characterize any flow, and we can determine by experiment
the value of the Reynolds number at which the flow be-
comes turbulent.

For cylindrical pipes, the Reynolds number correspond-
ing to the critical speed is about 2000. Thus for water flow-
ing through a pipe of diameter 2 cm (a typical household

R �
�Dv

�
.

vc � R
�

�D
.

vc �
�

�D
,

a � 1, b � �1, c � �1.

LT�1 � (ML�1T�1)a(ML�3)b(L)c,

 [vc] � [�a][�b][Dc] 

vc � �a�bDc

garden hose, for example), the critical speed is, using Eq.
16-21,

This is quite a low speed, which suggests that the flow 
of water is turbulent in ordinary household plumbing.
(The flow speed from a typical household tap is about 
1 m/s.)

Note from Eq. 16-21 that the critical flow speed in-
creases with the viscosity. That is, the greater the viscous
friction exerted by the surrounding fluid, the more likely
the flow will be steady.

Chaotic Flow
The geometry of Fig. 16-18 is not particularly convenient
for measuring viscosity. Figure 16-22 shows a more conve-
nient arrangement. The space between the coaxial cylinders
is filled with the fluid whose viscosity is to be determined.
The inner cylinder is made to rotate, while the outer cylin-
der is held fixed. From the torque necessary to keep the in-
ner cylinder rotating at constant angular speed, the viscos-
ity of the fluid can be determined.

For small rotational speeds, the flow in Fig. 16-22 will
be steady and laminar. As the rotational speed of the inner
cylinder is increased, the flow eventually becomes turbu-
lent. We can observe that the transition from laminar to tur-
bulent flow takes place in an orderly fashion. Figure 16-23
shows two intermediate stages. The fluid first forms
toroidal vortices (somewhat like a stack of doughnuts) and
then shows a pattern of waves of definite frequency that be-
comes superimposed on the vortices. As the rotational
speed continues to increase, waves appear with new fre-
quencies. We can imagine the turbulent flow to be the 

vc � 2000 
1 	 10�3 N �s/m2

(103 kg/m3)(0.02 m)
� 0.1 m/s � 10 cm/s.
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Figure 16-22. Experimental apparatus to measure fluid vis-
cosities. The fluid is placed between the two cylinders, the outer
cylinder being fixed and the inner cylinder rotating with angular
velocity . The torque needed to turn the inner cylinder at this an-
gular velocity is determined by the viscosity of the fluid.

Fluid



extension of this motion to include so many frequency
components that the motion appears to become completely
disordered and confused (somewhat like electronic noise).
There may be an underlying periodic structure, but it is too
complex to follow.

Chaos theory (see Section 5-7) takes a different ap-
proach in explaining the onset of turbulence. The turbulent
motion resulting from chaos theory is truly nonperiodic,
not simply the combination of a large number of periodic
motions. There is a critical distinction between these two
cases. If the transition from laminar to turbulent flow takes
place through a succession of increasingly complex, but al-
ways periodic motions, then two particles of fluid that in
the laminar flow are moving similarly will remain in
closely related states of motion throughout the transition
into turbulent flow. However, if the intermediate condition
reaches a point where the motion becomes chaotic, then the
motion loses its predictability, and the two particles can be
found in the turbulent flow in very different states of mo-
tion. Chaos theory, which is applicable to a wide variety of
physical systems, provides an alternative theoretical basis
for understanding complex systems such as the turbulent
motion of fluids.

(b) The ratio of flow speeds, v2/v1 , is

(A) 9. (B) 3. (C) 1. (D) 1/9.
(E) dependent on the fluid densities at P1 and P2 .

3. A steady stream of water falls straight down from a pipe. As-
sume the flow is incompressible. At a distance d1 beneath the
pipe the speed of the falling water is 1.0 m/s. At a distance d2

beneath the pipe the speed of the falling water is 2.0 m/s.
What is the ratio of the cross section of the flow at height d1

to the cross section at height d2 ?
(A) 4 :1 (B) 2 :1 (C) 1 :2 (D) 1 :4

16-3 Bernoulli’s Equation
4. A square box of wine has a small spout located in one of the

bottom corners. When the box is full and sitting on a level
surface, completely opening the spout results in a flow of
wine with a speed of v0 (see Fig. 16-24a).
(a) The box is now half empty and still sitting on a level sur-
face. When the spout is completely opened the wine will flow
out with a velocity of

(A) v0 . (B) v0/2. (C) v0/ . (D) v0/ .
(b) The box is still half empty, but now someone tilts it at 45°
so that the spout is at the lowest point (Fig. 16-24b). When
the spout is completely opened the wine will flow out with a
speed of

(A) v0 . (B) v0/2. (C) v0/ . (D) v0/ .√4 2√2

√4 2√2
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Figure 16-23. When the fluid speed in the apparatus of Fig.
16-22 exceeds the critical velocity, the flow becomes unstable and
breaks up into (a) toroidal vortices and then (b) waves superim-
posed on the vortices.

MULTIPLE CHOICE

16-1 General Concepts of Fluid Flow

16-2 Streamlines and the Equation of Continuity
1. The mass flux of a fluid flowing into one side of a container is

3.0 kg/s; the mass flux flowing out the other side of the con-
tainer is 2.0 kg/s. Assuming the container is completely filled
with the fluid and that there are no other ways for the fluid to
get in or out, one can conclude that

(A) the entrance point has a larger cross-section than the
exit point.

(B) the magnitude of the entrance velocity is larger than
the magnitude of the exit velocity.

(C) the density of the fluid inside the container must be in-
creasing.

(D) the fluid is incompressible.

2. A long straight pipe of circular cross-section has a radius that
varies along the length of the pipe. There is a steady flow in
the pipe, with no sources or sinks. At one point P1 in the pipe
the radius is r1 and the mass flux through P1 is a constant Q1 .
Further along the pipe is a point P2 where the radius is r2 �
r1/3.
(a) The mass flux through P2 is measured to be Q2 , where

Q2/Q1 is

(A) 9. (B) 3. (C) 1. (D) 1/9.
(E) dependent on the fluid densities at P1 and P2 .

(a)

(b)



5. A steady stream of water falls straight down from a pipe. As-
sume the flow is incompressible; the flow is similar to Fig.
16-5. How does the pressure in the water vary with height in
the falling stream?

(A) The pressure in the water is higher at lower points in
the stream.

(B) The pressure in the water is lower at lower points in
the stream.

(C) The pressure in the water is the same at all points in
the stream.

6. An incompressible fluid flows through a horizontal pipe. At
one point in the pipe the pressure in the fluid is p1 and the fluid
speed is v1 . Further down the pipe the pressure is p2 and the
fluid speed is 2v1 . What can be concluded about p1 and p2 ?

(A) (B) (C)
(D) Only that p1 � p2 .

7. An incompressible fluid flows through a horizontal pipe. At
one point in the pipe the pressure in the fluid is p1 . Further
down the pipe the pressure is p2 � p1 . What can be concluded
about the cross-sectional areas of the pipe A1 at point 1 and A2

at point 2?
(A) A1 � A2 . (B) A1 � A2 .
(C) Nothing can be concluded about the relationship be-

tween A1 and A2 .

16-4 Applications of Bernoulli’s Equation and 
the Equation of Continuity

16-5 Fields of Flow

16-6 Viscosity, Turbulence, and Chaotic Flow
8. A certain pump is able to maintain a pressure difference per

unit length in a cylindrical pipe of radius R1 and deliver a
mass flux Q0 . It is desired to replace the single pipe with two
smaller cylindrical pipes each of radius R2 . The pump will
maintain the original pressure difference per unit length in
each pipe, and the total mass flux through the two pipes re-
mains equal to Q0 . What is the ratio R1/R2?

(A) 2 (B) (C) (D) 4√4 2√2

p1 � 2p2 .p1 � 3p2 .p1 � 4p2 .
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Figure 16-24. Multiple-choice question 4.

Figure 16-25. Question 8.

(a) (b)

QUESTIONS

1. Briefly describe what is meant by each of the following and
illustrate with an example: (a) steady fluid flow; (b) non-
steady fluid flow; (c) rotational fluid flow; (d ) irrotational
fluid flow; (e) compressible fluid flow; ( f ) incompressible
fluid flow; (g) viscous fluid flow; (h) nonviscous fluid flow.

2. In steady flow, the velocity vector at any point is constant.
Can there then be accelerated motion of the fluid particles?
Explain.

3. Describe the forces acting on an element of fluid as it flows
through a pipe of nonuniform cross section.

4. What effects, if any, would surface tension have on the solu-
tion to Sample Problem 16-1?

5. Explain the pressure variations in your blood as it circulates
through your body.

6. Explain how a physician can measure your blood pressure.

7. In a lecture demonstration, a Ping-Pong ball is kept in midair
by a vertical jet of air. Is the equilibrium stable, unstable, or
neutral? Explain.

8. The height of the liquid in the standpipes of Fig. 16-25 indi-
cates that the pressure drops along the channel, even though
the channel has a uniform cross section and the flowing liquid
is incompressible. Explain.

9. Explain why a taller chimney creates a better draft for taking
the smoke out of a fireplace. Why doesn’t the smoke pour into
the room containing the fireplace?

10. (a) Explain how a baseball pitcher can make the baseball
curve to his right or left. Can we justify applying Bernoulli’s
equation to such a spinning baseball? (See “Bernoulli and
Newton in Fluid Mechanics,” by Norman F. Smith, The
Physics Teacher, November 1972, p. 451.) (b) Why is it
easier to throw a curve with a tennis ball than with a base-
ball?

11. Not only a ball with a rough surface but also a smooth ball
can be made to curve when thrown, but these balls will curve
in opposite directions. Why? (See “Effect of Spin and Speed
on the Curve of a Baseball and the Magnus Effect for Smooth
Spheres,” by Lyman J. Briggs, American Journal of Physics,
November 1959, p. 589.)

12. Two rowboats moving parallel to one another in the same di-
rection are pulled toward one another. Two automobiles mov-
ing parallel are also pulled together. Explain such phenomena
on the basis of Bernoulli’s equation.

13. In building “skyscrapers,” what forces produced by the move-
ment of air must be counteracted? How is this done? (See
“The Wind Bracing of Buildings,” by Carl W. Condit, Scien-
tific American, February 1974, p. 92.)

14. Explain the action of a parachute in retarding free fall using
Bernoulli’s equation.

15. Why does a stream of water from a faucet become narrower
as it falls?



16. Can you explain why water flows in a continuous stream
down a vertical pipe, whereas it breaks into drops when
falling freely?

17. How does the flush toilet work? Really. (See “Flushed with
Pride: The Story of Thomas Crapper,” by W. Reybum, Pren-
tice-Hall, 1969.)

18. Sometimes people remove letters from envelopes by cutting a
sliver from a narrow end, holding the envelope firmly, and
blowing toward it. Explain, using Bernoulli’s equation, why
this procedure is successful.

19. On takeoff would it be better for an airplane to move into the
wind or with the wind? On landing?

20. Explain how the difference in pressure between the lower and
upper surfaces of an airplane wing depends on the altitude of
the moving plane.

21. The accumulation of ice on an airplane wing may greatly re-
duce its lift. Explain. (The weight of the ice is not the issue
here.)

22. How is an airplane able to fly upside down?

23. ”The characteristic banana-like shape of most returning
boomerangs has hardly anything to do with their ability to re-
turn. . . . The essential thing is the cross section of the
arms, which should be more convex on one side than on the
other, like the wing profile of an airplane.” (From “The Aero-
dynamics of Boomerangs,” by Felix Hess, Scientific Ameri-
can, November 1968, p. 124.) Explain.

24. What powers the flight of soaring birds? (See “The Soaring
Flight of Birds,” by C. D. Cone, Jr., Scientific American, April
1962, p. 130.)

25. Why does the factor “2” appear in Eq. 16-15, rather than “1”?
One might naively expect that the thrust would simply be the
pressure difference times the area— that is, A0( p � p0).

26. Explain why the destructive effect of a tornado is greater near
the center of the disturbance than near the edge.

27. When a stopper is pulled from a filled basin, the water drains
out while circulating like a small whirlpool. The angular ve-
locity of a fluid element about a vertical axis through the ori-
fice appears to be greatest near the orifice. Explain.

28. Is it true that in bathtubs in the northern hemisphere the water
drains out with a counterclockwise rotation and in those in the
southern hemisphere with a clockwise rotation? If so, explain
and predict what would happen at the equator. (See “Bath-
Tub Vortex,” by Ascher H. Shapiro, Nature, December 15,
1962, p. 1080.)

29. Explain why you cannot remove the filter paper from the fun-
nel of Fig. 16-26 by blowing into the narrow end.

30. According to Bernoulli’s equation, an increase in velocity
should be associated with a decrease in pressure. Yet, when

366 Chapter 16 / Fluid Dynamics

you put your hand outside the window of a moving car, in-
creasing the speed at which the air flows by, you sense an in-
crease in pressure. Why is this not a violation of Bernoulli’s
equation?

31. Why is it that the presence of the atmosphere reduces the
maximum range of some objects (for example, tennis balls)
but increases the maximum range of others (for example,
Frisbees and golf balls)?

32. A discus can be thrown farther against a 25-mi/h wind than
with it. What is the explanation? (Hint: Think about dynamic
lift and drag.)

33. Explain why golf balls are dimpled.

34. The longer the board and the shallower the water, the farther
will a surfboard skim across the water. Explain. (See “The
Surf Skimmer,” by R. D. Edge, American Journal of Physics,
July 1968, p. 630.)

35. When poured from a teapot, water has a tendency to run
along the underside of the spout. Explain. (See “The Teapot
Effect . . . a Problem,” by Markus Reiner, Physics Today,
September 1956, p. 16.)

36. Prairie dogs live in large colonies in complex interconnected
burrow systems. They face the problem of maintaining a suffi-
cient air supply to their burrows to avoid suffocation. They
avoid this by building conical earth mounds about some of
their many burrow openings. In terms of Bernoulli’s equation,
how does this air conditioning scheme work? Note that be-
cause of viscous forces the wind speed over the prairie is less
at close to ground level than it is even a few inches higher up.
(See New Scientist, January 27, 1972, p. 191.)

37. Viscosity is an example of a transport phenomenon. What
property is being transported? Can you think of other trans-
port phenomena and their corresponding properties?

38. Why do auto manufacturers recommend using “multi-viscos-
ity” engine oil in cold weather?

39. Why is it more important to take viscosity into account for a
fluid flowing in a narrow channel than in a relatively uncon-
fined channel?

40. Viscosity can delay the onset of turbulence in fluid flow; that
is, it tends to stabilize the flow. Consider syrup and water, for
example, and make this plausible.

Figure 16-26. Question 29.

EXERCISES

16-1 General Concepts of Fluid Flow

16-2 Streamlines and the Equation of Continuity

1. A pipe of diameter 34.5 cm carries water moving at 2.62 m/s.
How long will it take to discharge 1600 m3 of water?

2. A garden hose having an internal diameter of 0.75 in. is con-
nected to a lawn sprinkler that consists merely of an enclosure
with 24 holes, each 0.050 in. in diameter. If the water in the
hose has a speed of 3.5 ft /s, at what speed does it leave the
sprinkler holes?



3. Figure 16-27 shows the confluence of two streams to form a
river. One stream has a width of 8.2 m, depth of 3.4 m, and
current speed of 2.3 m/s. The other stream is 6.8 m wide,
3.2 m deep, and flows at 2.6 m/s. The width of the river is
10.7 m and the current speed is 2.9 m/s. What is its depth?

Find the pressure difference between the constricted and un-
constricted parts of the pipe.

9. A reservoir is used to collect all of the rain water that falls
over an area A � 100 m2. The reservoir has a small hole of
cross-sectional area a located h � 2 m beneath the surface of
the water. (a) Assuming an annual rainfall of 1.6 m/year dis-
tributed evenly throughout the year, estimate the largest possi-
ble value for a that will allow the water level to remain con-
stant in the tank. (b) Find, in liters /day, the amount of water
this reservoir can deliver. (c) How many people can this reser-
voir support?

10. Water is moving with a speed of 5.18 m/s through a pipe with
a cross-sectional area of 4.20 cm2. The water gradually de-
scends 9.66 m as the pipe increases in area to 7.60 cm2. (a)
What is the speed of flow at the lower level? (b) The pressure
at the upper level is 152 kPa; find the pressure at the lower
level.

11. In a hurricane, the air (density 1.2 kg/m3) is blowing over the
roof of a house at a speed of 110 km/h. (a) What is the pres-
sure difference between inside and outside that tends to lift
the roof? (b) What would be the lifting force on a roof of area
93 m2?

12. The windows in an office building are 4.26 m by 5.26 m. On
a stormy day, air is blowing at 28.0 m/s past a window on the
53rd floor. Calculate the net force on the window. The density
of the air is 1.23 kg/m3.

13. A liquid flows through a horizontal pipe whose inner radius is
2.52 cm. The pipe bends upward through a height of 11.5 m
where it widens and joins another horizontal pipe of inner ra-
dius 6.14 cm. What must the volume flux be if the pressure in
the two horizontal pipes is the same?

14. Figure 16-29 shows liquid discharging from an orifice in a
large tank at a distance h below the liquid surface. The tank is
open at the top. (a) Apply Bernoulli’s equation to a streamline
connecting points 1, 2, and 3, and show that the speed of ef-
flux is

This is known as Torricelli’s law. (b) If the orifice were
curved directly upward, how high would the liquid stream
rise? (c) How would viscosity or turbulence affect the analy-
sis?

v � √2gh.
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Figure 16-27. Exercise 3.

Figure 16-28. Exercise 7.

Figure 16-29. Exercise 14.

4. Water is pumped steadily out of a flooded basement at a speed
of 5.30 m/s through a uniform hose of radius 9.70 mm. The
hose passes out through a window 2.90 m above the water
line. How much power is supplied by the pump?

5. A river 21 m wide and 4.3 m deep drains a 8500-km2 land
area in which the average precipitation is 48 cm/y. One-
fourth of this subsequently returns to the atmosphere by evap-
oration, but the remainder ultimately drains into the river.
What is the average speed of the river current?

16-3 Bernoulli’s Equation
6. How much work is done by pressure in forcing 1.4 m3 of wa-

ter through a 13-mm internal diameter pipe if the difference
in pressure at the two ends of the pipe is 1.2 atm?

7. A water intake at a storage reservoir (see Fig. 16-28) has a
cross-sectional area of 7.60 ft2. The water flows in at a speed
of 1.33 ft /s. At the generator building 572 ft below the intake
point, the water flows out at 31.0 ft /s. (a) Find the difference
in pressure, in lb/in.2, between inlet and outlet. (b) Find 
the area of the outlet pipe. The weight density of water is 
62.4 lb/ft3.

Generator
building

Reservoir

Intake

572 ft

Outlet

8. Models of torpedoes are sometimes tested in a horizontal pipe
of flowing water, much as a wind tunnel is used to test model
airplanes. Consider a circular pipe of internal diameter 
25.5 cm and a torpedo model, aligned along the axis of the
pipe, with a diameter of 4.80 cm. The torpedo is to be tested
with water flowing past it at 2.76 m/s. (a) With what speed
must the water flow in the unconstricted part of the pipe? (b)

2

1

h

v

3

15. A submarine at a depth of 200 m develops a relatively small
leak. At what speed does the water enter the sub? Assume that
the air pressure inside the sub is the same as the air pressure
at sea-level.

16. A sniper fires a rifle bullet into a gasoline tank, making a hole
53.0 m below the surface of the gasoline. The tank was sealed



and is under 3.10-atm absolute pressure, as shown in Fig. 16-
30. The stored gasoline has a density of 660 kg/m3. At what
speed does the gasoline begin to shoot out of the hole?

16-4 Applications of Bernoulli’s Equation and 
the Equation of Continuity
20. A Pitot tube is mounted on an airplane wing to determine the

speed of the plane relative to the air, which has a density of
1.03 kg/m3. The tube contains alcohol and indicates a level
difference of 26.2 cm. What is the plane’s speed relative to
the air? The density of alcohol is 810 kg/m3.

21. A hollow tube has a disk DD attached to its end (Fig. 16-33).
When air of density � is blown through the tube, the disk at-
tracts the card CC. Let the area of the card be A and let v be
the average air speed between the card and the disk. Calculate
the resultant upward force on CC. Neglect the card’s weight;
assume that v0 �� v, where v0 is the air speed in the hollow
tube.
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3.10 atm
absolute

Gasoline

53.0 m

20 m

v

10 m

Figure 16-30. Exercise 16.

Figure 16-31. Exercise 17.

Figure 16-32. Exercise 19.

Figure 16-33. Exercise 21.

17. Consider a uniform U-tube with a diaphragm at the bottom
and filled with a liquid to different heights in each arm (see
Fig. 16-31). Now imagine that the diaphragm is punctured so
that the liquid flows from left to right. (a) Show that the appli-
cation of Bernoulli’s equation to points 1 and 3 leads to a con-
tradiction. (b) Explain why Bernoulli’s equation is not applic-
able here. (Hint: Is the flow steady?)

18. If a person blows air with a speed of 15.0 m/s across the top
of one side of a U-tube containing water, what will be the dif-
ference between the water levels on the two sides? Assume
that the density of air is 1.20 kg/m3.

19. The fresh water behind a reservoir dam is 15.2 m deep. A hor-
izontal pipe 4.30 cm in diameter passes through the dam 
6.15 m below the water surface, as shown in Fig. 16-32. A
plug secures the pipe opening. (a) Find the frictional force be-
tween plug and pipe wall. (b) The plug is removed. What vol-
ume of water flows out of the pipe in 3.00 h?

22. A square plate with edge length 9.10 cm and mass 488 g is
hinged along one side. If air is blown over the upper surface
only, what speed must the air have to hold the plate horizon-
tal? The air has density 1.21 kg/m3.

23. Air flows over the top of an airplane wing, area A, with speed
vt and past the underside of the wing with speed vu . Show that
Bernoulli’s equation predicts that the upward lift force L on
the wing will be

where � is the density of the air. (Hint: Apply Bernoulli’s
equation to a streamline passing just over the upper wing sur-
face and to a streamline passing just beneath the lower wing
surface. Can you justify setting the constants for the two
streamlines equal?)

24. An airplane has a wing area (each wing) of 12.5 m2. At a cer-
tain air speed, air flows over the upper wing surface at 
49.8 m/s and over the lower wing surface at 38.2 m/s. 
(a) Find the mass of the plane. Assume that the plane travels
with constant velocity and that lift effects associated with the
fuselage and tail assembly are small. Discuss the lift if the air-
plane, flying at the same air speed, is (b) in level flight,
(c) climbing at 15°, and (d ) descending at 15°. The air density
is 1.17 kg/m3. See Exercise 23.

25. A Venturi tube has a pipe diameter of 25.4 cm and a throat di-
ameter of 11.3 cm. The water pressure in the pipe is 57.1 kPa
and in the throat is 32.6 kPa. Calculate the volume flux of wa-
ter through the tube.

16-5 Fields of Flow
26. Show that the constant in Bernoulli’s equation is the same for

all streamlines in the case of the steady, irrotational flow of
Fig. 16-13.

L � 1
2 �A(v2

t � v2
u),

1

2

3

Diaphragm

15.2 m

6.15 m

D D
v v

C C

v0



27. Before Newton proposed his theory of gravitation, a model of
planetary motion proposed by René Descartes was widely ac-
cepted. In Descartes’ model the planets were caught in and
dragged along by a whirlpool of ether particles centered
around the Sun. Newton showed that this vortex scheme con-
tradicted observations because: (a) the speed of an ether parti-
cle in the vortex varies inversely as its distance from the Sun;
(b) the period of revolution of such a particle varies directly
as the square of its distance from the Sun; and (c) this result
contradicts Kepler’s third law. Prove (a), (b), and (c).

16-6 Viscosity, Turbulence, and Chaotic Flow

28. Calculate the greatest speed at which blood, at 37°C, can flow
through an artery of diameter 3.8 mm if the flow is to remain
laminar.

29. Liquid mercury (viscosity � 1.55 	 10�3 N � s/m2) flows
through a horizontal pipe of internal radius 1.88 cm and
length 1.26 m. The volume flux is 5.35 	 10�2 L/min. (a)
Show that the flow is laminar. (b) Calculate the difference in
pressure between the two ends of the pipe.

Problems 369

Figure 16-34. Problem 1.

Figure 16-35. Problem 3.

Figure 16-36. Problem 4.

PROBLEMS

1. Tidal currents in narrow channels connecting coastal bays
with the ocean can be very swift; water must flow into the bay
as the tide rises and back out to the sea as the tide falls. Con-
sider the rectangular bay shown in Fig. 16-34a. The bay is
connected to the sea by a channel 190 m wide and 6.5 m deep
at mean sea level. The graph (Fig. 16-34b) shows the diurnal
variation of the water level in the bay. Calculate the average
speed of the tidal current in the channel.

depth so that this second stream would have the same range?
If so, at what depth? (c) At what depth should the hole be
placed to make the emerging stream strike the ground at the
maximum distance from the base of the tank? What is this
maximum distance?
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2. Suppose that two tanks, 1 and 2, each with a large opening at
the top, contain different liquids. A small hole is made in the
side of each tank at the same depth h below the liquid surface,
but the hole in tank 1 has half the cross-sectional area of the
hole in tank 2. (a) What is the ratio �1/�2 of the densities of
the fluids if it is observed that the mass flux is the same for
the two holes? (b) What is the ratio of the flow rates (volume
flux) from the two tanks? (c) It is desired to equalize the two
flow rates by adding or draining fluid in tank 2. What should
be the new height of the fluid above the hole in tank 2 to
make the flow rate in tank 2 equal to that of tank 1?

3. A tank is filled with water to a height H. A hole is punched in
one of the walls at a depth h below the water surface (Fig. 
16-35). (a) Show that the distance x from the foot of the 
wall at which the stream strikes the floor is given by

(b) Could a hole be punched at anotherx � 2√h(H � h).

4. A siphon is a device for removing liquid from a container that
is not to be tipped. It operates as shown in Fig. 16-36. The
tube must initially be filled, but once this has been done the
liquid will flow until its level drops below the tube opening at

h

x

v

H

A

h1

h2

d

C

B



A. The liquid has density � and negligible viscosity. (a) With
what speed does the liquid emerge from the tube at C? (b)
What is the pressure in the liquid at the topmost point B? (c)
What is the greatest possible height h that a siphon may lift
water?

5. (a) Consider a stream of fluid of density � with speed v1 ,
passing abruptly from a cylindrical pipe of cross-sectional
area a1 into a wider cylindrical pipe of cross-sectional area a2

(see Fig. 16-37). The jet will mix with the surrounding fluid
and, after the mixing, will flow on almost uniformly with an
average speed v2 . Without referring to the details of the mix-
ing, use momentum ideas to show that the increase in pres-
sure due to the mixing is approximately

(b) Show from Bernoulli’s equation that in a gradually
widening pipe we would get

(c) Find the loss of pressure due to the abrupt enlargement of
the pipe. Can you draw an analogy with elastic and inelastic
collisions in particle mechanics?

p2 � p1 � 1
2 �(v2

1 � v2
2).

p2 � p1 � �v2(v1 � v2).

10. A force field is conservative if � The circle on
the integration sign means that the integration is to be taken
along a closed curve (a round trip) in the field. A flow is a po-
tential flow (hence irrotational) if � for every
closed path in the field. Using this criterion, show that the
fields of (a) Fig. 16-13 and (b) Fig. 16-16 are fields of poten-
tial flow.

11. In flows that are sharply curved, centrifugal effects are appre-
ciable. Consider an element of fluid that is moving with speed
v along a streamline of a curved flow in a horizontal plane
(Fig. 16-38). (a) Show that so that the pressure
increases by an amount �v2/r per unit distance perpendicular
to the streamline as we go from the concave to the convex
side of the streamline. (b) Then use Bernoulli’s equation and
this result to show that vr equals a constant, so that speeds in-
crease toward the center of curvature. Hence streamlines that
are uniformly spaced in a straight pipe will be crowded to-
ward the inner wall of a curved passage and widely spaced to-
ward the outer wall. This problem should be compared to
Problem 12 of Chapter 15 in which the curved motion is pro-
duced by rotating a container. There the speed varied directly
with r, but here it varies inversely. (c) Show that this flow is
irrotational.

dp/dr � �v2/r,

vB�d sB � 0

F
B

�d sB � 0.
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Figure 16-37. Problem 5.

Figure 16-38. Problem 11.

Figure 16-39. Problem 12.

p2 v2p1
v1

a1

a2

6. A jug contains 15 glasses of orange juice. When you open the
tap at the bottom it takes 12.0 s to fill a glass with juice. If
you leave the tap open, how long will it take to fill the re-
maining 14 glasses and thus empty the jug?

7. Consider the stagnant air at the front edge of a wing and the
air rushing over the wing surface at a speed v. Assume pres-
sure at the leading edge to be approximately atmospheric and
find the greatest value possible for v in streamline flow; as-
sume that air is incompressible and use Bernoulli’s equation.
Take the density of air to be 1.2 kg/m3. How does this com-
pare with the speed of sound under these conditions (340
m/s)? Can you explain the difference? Why should there be
any connection between these quantities?

8. Consider the Venturi meter of Fig. 16-8. By applying
Bernoulli’s equation to points 1 and 2 and the equation of
continuity (Eq. 16-3), verify Eq. 16-11 for the speed of flow
at point 1.

9. Consider the Venturi meter of Fig. 16-8, containing water,
without the manometer. Let A1 � 4.75A2 . Suppose that the
pressure at point 1 is 2.12 atm. (a) Compute the values of v1

at point 1 and v2 at point 2 that would make the pressure p2 at
point 2 equal to zero. (b) Compute the corresponding volume
flow rate if the diameter at point 1 is 5.20 cm. The phenome-
non at point 2 when p2 falls to nearly zero is known as cavita-
tion. The water vaporizes into small bubbles.

p + dp

v

p

dr

Center of
curvature

r

12. Figure 16-39 shows a cross section of the upper layers of the
Earth. The surface of the Earth is broken into several rigid
blocks, called plates, that slide (slowly!) over a “slushy”
lower layer called the asthenosphere. See the figure for typi-
cal dimensions. Suppose that the speed of the rigid plate
shown is v0 � 48 mm/y, and that the base of the astheno-
sphere does not move. Calculate the shearing stress (shearing
force per unit area) on the base of the plate. The viscosity of
the asthenosphere material is 4.0 	 1019 N � s/m2. Ignore the
curvature of the Earth.

v = 0

v0

Earth's surface

150 km

190 km

Plate

Asthenosphere



13. The streamlines of the Poiseuille field of flow are shown in Fig.
16-40. The spacing of the streamlines indicates that although
the motion is rectilinear, there is a velocity gradient in the trans-
verse direction. Show that the Poiseuille flow is rotational.

15. Consider once again the fluid flowing through the pipe de-
scribed in Problem 14 and illustrated in Fig. 16-41. Find an
expression for the mass flux through the annular ring be-
tween radii r and r � dr; then integrate this result to find 
the total mass flux through the pipe, thereby verifying 
Eq. 16-20.

16. A soap bubble of radius 38.2 mm is blown on the end of a
narrow tube of length 11.2 cm and internal diameter 1.08
mm. The other end of the tube is exposed to the atmosphere.
Find the time taken for the bubble radius to fall to 21.6 mm.
Assume Poiseuille flow in the tube. (For the surface tension
of the soap solution use 2.50 	 10�2 N/m; the viscosity of air
is 1.80 	 10�5 N � s/m2.)
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Figure 16-40. Problem 13.

Figure 16-41. Problems 14 and 15.

14. A fluid of viscosity � flows steadily through a horizontal
cylindrical pipe of radius R and length L, as shown in Fig. 16-
41. (a) Consider an arbitrary cylinder of fluid of radius r.
Show that the viscous force F due to the neighboring layer is

(b) Show that the force F� pushing that
cylinder of fluid through the pipe is (c) Use
the equilibrium condition to obtain an expression for dv in
terms of dr. Integrate the expression to obtain Eq. 16-18.

F� � (
r 2)�p.
F � ��(2
rL)dv/dr.

L

F

F'

FR

rp + ∆p p

COMPUTER PROBLEM

A cylindrical water tank has a radius of 2 m and a height of 1.5 m.
Originally the tank is completely filled with water, but a vertical
crack appears in the tank and the water leaks out. Assuming the
crack is 1 cm wide and extends from the base of the tank to the

top, calculate the amount of time for the tank to completely
empty. (Hint: Assume the crack is composed of 1 cm2 holes, each
one on top of the other, and solve the problem numerically.
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OSCILLATIONS

Each day we encounter many kinds of oscillatory

motion. Common examples include the swinging pendulum of a clock, a person bouncing on a trampoline,

and a vibrating guitar string. Examples on the microscopic scale are vibrating atoms in the quartz crystal

of a wristwatch and vibrating molecules of air that transmit sound waves. In addition to these mechanical

oscillations, we can also have electromagnetic oscillations, such as electrons surging back and forth in cir-

cuits that are responsible for transmitting and receiving radio or TV signals.

These oscillating systems—whether mechanical, electromagnetic, or other types—have a common

mathematical formulation and are most easily expressed in terms of sine and cosine functions. In this chap-

ter we concentrate on mechanical oscillations and their description. Later in this book we deal with various

kinds of waves and with electromagnetic oscillations, which use the same mathematical description.

17-1 OSCILLATING SYSTEMS

Imagine an oscillating system, such as the pendulum of a
clock or a mass on a spring. What must be the properties of
the force that produces such oscillations?

If you displace a pendulum in one direction from its
equilibrium position, the force (which is due to gravity)
pushes it back toward equilibrium. If you displace it in the
other direction, the force still acts toward the equilibrium
position. No matter what the direction of the displacement,
the force always acts in a direction to restore the system to
its equilibrium position. Such a force is called a restoring
force. (The equilibrium position is the kind we called stable
in Chapter 12; the system tends to return to equilibrium
when slightly displaced.)

Let us consider a simple example. Suppose we have a
particle that is free to move only in the x direction, and let
the particle experience a force of constant magnitude Fm that
acts in the � x direction when x � 0 and in the � x direction
when x � 0, as shown in Fig. 17-1a. The force, which is
shown in Fig. 17-1b, is similar to the forces that give the
piecewise constant accelerations we considered in Chapter 2.

A particle of mass m initially at rest at coordinate x �
� xm experiences a force whose x component is � Fm , and
the corresponding x component of the acceleration of the
particle is � am � � Fm /m. The particle moves toward its
equilibrium position at x � 0 and reaches that position with
velocity vx � � vm . When it passes through the origin to
negative x, the force becomes � Fm , and the acceleration is
� am . The particle slows and comes to rest for an instant at
x � � xm before reversing its motion through the origin
and returning eventually to x � � xm . In the absence of
friction and other dissipative forces, the cycle repeats end-
lessly.

Figure 17-2 shows the resulting motion, plotted in the
style of the examples we considered in Chapter 2. The posi-
tion x(t) consists of a sequence of smoothly joined seg-
ments of parabolas, as is always the case for motion at con-
stant acceleration. The particle oscillates back and forth
between x � � xm and x � � xm . The magnitude of the
maximum displacement from equilibrium (xm in this case)
is called the amplitude of the motion. The time necessary
for one complete cycle (a complete repetition of the mo-
tion) is called the period T, as indicated in Fig. 17-2. The
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number of cycles per unit time is called the frequency f. The
frequency and the period are reciprocals of one another:

(17-1)

Period is measured in time units (seconds, for instance),
whereas frequency is measured in the SI unit of hertz (Hz),*
where 1 Hz � 1 cycle/s. Thus, for example, an oscillation
with a period of T � 5 s has a frequency f � 0.2 Hz.

So far we have used a dynamical description of the os-
cillation. Often a description in terms of energy is useful.
Figure 17-1c shows the potential energy corresponding to
the force of Fig. 17-1b. Note that, as indicated by the ex-
pression F � � dU/dx, the negative of the slope U(x) gives
the force. The mechanical energy E � K � U remains con-
stant for an isolated system. At every point, the difference 
E � U gives the kinetic energy K at that point. If we ex-
tended the graph to sufficiently large displacements, we
would eventually reach locations where E � U and thus 
K � 0. At these points, as Fig. 17-2 shows, the velocity is
zero and the position is x � � xm . These points are called
the turning points of the motion.

Figures 17-1b and 17-1c illustrate two equivalent ways of
describing the conditions for oscillation: the force must al-
ways act to restore the particle to equilibrium, and the poten-
tial energy must have a minimum at the equilibrium position.

The case of constant acceleration is always pleasant to
work with, because the mathematics is simple, but it is sel-

f � 1/T.

dom an accurate description of nature. Figure 17-3a shows
an example of a more realistic force that can produce oscil-
latory motion. Such a force is responsible for the binding of
molecules containing two atoms. The force increases
rapidly as we try to push one atom close to the other; this
repulsive component keeps the molecule from collapsing.
As we try to pull the atoms to larger spacings, the force
tends to oppose our efforts; this force may be an electrosta-
tic force between two opposite electric charges, but often it
is more complex and involves the spatial distribution of
electronic orbits in atoms.

Figure 17-3b shows the corresponding potential energy
function U(x). Note that, as was the case in Fig. 17-1, the
force changes sign at the equilibrium position, and the po-
tential energy has a minimum at that position. Note that in
this case the turning points (labeled x1 and x2 in Fig. 17-3)
are not symmetrically located about the equilibrium posi-
tion. If we were to stretch the molecule a bit beyond its
equilibrium configuration and release it (which often occurs
when a molecule absorbs infrared radiation), it would exe-
cute periodic motion about equilibrium, although the math-
ematical description would be more complex than that of
Fig. 17-2. The study of these oscillations is an important
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Figure 17-1. (a) A particle is acted on by a constant force 
that is always directed toward the origin. (b) A plot of this piece-
wise constant force, equal to � Fm when x � 0 and to � Fm when
x � 0. Any real force of this type must be represented by a contin-
uous function, even though it may be very steep as it goes through
x � 0. (c) The potential energy corresponding to this force. If the
system has total mechanical energy E, then at any location the dif-
ference E � U gives the kinetic energy.
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* The frequency unit is named after Heinrich Hertz (1857–1894), whose
research provided the experimental confirmation of electromagnetic
waves.
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Figure 17-2. The position, velocity, and acceleration of the par-
ticle of Fig. 17-1 are plotted as functions of the time. The accelera-
tion consists of alternating horizontal segments with values � Fm/m
and � Fm/m, the velocity consists of alternating linear segments with
slopes � Fm/m and � Fm/m, and the position consists of smoothly
joined sections of parabolas. Because the force Fx(x) is in reality a
continuous function, ax(t) is also continuous, the horizontal segments
having steep connections. Moreover, the sharp corners of vx(t) are
rounded. The curves shown, however, are excellent approximations
if the force changes from � Fm to � Fm over a very short interval.



technique for learning about molecular structure, as we dis-
cuss in Section 17-9.

17-2 THE SIMPLE HARMONIC
OSCILLATOR

The motion of a particle in a complex system, such as an
atom in the vibrating molecule discussed in the previous
section, is easier to analyze if we consider the motion to be
a superposition of harmonic oscillations, which can be de-
scribed in terms of sine and cosine functions.

Consider an oscillating system in one dimension, con-
sisting of a particle subject to a force

(17-2)

in which k is a constant and x is the displacement of the
particle from its equilibrium position. Such an oscillating
system is called a simple harmonic oscillator, and its mo-
tion is called simple harmonic motion. The potential energy
corresponding to this force is

(17-3)

The force and potential energy are of course related by
Fx(x) � � dU/dx. As indicated by Eq. 17-2 and plotted in
Fig. 17-4a, the force acting on the particle is directly pro-
portional to the displacement but is opposite to it in direc-
tion. Equation 17-3 shows that the potential energy varies
as the square of the displacement, as illustrated by the para-
bolic curve in Fig. 17-4b.

You will recognize Eqs. 17-2 and 17-3 as the expres-
sions for the force and potential energy of an “ideal” spring

U(x) � 1
2 kx 2.

Fx(x) � �kx,

of force constant k, compressed or extended by a distance
x; see Section 11-4. Hence, a body of mass m attached to
an ideal spring of force constant k and free to move over a
frictionless horizontal surface is an example of a simple
harmonic oscillator (see Fig. 17-5). Note that there is a po-
sition (the equilibrium position; see Fig. 17-5b) in which
the spring exerts no force on the body. If the body is dis-
placed to the right (as in Fig. 17-5a), the force exerted by
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Figure 17-3. (a) The force that acts on a particle oscillating
between the limits x1 and x2 . Note that the force always tends to
push the particle toward its equilibrium position, as in Fig. 17-1.
Such a force might act on an atom in a molecule. (b) The potential
energy corresponding to this force.
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Figure 17-4. (a) The force and (b) the corresponding poten-
tial energy of a simple harmonic oscillator. Note the similarities
and differences with Fig. 17-3.

Figure 17-5. A simple harmonic oscillator, consisting of a
spring acting on a body that slides on a frictionless horizontal sur-
face. In (a), the spring is stretched so that the body has its maxi-
mum displacement from equilibrium. In (c) the spring is fully
compressed. In (b) and (d ), the body is passing through equilib-
rium with its maximum speed, and the spring is relaxed.
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the spring on the body points to the left. If the body is dis-
placed to the left (as in Fig. 17-5c), the force points to the
right. In each case the force is a restoring force. (It is in this
case a linear restoring force— that is, proportional to the
first power of x.)

Let us apply Newton’s second law, � Fx � max , to the
motion of Fig. 17-5. For � Fx we substitute � kx and for
the acceleration ax we put in d 2x/dt 2 (� dvx /dt). This gives
us

or

(17-4)

Equation 17-4 is called the equation of motion of the simple
harmonic oscillator. Its solution, which we describe in the
next section, is a function x(t) that describes the position of
the oscillator as a function of the time, in analogy with Fig.
17-2a, which represents the variation of position with time
of a different oscillator.

The simple harmonic oscillator problem is important for
two reasons. First, many problems involving mechanical vi-
brations at small amplitudes reduce to that of the simple
harmonic oscillator, or to a combination of such oscillators.
This is equivalent to saying that if we consider a small
enough portion of a restoring force curve near the equilib-
rium position, Fig. 17-3a, for instance, it becomes arbitrar-
ily close to a straight line, which, as Fig. 17-4a shows, is
characteristic of simple harmonic motion. Or, in other
words, the potential energy curve of Fig. 17-3b is very
nearly parabolic near the equilibrium position.

Second, as we have indicated, equations like Eq. 17-4
occur in many physical problems in acoustics, optics, me-
chanics, electrical circuits, and even atomic physics. The
simple harmonic oscillator exhibits features common to
many physical systems.

17-3 SIMPLE HARMONIC
MOTION

Let us now solve the equation of motion of the simple har-
monic oscillator,

(17-4)

We derived Eq. 17-4 for a spring force Fx � � kx (where
the force constant k is a measure of the stiffness of the
spring) acting on a particle of mass m. We shall see later
that other oscillating systems are governed by similar equa-
tions of motion, in which the constant k is related to other
physical features of the system. We can use the oscillating
mass– spring system as our prototype.

Equation 17-4 gives a relation between a function of the
time x(t) and its second time derivative d 2x/dt 2. Our goal is

d 2x

dt 2 �
k

m
x � 0.

d 2x

dt 2 �
k

m
x � 0.

�kx � m
d 2x

dt 2

to find a function x(t) that satisfies this relation. We begin
by rewriting Eq. 17-4 as

(17-5)

Equation 17-5 requires that x(t) be a function whose second
derivative is the negative of the function itself, except for a
constant factor k/m. We know from calculus that the sine
and cosine functions have this property. For example,

and

The second derivative of a cosine (or of a sine) gives us
back the original function multiplied by a negative factor
� 	2. This property is not affected if we multiply the cosine
function by any constant. We choose the constant to be xm ,
so that the maximum value of x (the amplitude of the mo-
tion) will be xm .

We write a tentative solution to Eq. 17-5 as

(17-6)

Here, since

where A � xm cos 
 and B � � xm sin 
, the constant 

allows for any combination of sine and cosine solutions.

With the (as yet) unknown constants xm , 	, and 
, we
have written as general a solution to Eq. 17-5 as we can. To
determine these constants such that Eq. 17-6 is actually the
solution of Eq. 17-5, we differentiate Eq. 17-6 twice with
respect to the time. We have

and

Putting this into Eq. 17-5, we obtain

Therefore, if we choose the constant 	 such that

(17-7)

then Eq. 17-6 is in fact a solution of the equation of motion
of a simple harmonic oscillator.

The constants xm and 
 are still undetermined and
therefore still completely arbitrary. This means that any
choice of xm and 
 whatsoever will satisfy Eq. 17-5, so that

	2 �
k

m
,

�	2x m cos (	t � 
) � �
k

m
x m cos (	t � 
).

d 2x

dt 2 � �	2x m cos (	t � 
).

dx

dt
� �	x m sin (	t � 
)

� A cos 	t � B sin 	t, 
xm cos (	t � 
) � xm cos 
 cos 	t � xm sin 
 sin 	t

x � xm cos (	t � 
).

d 2

dt 2  cos 	t �
d

dt
 (�	 sin 	t) � �	2 cos 	t.

d

dt
 cos 	t � �	 sin 	t

d 2x

dt 2 � �� k

m � x.
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a large variety of motions (all of which have the same 	) is
possible for the oscillator. We shall see later that xm and 

are determined for a particular harmonic motion by how the
motion starts.

Let us find the physical significance of the constant 	. If
we increase the time t in Eq. 17-6 by 2� /	, the function be-
comes

That is, the function merely repeats itself after a time 2�/	.
Therefore 2�/	 is the period of the motion T. Since 	2 �
k/m, we have

(17-8)

Hence all motions given by Eq. 17-5 have the same period
of oscillation, which is determined only by the mass m of
the oscillating particle and the force constant k of the
spring. The frequency f of the oscillator is the number of
complete vibrations per unit time and is given by

(17-9)

Hence

(17-10)

The quantity 	 is called the angular frequency; it differs
from the frequency f by a factor 2�. It has the dimension of
reciprocal time (the same as angular speed), and its unit is
the radian/second. In Section 17-6 we give a geometric
meaning to this angular frequency.

The constant xm has a simple physical meaning. The co-
sine function takes on values from � 1 to � 1. The dis-
placement x from the central equilibrium position x � 0
therefore has a maximum value of xm ; see Eq. 17-6. We
call xm the amplitude of the motion. Because xm is not fixed
by Eq. 17-4, motions of various amplitudes are possible,
but all have the same frequency and period. The frequency
of a simple harmonic motion is independent of the ampli-
tude of the motion.

The quantity (	t � 
) is called the phase of the motion.
The constant 
 is called the phase constant. Two motions
may have the same amplitude and frequency but differ in
phase. If 
 � � �/2 � � 90°, for example,

so that the displacement is zero at the time t � 0. If 
 � 0,
on the other hand, the displacement x � xm cos 	t has its
maximum value x � xm at the time t � 0. Other initial dis-
placements correspond to other phase constants. See Sam-
ple Problem 17-3 for an example of the method of finding
xm and 
 from the initial displacement and velocity.

� x m sin 	t
x � xm cos (	t � 
) � xm cos (	t � 90°)

	 � 2� f �
2�

T
.

f �
1

T
�

1

2� √ k

m
.

T �
2�

	
� 2� √ m

k
.

� xm cos (	t � 
) .
� xm cos (	t � 2� � 
) 

x � xm cos [	(t � 2�/	) � 
]

The amplitude xm and the phase constant 
 of the oscil-
lation are determined by the initial position and velocity of
the particle. These two initial conditions will specify xm

and 
 exactly (except that 
 may be increased or de-
creased by any multiple of 2� without changing the mo-
tion). Once the motion has started, however, the particle
will continue to oscillate with a constant amplitude and
phase constant at a fixed frequency, unless other forces dis-
turb the system.

In Fig. 17-6 we plot the displacement x versus the time t
for several simple harmonic motions described by Eq. 17-6.
Three comparisons are made. In Fig. 17-6a, the two curves
have the same amplitude and frequency but differ in phase
by 
 � �/4 or 45°. In Fig. 17-6b, the two curves have the
same frequency and phase constant but differ in amplitude
by a factor of 2. In Fig. 17-6c, the curves have the same
amplitude and phase constant but differ in frequency by a
factor of or in period by a factor of 2. Study these curves
carefully to become familiar with the terminology used in
simple harmonic motion.

1
2
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Figure 17-6. (a) Comparison of the motions of two simple
harmonic oscillators of the same amplitude and frequency but dif-
fering in phase constant by 45°. If the motion is represented by
Eq. 17-6, then the solid curve has 
 � 0° and the dashed curve
has 
 � 45°. (b) Two simple harmonic motions of the same phase
constant and frequency but differing in amplitude by a factor of 2.
(c) Two simple harmonic motions of the same amplitude and
phase constant (0°) but differing in frequency by a factor of 2. The
solid curve has twice the period, and therefore half the frequency,
of the dashed curve.



Another distinctive feature of simple harmonic motion
is the relation between the displacement, the velocity, and
the acceleration of the oscillating particle. Let us compare
these quantities. In Fig. 17-7 we plot separately the dis-
placement x versus the time t, the velocity vx � dx/dt ver-
sus the time t, and the acceleration ax � dvx /dt � d 2x/dt 2

versus the time t. The equations of these curves are

(17-11)

For the case plotted we have taken 
 � 0. The units and
scale of displacement, velocity, and acceleration are omit-
ted for simplicity of comparison. The displacement, veloc-
ity, and acceleration all oscillate harmonically. Note that the
maximum displacement (amplitude) is xm , the maximum
speed (velocity amplitude) is 	xm , and the maximum accel-
eration (acceleration amplitude) is 	2xm .

When the displacement is a maximum in either direc-
tion, the speed is zero because the velocity must now
change its direction. The acceleration at this instant, like the
restoring force, has a maximum magnitude but is directed
opposite to the displacement. When the displacement is
zero, the speed of the particle is a maximum and the accel-
eration is zero, corresponding to a zero restoring force. The
speed increases as the particle moves toward the equilib-

ax �
dvx

dt
� �	2x m cos (	t � 
 ).

vx �
dx

dt
� �	x m sin (	t � 
), 

x � x m cos (	t � 
), 

rium position and then decreases as it moves out to the
maximum displacement. Compare Fig. 17-7 with Fig. 17-2,
and note their similarities and differences.

Sample Problem 17-1. A certain spring hangs verti-
cally. When a body of mass M � 1.65 kg is suspended from it, its
length increases by 7.33 cm. The spring is then mounted horizon-
tally, and a block of mass m � 2.43 kg is attached to the spring.
The block is free to slide along a frictionless horizontal surface, as
in Fig. 17-5. (a) What is the force constant k of the spring? (b)
What is the magnitude of the horizontal force required to stretch
the spring by a distance of 11.6 cm? (c) When the block is dis-
placed a distance of 11.6 cm and released, with what period will it
oscillate?

Solution (a) The force constant k is determined from the force
Mg necessary to stretch the spring by the measured vertical dis-
placement y � � 7.33 cm. When the suspended body is hanging
at rest, � Fy � 0; the y component of the net force on the body is
� Fy � � ky � Mg, so ky � �Mg, or

(b) The magnitude of the horizontal force needed to stretch the
spring by 11.6 cm is determined from Hooke’s law (Eq. 17-2) us-
ing the force constant we found in part (a):

(c) The period is independent of the amplitude and depends only
on the values of the mass of the block and the force constant.
From Eq. 17-8,

(We display the value of T to four significant figures, more than
are justified by the input data, because we shall need this result in
the solution of Sample Problem 17-2. To avoid rounding errors in
intermediate steps, it is standard practice to carry excess signifi-
cant figures in this way. The final result, of course, must be prop-
erly rounded.)

17-4 ENERGY IN SIMPLE
HARMONIC MOTION

In any motion in which no dissipative forces act, the total
mechanical energy E (� K � U ) is conserved (remains
constant). We can now study this in more detail for the spe-
cial case of simple harmonic motion.

The potential energy U at any instant is given by

(17-12)

where we have used Eq. 17-6 for the displacement x. The
potential energy thus oscillates with time and has a maxi-
mum value of During the motion, the potential en-
ergy varies between zero and this maximum value, as the
curves in Figs. 17-8a and 17-8b show.

1
2 kx 2

m .

U � 1
2 kx 2 � 1

2 kx 2
m cos2(	t � 
).

T � 2� √ m

k
� 2� √ 2.43 kg

221 N/m
� 0.6589 s � 659 ms.

F � kx � (221 N/m)(0.116 m) � 25.6 N.

� 221 N/m. 
k � �Mg/y � �(1.65 kg)(9.80 m/s2)/(�0.0733 m)
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Figure 17-7. The displacement, velocity, and acceleration of
a simple harmonic oscillator, according to Eqs. 17-11.
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The kinetic energy K at any instant is Using Eq.
17-11 for vx(t) and Eq. 17-7 for 	2, we obtain

(17-13)

The kinetic energy, like the potential energy, oscillates with
time and has a maximum value of During the motion,
the kinetic energy varies between zero and this maximum
value, as shown by the curves in Figs. 17-8a and 17-8b.
Note that the kinetic and potential energies vary with twice
the frequency (half the period) of the displacement and ve-
locity. Can you explain this?

The total mechanical energy is the sum of the kinetic
energy and the potential energy. Using Eqs. 17-12 and 17-
13, we obtain

(17-14)

We see that the total mechanical energy is constant, as we
expect, and has the value At the maximum displace-
ment the kinetic energy is zero, but the potential energy has
the value At the equilibrium position the potential
energy is zero, but the kinetic energy has the value At
other positions the kinetic and potential energies each con-
tribute terms whose sum is always This constant total
energy E is shown in Figs. 17-8a and 17-8b. The total en-
ergy of a particle executing simple harmonic motion is pro-
portional to the square of the amplitude of the motion. It
can be shown (see Problem 14) that the average kinetic en-

1
2 kx 2

m .

1
2kx 2

m .

1
2 kx 2

m .

1
2 kx 2

m .

� 1
2 kx 2

m .

E � K � U � 1
2 kx 2

m sin2(	t � 
) � 1
2 kx 2

m cos2(	t � 
)

1
2 kx 2

m .

� 1
2 kx 2

m sin2(	t � 
). 

� 1
2 m	2x 2

m sin2(	t � 
)

K � 1
2 mv 2

x

1
2 mv 2

x .

ergy for the motion during one period is exactly equal to
the average potential energy and that each of these average
quantities is half the total energy, or 

Equation 17-14 can be written quite generally as

(17-15)

From this relation we obtain or

(17-16)

This relation shows clearly that the speed is a maximum at
the equilibrium position (x � 0) and is zero at the extreme
displacements (x � � xm). In fact, we can start from the
conservation of energy, Eq. 17-15 (in which 
and by integration of Eq. 17-16 obtain the displacement as
a function of time, as we did in Section 12-5, where we ob-
tained a result identical to Eq. 17-6 with 
 � 0.

Sample Problem 17-2. The block– spring combination
of Sample Problem 17-1 is stretched in the positive x direction a
distance of 11.6 cm from equilibrium and released. (a) What is the
total energy stored in the system? (b) What is the maximum speed
of the block? (c) What is the magnitude of the maximum accelera-
tion? (d ) If the block is released at t � 0, what are its position, ve-
locity, and acceleration at t � 0.215 s?

Solution (a) The amplitude of the motion is given as xm �
0.116 m. The total energy is given by Eq. 17-14:

(b) The maximum kinetic energy is numerically equal to the total
energy; when U � 0, K � Kmax � E. The maximum speed is then

(c) The maximum acceleration occurs just at the instant of release,
when the force is greatest:

(d ) From the period found in Sample Problem 17-1, we can obtain
the angular frequency:

Since the block has its maximum displacement of xm � 0.116 m
at t � 0, its motion can be described by a cosine function:

a result that follows by putting 
 � 0 in Eq. 17-6. At t � 0.215 s,
we find

Note that the angle 	t, whose cosine we must find, is expressed in
radians. The velocity is given by Eq. 17-11, which, with 
 � 0,
becomes vx(t) � � 	xm sin 	t. At 0.215 s, we obtain

� �0.981 m/s. 
vx � � (9.536 rad/s)(0.116 m) sin (9.536 rad/s)(0.215 s)

x � (0.116 m) cos (9.536 rad/s)(0.215 s) � �0.0535 m.

x(t) � x m cos 	t,

	 �
2�

T
�

2�

0.6589 s
� 9.536 rad/s.

a max �
Fmax

m
�

kx m

m
�

(221 N/m)(0.116 m)

2.43 kg
� 10.6 m/s2.

vmax � √ 2K max

m
� √ 2(1.49 J)

2.43 kg
� 1.11 m/s.

E � 1
2 kx 2

m � 1
2 (221 N/m)(0.116 m)2 � 1.49 J.

1
2 kx 2

m � E ),

vx � �√ k

m
 (x 2

m � x 2) .

v 2
x � (k /m)(x 2

m � x 2)

K � U � 1
2 mv 2

x � 1
2 kx 2 � 1

2 kx 2
m .

1
4 kx 2

m .
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Figure 17-8. The potential energy U, kinetic energy K, and
total mechanical energy E of a particle undergoing simple har-
monic motion (with f � 0) are shown as functions of (a) the time
and (b) the displacement. Note that in (a) the kinetic and potential
energies each reach their maxima twice during each period of the
motion. See also Fig. 12-5.



To find the acceleration, we again use Eq. 17-11 and note that, at
all times, ax � � 	2x:

Let us examine our results to see whether they are reasonable. The
time t � 0.215 s is between T/4 � 0.165 s and T/2 � 0.330 s. If
the block begins at x � xm � � 0.116 m, then at T/4 it will pass
through equilibrium, and it is certainly reasonable that at t �
0.215 s it is at a negative x coordinate, as we found. Since it is at
that time moving toward x � � xm , its velocity must be negative,
as we found. However, it has already passed through the point of
most negative velocity, and it is slowing as it approaches x �
� xm ; therefore the acceleration should be positive. We can check
the value of the acceleration from ax � kx/m. We can also check
the relationship between vx and x using Eq. 17-16.

Sample Problem 17-3. The block of the block– spring
system of Sample Problem 17-1 is pushed from equilibrium by an
external force in the positive x direction. At t � 0, when the dis-
placement of the block is x � � 0.0624 m and its velocity is vx �
� 0.847 m/s, the external force is removed and the block begins
to oscillate. Write an equation for x(t) during the oscillation.

Solution Since we have the same mass (2.43 kg) and force con-
stant (221 N/m), the angular frequency is still 9.536 rad/s, as we
found in Sample Problem 17-2. The most general equation for x(t)
is given by Eq. 17-6,

and we must find xm and 
 to complete the solution. To find xm ,
let us compute the total energy, which at t � 0 has both kinetic
and potential terms:

Setting this equal to as Eq. 17-15 requires, we have

To find the phase constant, we use the information given for 
t � 0:

In the range of 0 to 2�, there are two values of 
 whose cosine is
� 0.5751; the possible values are 
 � 54.9° or 
 � 305.1°. Ei-
ther one will satisfy the condition that x(0) have the proper value,
but only one will give the correct initial velocity:

Obviously the second choice is the one we want, and we therefore
take 
 � 305.1° � 5.33 radians. We can now write

x(t) � (0.109 m) cos [(9.54 rad/s)t � 5.33 rad].

� �0.847 m/s for 
 � 305.1°. 

� �0.847 m/s for 
 � 54.9°

� � (1.035 m/s) sin 


vx(0) � �	x m sin 
 � � (9.536 rad /s)(0.1085 m) sin 


cos 
 �
x(0)

x m
�

�0.0624 m

0.1085 m
� �0.5751.

x(0) � x m cos 


x m � √ 2E

k
� √ 2(1.302 J)

221 N/m
� 0.1085 m.

1
2 kx 2

m ,

� 0.872 J � 0.430 J � 1.302 J. 

� 1
2 (2.43 kg)(0.847 m/s)2 � 1

2 (221 N/m)(0.0624 m)2

E � K � U � 1
2 mv 2

x � 1
2 kx 2

x(t) � x m cos (	t � 
),

a x � � (9.536 rad/s)2(�0.0535 m) � �4.87 m/s2.

See Problem 9 for a derivation of the general relationships that
permit xm and 
 to be calculated from x(0) and vx(0).

17-5 APPLICATIONS OF SIMPLE
HARMONIC MOTION

A few physical systems that move with simple harmonic
motion are considered here. Others are found throughout
the text.*

The Torsional Oscillator
Figure 17-9 shows a disk suspended by a wire attached to
the center of mass of the disk. The wire is securely fixed to
a solid support or clamp and to the disk. With the disk in
equilibrium, a radial line is drawn from its center to a point
P on its rim, as shown. If the disk is rotated in a horizontal
(xy) plane so that the reference line OP moves to the posi-
tion OQ, the wire will be twisted. The twisted wire will ex-
ert a restoring torque on the disk, tending to return the ref-
erence line to its equilibrium position. For small twists the
restoring torque is found to be proportional to the angular
displacement (Hooke’s law), so that

(17-17)

Here � (the Greek letter kappa) is a constant that depends
on the properties of the wire and is called the torsional con-
stant. The minus sign shows that the torque is directed op-

z � ���.
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* See “A Repertoire of S.H.M.,” by Eli Maor, The Physics Teacher, Octo-
ber 1972, p. 377, for a full discussion of 16 physical systems that exhibit
simple harmonic motion.

Figure 17-9. The torsional oscillator. The line drawn from O
to P oscillates between OQ and OR, sweeping out an angle 2�m ,
where �m is the angular amplitude of the motion. The oscillation
takes place in the xy plane; the z axis is along the wire.



posite to the angular displacement �. Equation 17-17 is the
condition for angular simple harmonic motion.

The equation of motion for such a system is based on
the angular form of Newton’s second law,

(17-18)

where I is the rotational inertia of the disk about the z axis.
Using Eq. 17-17, we obtain

or

(17-19)

Note the similarity between Eq. 17-19 for angular simple
harmonic motion and Eq. 17-5 for linear simple harmonic
motion. In fact, the equations are mathematically identical.
Just as in Chapter 8, we can simply substitute angular dis-
placement � for linear displacement x, rotational inertia I
for mass m, and torsional constant � for force constant k.
By making these substitutions, we find the solution of Eq.
17-19 to be a simple harmonic oscillation in the angle coor-
dinate �; namely,

(17-20)

Here �m is the maximum angular displacement, that is, the
amplitude of the angular oscillation. Note that 	 here
means angular frequency, not angular velocity. In Eq. 17-
20, 	 � d�/dt.

In Fig. 17-9 the disk oscillates about the equilibrium po-
sition � � 0, the total angular range being 2�m (from OQ to
OR). The period of the oscillation by analogy with Eq. 17-8
is

(17-21)

If � is known and T is measured, the rotational inertia I
about the axis of rotation of any oscillating rigid body can
be determined. If I is known and T is measured, the tor-
sional constant � of any sample of wire can be determined.

A torsional oscillator like that of Fig. 17-9 is also called
a torsional pendulum. The Cavendish balance, used to mea-
sure the gravitational force constant G (see Chapter 14), is a
torsional pendulum. Like the simple pendulum (discussed
below) the torsional pendulum is often used for timekeep-
ing, a common example being the balance wheel of a me-
chanical watch, in which the restoring torque is supplied by
a spiral hairspring.

The Simple Pendulum
A simple pendulum is an idealized body consisting of a
particle suspended by a light inextensible cord. When
pulled to one side of its equilibrium position and released,

T � 2� √ I

�
.

� � �m cos (	t � 
).

d 2�

dt 2 � �� �

I � �.

��� � I
d 2�

dt 2

� z � I�z � I
d 2�

dt 2 ,

the pendulum swings in a vertical plane under the influence
of gravity. The motion is periodic and oscillatory. We wish
to determine the period of the motion.

Figure 17-10 shows a pendulum of length L and particle
mass m. At the instant shown, the cord makes an angle �
with the vertical. The forces acting on m are the weight 
and the tension in the cord. The motion will be along an
arc of the circle with radius L, and so we choose axes tan-
gent to the circle and along the radius. The weight is re-
solved into a radial component of magnitude mg cos � and
a tangential component of magnitude mg sin �. The radial
components of the forces supply the necessary centripetal
acceleration to keep the particle moving on a circular arc.
The tangential component is the restoring force acting on m
tending to return it to the equilibrium position. Hence the
restoring force is

(17-22)

the minus sign indicating that Fx is opposite to the direction
of increasing x and increasing �.

Note that the restoring force is not proportional to the
angular displacement � but to sin � instead. The resulting
motion is therefore not simple harmonic. However, if the
angle � is small, sin � is very nearly equal to � in radians.
For example, if � � 5° (� 0.0873 rad), then sin � �
0.0872, which differs from � by only about 0.1%. The dis-
placement x is then approximately equal to the arc length
L�, and for small angles this is nearly straight-line motion.
Hence, assuming sin � � �, we obtain

(17-23)Fx � �mg� � �mg
x

L
� �� mg

L � x.

Fx � �mg sin �,

mgB

T
B

mgB
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Figure 17-10. The simple pendulum. The forces acting on
the pendulum are the tension and the gravitational force 
which is resolved into its radial and tangential components. We
choose the x axis to be in the tangential direction and the y axis to
be in the radial direction at this particular time.
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For small displacements, the restoring force is propor-
tional to the displacement and is oppositely directed. This is
exactly the criterion for simple harmonic motion, and in
fact Eq. 17-23 has the same form as Eq. 17-2, Fx � � kx,
with the constant mg/L representing the constant k. (Check
that the dimensions of k and mg/L are the same.) The pe-
riod of a simple pendulum when its amplitude is small is
then found by putting k � mg/L into Eq. 17-8:

or

(17-24)

Note that the period is independent of the mass of the sus-
pended particle.

When the amplitude of the oscillation is not small, the
general equation for the period can be shown* to be

(17-25)

Here �m is the maximum angular displacement. Note that T
increases with increasing amplitude. Succeeding terms in
the infinite series become smaller and smaller, and the pe-
riod can be computed to any desired degree of accuracy by
taking enough terms. When �m � 15°, the true period dif-
fers from that given by Eq. 17-24 by less than 0.5%.

For the past three centuries, the pendulum has been our
most reliable timekeeper, succeeded only in the last century
by clocks based on atomic or electronic oscillations. For a
pendulum clock to be an accurate timekeeper, the ampli-
tude of the swing must be kept constant despite the fric-
tional losses that affect all mechanical systems. Even so
small a change in amplitude as from 5° to 4° would cause a
pendulum clock to run fast by 0.25 minute per day, an un-
acceptable amount even for household timekeeping. To
keep the amplitude constant in a pendulum clock, energy is
automatically supplied in small increments from a weight
or a spring by an escapement mechanism to compensate for
frictional losses. The pendulum clock with escapement was
invented by Christiaan Huygens (1629–1695).

The simple pendulum also provides a convenient
method for measuring the value of g, the acceleration due
to gravity. We can easily determine L and T using student
laboratory equipment to a precision of less than 0.1%, and
thus Eq. 17-24 permits us to determine g to about that pre-
cision. With better apparatus, this can be extended to about
0.0001%.

T � 2� √ L

g �1 �
1

22  sin2 �m

2
�

32

2242  sin4 �m

2
� � � �� .

T � 2� √ L
g

.

T � 2� √ m

k
� 2� √ m

mg/L

The Physical Pendulum
Any rigid body mounted so that it can swing in a vertical
plane about some axis passing through it is called a physi-
cal pendulum. This is a generalization of the simple pendu-
lum, in which a weightless cord holds a single particle. Ac-
tually all real pendulums are physical pendulums.

In Fig. 17-11 a body of irregular shape is pivoted about
a horizontal frictionless axis through P and displaced from
the equilibrium position by an angle �. The equilibrium po-
sition is that in which the center of mass C of the body lies
vertically below P. The distance from the pivot to the center
of mass is d, the rotational inertia of the body about an axis
through the pivot is I, and the mass of the body is M. The
restoring torque for an angular displacement � is

(17-26)

and is due to the tangential component of the weight. Since
z is proportional to sin �, rather than �, the condition for
angular simple harmonic motion does not, in general, hold
here. For small angular displacements, however, the rela-
tion sin � � � is, as before, an excellent approximation, so
that for small amplitudes,

(17-27)

This is in the form of Eq. 17-17, and the period follows di-
rectly from Eq. 17-21 with the substitution � � Mgd,
which gives

(17-28)

Equation 17-28 can be solved for the rotational inertia I,
giving

(17-29)

The quantities on the right are all directly measurable.
Hence the rotational inertia about an axis of rotation (other
than through the center of mass) of a body of any shape can

I �
T 2Mgd

4� 2 .

T � 2� √ I

Mgd
.

z � �Mgd �.

z � �Mgd sin �

382 Chapter 17 / Oscillations 

* This equation is derived in many intermediate mechanics textbooks. For
example, see J.B. Marion and K.T. Thornton, Classical Dynamics of Parti-
cles and Systems, 3rd edition (Harcourt Brace Jovanovich, 1988), Section
3.13.
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Figure 17-11. A physical pendulum. The center of mass is
at C, and the pivot is at point P. The pendulum is displaced by an
angle � from its equilibrium position, which occurs when C hangs
directly below P. The weight provides the restoring torque.
The oscillation is in the xy plane. The z axis is out of the page.
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be determined by suspending the body as a physical pendu-
lum from that axis.

The physical pendulum includes the simple pendulum
as a special case. Locating the pivot far from the object, us-
ing a weightless cord of length L, we would have I � ML2

and d � L, so

which is the period of a simple pendulum.
If the mass of a physical pendulum were concentrated at

the properly chosen distance L from the pivot, the resulting
simple pendulum would have the same period as the origi-
nal physical pendulum if

or

(17-30)

Hence, as far as its period of oscillation is concerned, the
mass of a physical pendulum may be considered to be con-
centrated at a point whose distance from the pivot is L �
I/Md. This point is called the center of oscillation of the
physical pendulum. Note that it depends on the location of
the pivot for any given body. Furthermore, if we pivot the
original physical pendulum from this point, it will have the
same period as it does when pivoted from point P.

The center of oscillation has another interesting prop-
erty. If an impulsive force in the plane of oscillation acts at
the center of oscillation, no effect of this force is felt at the
pivot point. (See Problem 24 for a proof of this statement.)
In this sense, the center of oscillation is often called the
center of percussion. Baseball batters can avoid the “sting”
on their hands (the pivot point of the bat) by hitting the ball
at the center of percussion of the bat. The “sweet spot” on a
tennis racket has a similar explanation; hitting the ball on
this spot eliminates any reaction force on the hand.*

Sample Problem 17-4. A thin uniform rod of mass 
M � 0.112 kg and length L � 0.096 m is suspended by a wire
that passes through its center and is perpendicular to its length.
The wire is twisted and the rod set oscillating. The period is found
to be 2.14 s. When a flat body in the shape of an equilateral trian-
gle is suspended similarly through its center of mass, the period is
found to be 5.83 s. Find the rotational inertia of the triangle about
this axis.

Solution The rotational inertia of a rod, rotated about a central
axis perpendicular to its length, is ML2/12. Hence

Irod �
(0.112 kg)(0.096 m)2

12
� 8.60 � 10�5 kg �m2.

L �
I

Md
.

T � 2� √ L

g
� 2� √ I

Mgd

T � 2� √ I

Mgd
� 2� √ ML2

MgL
� 2� √ L

g
,

From Eq. 17-21,

so that

Does the amplitude of either oscillation affect the period in these
cases?

Sample Problem 17-5. A uniform disk is pivoted at its
rim (Fig. 17-12). Find its period for small oscillations and the
length of the equivalent simple pendulum.

Solution The rotational inertia of a disk about an axis through its
center is where R is the radius and M is the mass of the
disk. The rotational inertia about the pivot at the rim is, using the
parallel axis theorem,

The period of this physical pendulum, found from Eq. 17-28 with
d � R, is then

independent of the mass of the disk.
The simple pendulum having the same period has a length

(see Eq. 17-30)

or three-fourths the diameter of the disk. The center of oscillation
of the disk pivoted at P is therefore at O, a distance below the
point of support. Is any particular mass required of the equivalent
simple pendulum?

If we pivot the disk at a point midway between the rim and the
center, as at O, we find that and

The period T is

just as before. This illustrates the equality of the periods of the
physical pendulum when pivoted about O and P.

T � 2� √ I

Mgd
� 2� √

3
4 MR 2

Mg(R/2)
� 2� √ 3

2

R

g
,

d � 1
2 R.

I � 1
2 MR 2 � M(1

2 R)2 � 3
4 MR 2

3
2 R

L �
I

MR
� 3

2 R

T � 2� √ I

MgR
� 2� √ 3

2

MR 2

MgR
� 2� √ 3

2

R

g
,

I � 1
2 MR 2 � MR 2 � 3

2 MR 2.

1
2 MR 2,

� 6.38 � 10�4 kg �m2. 

Itriangle � (8.60 � 10�5 kg �m2) � 5.83 s

2.14 s �
2

Trod

Ttriangle
� � Irod

Itriangle
�

1/2

or Itriangle � Irod � Ttriangle

Trod
�

2

,
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* For an interesting collection of articles about these effects, see The
Physics of Sports, edited by Angelo Armenti, Jr. (American Institute of
Physics, 1992).

Figure 17-12. Sample Problem 17-5. A disk pivoted at its
rim (point P) oscillates as a physical pendulum. To the right is
shown a simple pendulum with the same period. Point O is the
center of oscillation.
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If the disk were pivoted at the center, what would be its period
of oscillation?

Sample Problem 17-6. The period of a disk of radius
10.2 cm executing small oscillations about a pivot at its rim is
measured to be 0.784 s. Find the value of g, the acceleration due
to gravity at that location.

Solution From Sample Problem 17-5, we have

and solving for g, we obtain

With T � 0.784 s and R � 0.102 m, we find

17-6 SIMPLE HARMONIC
MOTION AND UNIFORM CIRCULAR
MOTION

In 1610, Galileo used his newly constructed telescope to
observe the moons of Jupiter. As he watched night after
night, he measured the position of each moon relative to the
planet. He observed the moons to travel back and forth in
motion that we would call simple harmonic. Figure 17-13
shows Galileo’s original data, plotted to show the sidewise
displacement of one moon (Callisto) as a function of the
time. The sinusoidal dependence characteristic of simple
harmonic motion is apparent.

g �
6� 2(0.102 m)

(0.784 s)2 � 9.83 m/s2.

g �
6� 2R

T 2 .

T � 2� √ 3R

2g
,

Actually, Callisto does not oscillate back and forth; it
moves in a very nearly circular orbit about the planet, and
what Galileo observed was uniform circular motion in a
plane viewed edge on. Since this corresponds exactly with
the displacement versus time relationship of simple har-
monic motion, we are led to the following conclusion:

Simple harmonic motion can be described as the projec-
tion of uniform circular motion along a diameter of the
circle.

Let us examine in more detail the mathematical basis for
this conclusion. Figure 17-14 shows a particle P in uniform
circular motion; its angular velocity is 	 and the radius of
the circle is r. At a time t (Fig. 17-14a), the vector which
locates point P relative to the origin O, makes an angle 
	t � 
 with the x axis, and the x component of is

(17-31)

This is of course identical to Eq. 17-6 for the displacement
of the simple harmonic oscillator, with xm corresponding
to r. If we let P� represent the projection of P on the x
axis, then P� executes simple harmonic motion along the x
axis.

In uniform circular motion, the magnitude of the con-
stant tangential speed is 	r. Figure 17-14b shows the vector
representing the instantaneous velocity at time t. The x
component of which gives the velocity of P� along the x
direction, is

(17-32)

The centripetal acceleration in circular motion is 	2r, and
as shown in Fig. 17-14c, the x component of the accelera-
tion of P is

(17-33)

Equations 17-32 and 17-33 are identical with Eqs. 17-11
for simple harmonic motion, again with xm replaced by r.
Thus displacement, velocity, and acceleration are identical
in simple harmonic motion and in the projection of circular
motion.

Reversing the above argument, we can state that Eq. 17-
31 for the displacement of a simple harmonic oscillator is
sufficient to describe the x component of a vector whose tip
traces a circular path at constant speed. If we can also de-
scribe the y component, then we have a complete descrip-
tion of the vector. Figure 17-14a shows the y projection OQ
at time t, which can be described by

(17-34)

Note that the projection of uniform circular motion along the
y direction also gives simple harmonic motion, as would pro-
jection along any direction. Note also that x2 � y2 � r2 at all
times, as we expect for circular motion. You should be able
to find expressions for the y components of the velocity and
acceleration and show that, as expected,
and a 2

x � a 2
y � (	2r)2.

v 2
x � v 2

y � (	r)2

y(t) � r sin (	t � 
).

ax(t) � �	2r cos (	t � 
).

vx(t) � �	r sin (	t � 
).

vB,
vB

x(t) � r cos (	t � 
).

rB

rB,
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Figure 17-13. The angular position as a function of time of
Jupiter’s moon Callisto, as measured from Earth. The circles are
based on Galileo’s 1610 measurements. The curve is a best fit and
strongly suggests simple harmonic motion. Nearly 400 years after
Galileo, the motions of Jupiter’s moons continue to delight the
amateur astronomer. Each month the magazine Sky and Telescope
publishes a chart showing their motions, in terms of a sinusoidally
varying angular coordinate similar to this figure.



Using the trigonometric identity sin � � cos (� � �/2)
we can rewrite Eq. 17-34 as

(17-35)

Thus circular motion can be regarded as the combination of
two simple harmonic motions at right angles, with identical
amplitudes and frequencies but differing in phase by 90°.
Other more complicated motions can be analyzed as combi-
nations of simple harmonic motions with appropriately
chosen amplitudes, frequencies, and phases. (See Exercises
41 and 42.)

Sample Problem 17-7. Consider a body executing a
horizontal simple harmonic motion. The equation of that motion is

x � (0.35 m) cos [(8.3 rad/s)t],

where x is in meters and t in seconds. This motion can also be rep-
resented as the projection of uniform circular motion along a hori-
zontal diameter. (a) Give the properties of the corresponding uni-

y(t) � r cos (	t � 
 � � /2).

form circular motion. (b) From the motion of the reference point,
determine the time required for the body to come halfway in to-
ward the center of motion from its initial position.

Solution (a) The x component of the circular motion is given by

Therefore the reference circle must have a radius r � 0.35 m, the
initial phase or phase constant must be 
 � 0, and the angular
speed must be 	 � 8.3 rad/s, in order to obtain the given equation
for the horizontal projection.
(b) As the body moves halfway in, the reference point moves
through an angle of 	t � �/3 � 60° (Fig. 17-15). The angular
speed is constant at 8.3 rad/s, so that the time required to move
through 60° is

17-7 DAMPED HARMONIC
MOTION

Up to this point we have assumed that no frictional forces
act on the oscillator. If this assumption held strictly, a pen-
dulum or a mass on a spring would oscillate indefinitely
with a constant mechanical energy (that is, with no loss in
the amplitude of the oscillation). Since we observe a loss in
amplitude for real oscillators, we know that this assumption
is not strictly true, although it may be a good approxima-
tion for some oscillators. Fortunately, the period is nearly
independent of the amplitude for small-amplitude oscilla-
tions, so the decrease in amplitude causes a negligible
change in the period of the oscillator.

This loss in amplitude is called damping and the motion
is called damped harmonic motion. There are many causes
of damping, including friction, air resistance, and internal
forces.

t �
60°

	
�

� /3 rad

8.3 rad /s
� 0.13 s.

x � r cos (	t � 
).
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Figure 17-14. (a) Point P moves counterclockwise at constant speed around a circle of radius r. The vector makes an angle 	t � 

with the x axis. The projection P� on the x axis executes simple harmonic motion as P moves around the circle. (b) The velocity of P and its
x component, which represents the velocity of P� in simple harmonic motion. (c) The acceleration of P and its x component.
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Figure 17-15. Sample Problem 17-7. The radius OP moves
from 
 � 0 at t � 0 to 	t � 60° at time t. The projection P�
moves correspondingly from x � r to x � r/2.



Figure 17-16 compares the motion of undamped and
damped oscillators. When we add a small damping force,
the frequency changes by a negligible amount but the am-
plitude gradually decreases to zero. In many cases this de-
crease in amplitude can be accounted for by multiplying the
equation for the undamped oscillator (Eq. 17-6) by an ex-
ponential function that describes the dashed curves in Fig.
17-16b:

(17-36)

where  is called the damping time constant or the mean
lifetime of the oscillation. Mathematically, it is the time
necessary for the amplitude to drop to 1/e of its initial
value, as shown in Fig. 17-16b. The solid curve in Fig. 17-
16b is a plot of Eq. 17-36.

Each of the “peaks” in Fig. 17-16b represents a time
when cos (	t � 
) � 1. When the exponential decay is
slow compared with the variation in the cosine term (that is,
when  is large compared with the oscillation period 2�/	),
these points correspond to turning points of the motion,
where the velocity is zero. At those instants the mechanical
energy of the oscillator is all potential energy and so

(17-37)

Equation 17-37 shows that the mechanical energy of the os-
cillator decreases exponentially with time (but note that the
energy decreases twice as rapidly as the amplitude—E falls
to 1/e of its initial value in a time of /2). The lost mechani-
cal energy might appear in a variety of forms, depending on
the nature of the damping force— for example, as increased
kinetic energy (increased temperature) of the surrounding
air due to air resistance, or as internal energy (also in-
creased temperature) of the spring due to internal stretching
and compression forces.

E(t) � 1
2 kx 2

me�2t/.

1
2 kx 2

x(t) � x me�t/ cos (	t � 
),

Mathematical Analysis (Optional)
If we assume a particular form for the damping force, we
can use Newton’s laws to solve for the equations of motion.
Figure 17-17 shows a simple model of a damped oscillator.
We assume the block to slide on a frictionless surface, and
we represent the damping in terms of a (massless) vane that
moves in a viscous fluid. We can represent the damping
force due to the fluid in exactly the same way that we repre-
sented the drag force on a projectile in Section 4-4: Fx �
� bvx , where b is a positive constant called the damping
constant that depends on the properties of the fluid and the
size and shape of the vane that is immersed in the fluid.
With � Fx � � kx � bvx , Newton’s second law gives

or, with vx � dx/dt and ax � d 2x/dt 2,

(17-38)

The solution to this equation, which you can verify by di-
rect substitution (see Exercise 45), is

(17-39)

where

(17-40)

This solution assumes that the damping constant is small,
so that the quantity under the square root in Eq. 17-40 can-
not be negative.

Note that Eq. 17-39 has the same form as Eq. 17-36,
with the lifetime  � 2m/b. The greater is the damping
constant b, the more quickly the amplitude of the oscilla-
tion dies out. As b approaches zero (corresponding to no
damping), then  is infinite and the amplitude remains con-
stant.

When damping is present, the oscillation frequency is
smaller (the period is larger). That is, damping slows down
the motion, as we might expect. If b � 0 (no damping, then

which is simply the angular frequency 	 of the
undamped motion. When damping is present, 	� is slightly
less than 	, but in most cases of interest the damping is suf-
ficiently weak that 	� � 	. For example, in the case shown
in Fig. 17-16b, in which the amplitude drops by half in five

	� � √k/m,

	� � √ k

m
� � b

2m �
2

.

x(t) � x me�bt/2m cos (	�t � 
),

m
d 2x

dt 2 � b
dx

dt
� kx � 0.

�kx � bvx � max
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Figure 17-16. (a) Undamped oscillation, drawn for a phase
constant 
 of zero. (b) Damped oscillation with the same fre-
quency as (a). The lifetime  is the time necessary for the ampli-
tude to decrease to 1/e � 0.368 of its initial value.

Figure 17-17. A representation of a damped harmonic oscil-
lator. We consider the oscillating body (of mass m) to be attached
to a (massless) vane immersed in a fluid, in which it experiences a
viscous damping force � bvx. We do not consider sliding friction
at the horizontal surface.
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cycles of oscillation, we would have 	� � 0.9998	. It is
for this reason that we used the undamped frequency 	 in
Eq. 17-36.

In the special case in which Eq. 17-40 gives
	� � 0, so the motion decays exponentially to zero with no
oscillation at all. In this case the lifetime  (see Eq. 17-36) has
its smallest possible value, 1/	. This condition, called critical
damping, is often the goal of mechanical engineers in design-
ing systems in which unwanted and often harmful oscillations
can be made to disappear in the shortest possible time.

Sample Problem 17-8. In a damped oscillator such 
as that of Fig. 17-17, let m � 250 g, k � 85 N/m, and b �
0.070 kg/s. In how many periods of oscillation will the mechani-
cal energy of the oscillator drop to one-half of its initial value?

Solution For small damping, 	� � 	 and the period is

At t � 0, the initial mechanical energy is According to Eq.
17-37, the energy will have half this value at a time t determined
from

Solving for t and using  � 2m /b, we obtain

The time t is about 7.4T; thus about 7.4 cycles of the oscillation
are required for the mechanical energy to drop by half.

17-8 FORCED OSCILLATIONS
AND RESONANCE

Left on its own, the motion of an oscillator repeats with its
natural frequency 	, determined, for example, according to
Eqs. 17-9 and 17-10. In the presence of a small damping
force, the frequency does not change very much from this
value.

Another interesting class of situations occurs when we
apply a sinusoidal external force to the oscillator. For ex-
ample, our eardrums vibrate when exposed to the periodic
force of a sound wave or a molecule vibrates when it ab-
sorbs an electromagnetic wave of a certain frequency. The
resulting oscillations are called forced oscillations and have
important applications not only in mechanics but also in
acoustics, electric circuits, and atomic physics.

These forced oscillations occur at the frequency of the
external force and not at the natural frequency of the vibrat-
ing system. However, the amplitude of the oscillation de-
pends on the relationship between the natural frequency
and the frequency of the applied force. A succession of
small impulses applied at the proper frequency can produce
an oscillation of large amplitude. For example, when you

t � 1
2  ln 2 �

m ln 2

b
�

(0.25 kg)(ln 2)

0.070 kg/s
� 2.5 s.

1
2 (

1
2 kx 2

m) � 1
2 kx 2

me�2 t /.

1
2 kx 2

m .

T � 2� √ m

k
� 2� √ 0.25 kg

85 N/m
� 0.34 s.

b � 2√km,

push a friend on a swing, applying your pushes precisely at
the same time in each cycle causes your friend to move in
an increasingly large arc.

We assume that we are dealing with a real oscillator in
which a damping force is present. (Otherwise, the energy
delivered to the oscillator by the external force would con-
tinue to accumulate, and the amplitude would increase
without bound.) We consider the damped oscillator of Fig.
17-16b, which we show again in Fig. 17-18a. The natural
frequency of the oscillator is 	, and we assume that the
damping is sufficiently small so that it does not signifi-
cantly change this frequency. We now apply a sinusoidal
force Fx(t) � Fm sin 	�t, which we assume to have a con-
stant amplitude Fm .

When we first apply this force, the motion is dominated
by short-lived transient terms that die away in a time char-
acteristic of the damping lifetime . We examine the motion
in the “steady state” after these terms have become negligi-
ble. Figure 17-18b shows the resulting motion when the
driving frequency is half the natural frequency. Note that
the motion is a simple sinusoidal oscillation, but at the dri-
ving frequency 	� rather than at the natural frequency 	.
Figure 17-18c shows the motion for a driving force of the
same amplitude but with 	� � 0.8	. The amplitude of the
oscillation in Fig. 17-18c is about twice as large as that in
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Figure 17-18. (a) A damped oscillator (identical with Fig.
16b). (b) The same oscillator subject to an applied force with 
	� � 0.5	. (c) The forced oscillator with 	� � 0.8	. Because 	�
is closer to resonance, the amplitude of the oscillation is larger even
though the applied force has the same amplitude in (b) and (c).
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Fig. 17-18b. As 	� approaches 	 (with Fm held constant),
the amplitude of the motion continues to increase: when 
	� � 0.9	, the amplitude is about four times that of 
Fig. 17-18b, and it grows to about 40 times as large for 
	� � 0.99	.

When the damping is small, the forced oscillations
reach their maximum displacement amplitude when the dri-
ving frequency is equal to the natural frequency. This con-
dition is known as resonance and the corresponding fre-
quency 	� is called the resonant angular frequency:

	� � 	 (resonance condition). (17-41)

(Occasionally other definitions of resonance are used, for
example, the frequency at which the maximum power is de-
livered to the oscillator or the frequency at which its veloc-
ity is a maximum. These definitions are not equivalent; for
example, as we discuss in Chapter 36, resonance in oscillat-
ing electrical circuits is generally defined in terms of the
current amplitude, which is analogous to a velocity reso-
nance.)

As Fig. 17-18b and c show, at resonance the system os-
cillates at the frequency of the driving force with constant
amplitude (if the driving force is of constant amplitude).
Damping is present, which would normally cause a de-
crease in amplitude, but the source of the driving force pro-
vides the additional energy needed to keep the amplitude of
the oscillation constant. In this steady state, the rate at
which energy is provided by the driving force exactly
matches the rate at which energy is dissipated by the damp-
ing force. In effect, the oscillator transfers energy from the
driving source to the damping medium; there is no net en-
ergy increase to the oscillator. Note especially that at reso-
nance the oscillation amplitude does not increase without
bound, but instead remains constant.

Figure 17-19 shows the amplitude of the forced vibrations
as the driving frequency is varied in the vicinity of the natural
frequency 	. When the damping is small, the amplitude of
the forced oscillation increases rapidly as 	� approaches 	
and reaches its maximum when 	� � 	. For larger damping,
the amplitude does not increase nearly as rapidly near reso-
nance, and for the largest damping the resonant frequency is
even displaced slightly from the natural frequency.

All mechanical structures— such as buildings, bridges,
and airplanes—have one or more natural frequencies of os-
cillation. If the structure is subject to a driving frequency
that matches one of the natural frequencies, the resulting
large amplitude of oscillation can have disastrous conse-
quences. Shattering a wine glass with a sound wave that
matches one of the natural frequencies of the glass is but
one demonstration of this effect; the collapse of roadways
and bridges in earthquakes is a more serious outcome.

Another example of resonance occurred in the Tacoma
Narrows Bridge in Washington State in 1940. The wind
blowing through the Narrows broke up into vortices, in ef-
fect providing small puffs that shook the bridge at a fre-
quency that matched one of its natural frequencies. The re-
sult was a gentle rolling motion, somewhat like a roller
coaster, which earned the bridge the nickname “Galloping
Gertie.” About 5 months after the bridge opened, the gentle
rolling oscillations became violent torsional oscillations
(Fig. 17-20). These oscillations were not a result of reso-
nance but of nonlinear effects due to particularly strong
wind gusts. Such complex effects cannot be analyzed in
terms of the forced oscillator we have discussed here.
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Figure 17-19. The amplitude of a forced oscillator as the an-
gular frequency 	� of the driving force is varied. The three curves
correspond to different levels of damping, the smallest damping
giving the sharpest resonance curve. Medium damping corre-
sponds to twice the damping force, and large damping to four
times the small damping force.

Figure 17-20. The Tacoma Narrows Bridge
on Puget Sound, Washington. Completed and
opened to traffic in July 1940, it immediately
showed gentle rolling oscillations due to resonance.
Later the bridge developed violent torsional oscil-
lations shown at left. Eventually the main span
broke up, sending the bridge roadway crashing into
the water below, as shown at right.

0.5 2.01.5

Driving frequency    "

Medium damping

Large damping

A
m

pl
itu

de

0

Small damping



Mathematical Analysis (Optional)
We again consider a damping force of the form � bvx , and
we take the driving force to be Fm cos 	�t. The experimen-
tal set-up might be similar to Fig. 17-17, with the fixed wall
on the left replaced by a movable support attached to the
shaft of a motor that rotates at angular velocity 	�. With 
� Fx � � kx � bvx � Fm cos 	�t, Newton’s second law gives

� kx � bvx � Fm cos 	�t � max

or, with vx � dx/dt and ax � d 2x/dt 2,

(17-42)

After a sufficient time for the initial transients to die away,
the solution to this equation is

(17-43)

where

(17-44)

and

(17-45)

You can verify that Eq. 17-43 is a solution of Eq. 17-42 by
calculating the first and second derivatives of x(t) and sub-
stituting them into Eq. 17-42.

Note that for small values of the damping constant b, G
has its smallest value for 	� � 	, and so the amplitude of
x(t), which is equal to Fm/G, has its largest value there.
This is responsible for the resonance peaks in Fig. 17-19,
and the curves in that figure are plots of Fm/G for various
values of the damping constant b.

17-9 TWO-BODY OSCILLATIONS
(Optional)

In a two-body collision, such as is illustrated in Fig. 17-21a,
a spring connects two objects, each of which is free to
move. When the objects are displaced and released, they
both oscillate. Many examples of two-body oscillations are
found in nature. In diatomic molecules, two atoms are
bound together by a force of the form illustrated in Fig. 17-
3. Near the equilibrium position, the potential energy can
be approximated by a parabolic shape, which corresponds
to that of a simple harmonic oscillator. The emission and
absorption of radiation by diatomic molecules can be un-
derstood based on the energy associated with this type of
oscillation. Similar oscillations also occur in nuclei; in one
type of motion, the protons and neutrons oscillate against
each other just like the two bodies in Fig. 17-21a, and the
nucleus can emit and absorb radiation in a manner similar
to the diatomic molecule.

� � cos�1 b	�

G
.

G � √m2(	�2 � 	2)2 � b2	�2

x(t) �
Fm

G
 cos (	�t � �),

m
d 2x

dt 2 � b
dx

dt
� kx � Fm cos 	�t.

In general this type of motion is complicated to analyze.
However, the description can be simplified if we replace the
separate coordinates of the bodies (x1 and x2 in Fig. 17-21a)
with two other coordinates: the relative separation x1 � x2

and the location xcm of the center of mass. In the absence of
external forces, the center of mass moves at constant veloc-
ity, and its motion is of no real interest in studying the os-
cillation of the system, so we can analyze the system in
terms of the relative coordinate alone.

The relative separation x1 � x2 gives the length of the
spring at any time. Suppose its unstretched length is L; then
x � (x1 � x2) � L is the change in length of the spring,
and F � kx is the magnitude of the force exerted on each
particle by the spring. As shown in Fig. 17-21a, if the
spring exerts a force on m1 , then it exerts a force 
on m2 .

Let us apply Newton’s second law separately to the two
particles, taking force components along the x axis:

We now multiply the first of these equations by m2 and the
second by m1 , and then subtract. The result is

which we can write as

(17-46)

The quantity m1m2/(m1 � m2) has the dimension of mass
and is known as the reduced mass m:

(17-47)m �
m1m2

m1 � m2
.

m1m2

m1 � m2

d 2

dt 2  (x1 � x2) � �kx.

m1m2
d 2x1

dt 2 � m1m2
d 2x2

dt 2 � �m2kx � m1kx,

m2
d 2x2

dt 2 � �kx.

m1
d 2x1

dt 2 � �kx,

� F
B

� F
B
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Figure 17-21. (a) Two oscillating bodies of masses m1 and
m2 connected by a spring. (b) The relative motion can be repre-
sented by the oscillation of a single body having the reduced 
mass m.



Because the unstretched length L of the spring is a constant,
the derivatives of (x1 � x2) are the same as the derivatives
of x:

and so Eq. 17-46 becomes

This is identical in form to Eq. 17-4 for the single oscillat-
ing mass, thus demonstrating that, from the standpoint of
oscillations, the system of Fig. 17-21a can be replaced by a
single particle, as represented in Fig. 17-21b, with a mass
equal to the reduced mass of the system. In particular, the
frequency of oscillation of the system of Fig. 17-21 is given
by Eq. 17-9, using the reduced mass.

If we wish to examine the detailed motion of the sys-
tem, we can simply write down the solution for x(t), vx(t),
and ax(t) given by Eqs. 17-11, keeping in mind that x repre-
sents the relative coordinate of the two particles, and thus vx

and ax represent their relative velocity v1x � v2x and accel-
eration a1x � a2x , respectively.

Note that the reduced mass m is always smaller than ei-
ther mass. If one of the masses is very much smaller than
the other, then m is roughly equal to the smaller mass. If the
masses are equal, then m is half as large as either mass.

Sample Problem 17-9. Naturally occurring chlorine
consists of two isotopes: 35Cl, of relative abundance 76% and
atomic mass 34.968853 u, and 37Cl, of relative abundance 24%

d 2x

dt 2 �
k

m
x � 0.

d

dt
 (x1 � x2) �

d

dt
 (x � L) �

dx

dt
,

and atomic mass 36.965903 u. (a) What is the reduced mass of a
molecule of HCl when it contains 35Cl and when it contains 37Cl?
(b) The vibrational frequency of a molecule of HCl is 8.5 �
1013 Hz. Assuming HCl to behave like a simple two-body oscilla-
tor, find the effective force constant k.

Solution (a) The reduced mass for H35Cl is found from Eq. 17-
47, using the H mass of 1.007825 u:

For H37Cl we have similarly

(b) Solving Eq. 17-9 for the force constant, we obtain

This is of the same order of magnitude as the force constant of or-
dinary springs (for example, see Sample Problem 17-1). Can you
explain how the force constant for one molecule can be the same
as that of a spring?

Molecules can absorb or emit electromagntic radiation and
change their state of vibrational motion in the process. In fact, ob-
serving the radiation that is absorbed or emitted is one of the ways
we learn about the structure of molecules. Figure 17-22 shows an
example of the infrared absorption spectrum of HCl. Each peak
corresponds to a change in the vibrational state of the HCl when it
absorbs radiation at that frequency. The two components to each
peak are due to the two isotopes of Cl; their different masses re-
sult in slightly different reduced masses for molecules of H35Cl
and H37Cl, as we found in part (a), and therefore in slightly differ-
ent vibrational frequencies.

� 460 N/m. 
k � 4� 2 f 2m � 4� 2(8.5 � 1013 Hz)2(0.98 u)(1.66 � 10�27 kg /u)

m �
(1.007825 u)(36.965903 u)

1.007825 u � 36.965903 u
� 0.981077 u.

m �
m1m2

m1 � m2
�

(1.007825 u)(34.968853 u)

1.007825 u � 34.968853 u
� 0.979593 u.
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Figure 17-22. The absorption
spectrum of infrared radiation by mole-
cular HCl. Each peak corresponds to a
change in the vibrational motion of the
molecules. The closely spaced pairs of
peaks are due to the two isotopes of Cl.
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MULTIPLE CHOICE

17-1 Oscillating Systems

1. A particle oscillates about the equilibrium position x0 subject
to a force that has an associated potential energy U(x). Which
of the following statements (perhaps more than one) about
U(x) is true?

(A) U(x) must be symmetric about x0.
(B) U(x) must have a minimum at x0.
(C) U(x) may have a maximum at x0.
(D) U(x) must be positive in the vicinity of x0.

2. The equilibrium position of an object in an oscillating system
is always the point where



(A) x � 0. (B) vx � 0.
(C) ax � 0. (D) px � 0.

17-2 The Simple Harmonic Oscillator

17-3 Simple Harmonic Motion
3. A particle on a spring executes simple harmonic motion. If

the mass of the particle and the amplitude are both doubled
then
(a) the period of oscillation will change by a factor of

(A) 4. (B) (C) 2. (D)
(E) 1 (it remains unchanged).

(b) the maximum speed of the particle will change by a factor
of

(A) 4. (B) (C) 2. (D)
(E) 1 (it remains unchanged).

(c) the magnitude of the maximum acceleration of the parti-
cle will change by a factor of

(A) 4. (B) (C) 2. (D)
(E) 1 (it remains unchanged).

4. A particle on a spring executes simple harmonic motion;
when it passes through the equilibrium position it has a speed
v. The particle is stopped, and then the oscillations are
restarted so that it now passes through the equilibrium posi-
tion with a speed of 2v. After this change
(a) the frequency of oscillation will change by a factor of

(A) 4. (B) (C) 2. (D)
(E) 1 (it remains unchanged).

(b) the maximum displacement of the particle will change by
a factor of

(A) 4. (B) (C) 2. (D)
(E) 1 (it remains unchanged).

(c) the magnitude of the maximum acceleration of the parti-
cle will change by a factor of

(A) 4. (B) (C) 2. (D)
(E) 1 (it remains unchanged).

17-4 Energy in Simple Harmonic Motion
5. A particle on a spring executes simple harmonic motion.

When the particle is found at x � xmax/2 the speed of the par-
ticle is

(A) vx � vmax . (B)
(C) (D) vx � vmax/2.

6. A particle on a spring executes simple harmonic motion. If
the total energy of the particle is doubled then
(a) the period of oscillation will increase by a factor of

(A) 4. (B) (C) 2. (D)
(E) 1 (it remains unchanged).

(b) the maximum speed of the particle will increase by a fac-
tor of

(A) 4. (B) (C) 2. (D)
(E) 1 (it remains unchanged).

(c) the magnitude of the maximum acceleration of the parti-
cle will increase by a factor of

(A) 4. (B) (C) 2. (D)
(E) 1 (it remains unchanged).

17-5 Applications of Simple Harmonic Motion
7. A round metal hoop is suspended on the edge by a hook. The

hoop can oscillate side to side in the plane of the hoop, or it
can oscillate back and forth in a direction perpendicular to the

√2.√8.

√2.√8.

√2.√8.

vx � √2vmax /2.
vx � √3vmax /2.

√2.√8.

√2.√8.

√2.√8.

√2.√8.

√2.√8.

√2.√8.

plane of the hoop. For which mode will the frequency of os-
cillation be larger?

(A) Oscillations in the plane of the hoop
(B) Oscillations perpendicular to the plane of the hoop
(C) The frequency of oscillation will be the same in either

mode.

8. What are the units for � in Eq. 17-17?
(A) Newton/(meter�radian)
(B) Newton�meter/radian
(C) Kilogram/(radian�second2)
(D) Kilogram�radian2/second2

17-6 Simple Harmonic Motion and Uniform Circular
Motion

9. An object of mass m is moving in uniform circular motion in
the xy plane. The circle has radius R and the object is moving
around the circle with speed v. The motion is projected onto
the x axis where it appears as simple harmonic motion ac-
cording to x(t) � R cos(	t � 
).
(a) In this projection 	 is

(A) v/R. (B) m2R.
(C) R/v. (D) v/(R sin 	t).

(b) In this projection 
 is

(A) 0. (B) vt /	. (C) �.
(D) 
 cannot be determined from the information given.

17-7 Damped Harmonic Motion
10. Let 	� be the angular frequency of a damped oscillator, and 	

be the angular frequency of an identical but undamped oscil-
lator. The damped frequency 	� will equal 	/2 if:

(A) b � m	. (B)
(C) (D) b � 2m	.

17-8 Forced Oscillations and Resonance
11. A driven damped oscillator will, after all transient motion has

died out, oscillate at
(A) the driving frequency.
(B) the frequency of the damped but free oscillator.
(C) the frequency of the undamped but free oscillator.
(D) any of the above, because the frequencies are all the

same.

12. The resonant frequency of a driven damped oscillator is equal
to

(A) the driving frequency.
(B) the frequency of the damped but free oscillator
(C) the frequency of the undamped but free oscillator.
(D) any of the above, because the frequencies are all the

same.

17-9 Two-Body Oscillations
13. A diatomic molecule can be thought of as a dumbbell: two

masses joined together by an ideal spring. The system can os-
cillate with a frequency 	, but it can also rotate about the cen-
ter of mass. If the molecule rotates what happens to

(a) xeq , the equilibrium separation?

(A) xeq decreases.
(B) xeq remains the same.
(C) xeq increases.

(b) 	, the vibrational frequency?

(A) 	 decreases.
(B) 	 remains the same.
(C) 	 increases.

b � √3m	.
b � √2m	.
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QUESTIONS

1. Give some examples of motions that are approximately sim-
ple harmonic. Why are motions that are exactly simple har-
monic rare?

2. A typical screen-door spring is tension-stressed in its normal
state; that is, adjacent turns cling to each other and resist sep-
aration. Does such a spring obey Hooke’s law?

3. Is Hooke’s law obeyed, even approximately, by a diving
board? A trampoline? A coiled spring made of lead wire?

4. What would happen to the motion of an oscillating system if
the sign of the force term, � kx in Eq. 17-2, were changed?

5. A spring has a force constant k, and an object of mass m is
suspended from it. The spring is cut in half and the same ob-
ject is suspended from one of the halves. How are the frequen-
cies of oscillation, before and after the spring is cut, related?

6. An unstressed spring has a force constant k. It is stretched by
a weight hung from it to an equilibrium length well within the
elastic limit. Does the spring have the same force constant k
for displacements from this new equilibrium position?

7. Suppose we have a block of unknown mass and a spring of
unknown force constant. Show how we can predict the period
of oscillation of this block– spring system simply by measur-
ing the extension of the spring produced by attaching the
block to it.

8. Any real spring has mass. If this mass is taken into account,
explain qualitatively how this will affect the period of oscilla-
tion of a spring–block system.

9. Can one have an oscillator that even for small amplitudes is
not simple harmonic? That is, can one have a nonlinear
restoring force in an oscillator even at arbitrarily small ampli-
tudes?

10. How are each of the following properties of a simple har-
monic oscillator affected by doubling the amplitude: period,
force constant, total mechanical energy, maximum velocity,
maximum acceleration?

11. What changes could you make in a harmonic oscillator that
would double the maximum speed of the oscillating object?

12. A person stands on a bathroom-type scale, which rests on a
platform suspended by a large spring. The whole system exe-
cutes simple harmonic motion in a vertical direction. Describe
the variation in scale reading during a period of motion.

13. Could we ever construct a true simple pendulum? Explain
your answer.

14. Could standards of mass, length, and time be based on prop-
erties of a pendulum? Explain.

15. Considering the elastic and the inertial aspects involved, ex-
plain the fact that whereas when an object of mass m oscil-
lates vertically on a spring the period depends on m but is in-
dependent of g, the reverse is true for a simple pendulum.

16. Predict by qualitative arguments whether a pendulum oscillat-
ing with large amplitude will have a period longer or shorter
than the period for oscillations with small amplitude. (Con-
sider extreme cases.)

17. As the amplitude �m in Eq. 17-25 approaches 180°, what
value do you expect the period to approach? Explain in physi-
cal terms.

18. What happens to the frequency of a swing as its oscillations
die down from large amplitude to small?

19. How is the period of a pendulum affected when its point of
suspension is (a) moved horizontally in the plane of oscilla-
tion with acceleration a; (b) moved vertically upward with ac-
celeration a; (c) moved vertically downward with acceleration
a � g; with acceleration a � g? Which case, if any, applies to
a pendulum mounted on a cart rolling down an inclined
plane?

20. Why was an axis through the center of mass excluded in us-
ing Eq. 17-29 to determine I? Does this equation apply to
such an axis? How can you determine I for such an axis using
physical pendulum methods?

21. A hollow sphere is filled with water through a small hole in it.
It is hung by a long thread and, as the water flows out of the
hole at the bottom, one finds that the period of oscillation first
increases and then decreases. Explain.

22. (a) The effect of the mass, m, of the cord attached to the bob,
of mass M, of a pendulum is to increase the period over that
for a simple pendulum in which m � 0. Make this plausible.
(b) Although the effect of the mass of the cord on the pendu-
lum is to increase its period, a cord of length L swinging
without anything on the end (M � 0) has a period less than
that of a simple pendulum of length L. Make that plausible.

23. If taken to the Moon, will there be any change in the fre-
quency of oscillation of a torsional pendulum? A simple pen-
dulum? A spring–block oscillator? A physical pendulum?

24. How can a pendulum be used to trace out a sinusoidal curve?

25. Is there a connection between the F versus x relation at the
molecular level and the macroscopic relation between F and x
in a spring? Explain your answer.

26. (a) Under what circumstances would the reduced mass of a
two-body system be equal to the mass of one of the bodies?
Explain. (b) What is the reduced mass if the bodies have
equal mass? (c) Do cases (a) and (b) give the extreme values
of the reduced mass?

27. Why is the tub of a washing machine often mounted on
springs?

28. Why are damping devices often used on machinery? Give an
example.

29. Give some examples of common phenomena in which reso-
nance plays an important role.

30. The lunar ocean tide is much more important than the solar
ocean tide. The opposite is true for tides in the Earth’s atmo-
sphere, however. Explain this, using resonance ideas, given
the fact that the atmosphere has a natural period of oscillation
of nearly 12 hours.

31. In Fig. 17-19, what value does the amplitude of the forced os-
cillations approach as the driving frequency 	 approaches (a)
zero and (b) infinity?

32. Buildings of different heights sustain different amounts of
damage in an earthquake. Explain why.

33. A singer, holding a note of the right frequency, can shatter a
glass if the glassware is of high quality. This cannot be done
if the glassware quality is low. Explain why.
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EXERCISES

17-1 Oscillating Systems
17-2 The Simple Harmonic Oscillator
17-3 Simple Harmonic Motion

1. A 3.94-kg block extends a spring 15.7 cm from its unstretched
position. The block is removed and a 0.520-kg object is hung
from the same spring. Find the period of its oscillation.

2. An oscillator consists of a block of mass 512 g connected to a
spring. When set into oscillation with amplitude 34.7 cm, it is
observed to repeat its motion every 0.484 s. Find (a) the pe-
riod, (b) the frquency, (c) the angular frequency, (d ) the force
constant, (e) the maximum speed, and ( f ) the maximum force
exerted on the block.

3. A loudspeaker produces a musical sound by the oscillation 
of a diaphragm. If the amplitude of oscillation is limited to
1.20 � 10�3 mm, what frequencies will result in the accelera-
tion of the diaphragm exceeding g?

4. A 5.22-kg object is attached to the bottom of a vertical spring
and set vibrating. The maximum speed of the object is 
15.3 cm/s and the period is 645 ms. Find (a) the force con-
stant of the spring, (b) the amplitude of the motion, and (c)
the frequency of oscillation.

5. In an electric shaver, the blade moves back and forth over a
distance of 2.00 mm. The motion is simple harmonic, with
frequency 120 Hz. Find (a) the amplitude, (b) the maximum
blade speed, and (c) the maximum blade acceleration.

6. An automobile can be considered to be mounted on four
springs as far as vertical oscillations are concerned. The
springs of a certain car of mass 1460 kg are adjusted so that
the vibrations have a frequency of 2.95 Hz. (a) Find the force
constant of each of the four springs (assumed identical). (b)
What will be the vibration frequency if five persons, averag-
ing 73.2 kg each, ride in the car?

7. A body oscillates with simple harmonic motion according to
the equation

Find (a) the displacement, (b) the velocity, and (c) the accel-
eration at the time t � 1.90 s. Find also (d ) the frequency and
(e) the period of the motion.

8. The scale of a spring balance reading from 0 to 50.0 lb is 
4.00 in. long. A package suspended from the balance is found
to oscillate vertically with a frequency of 2.00 Hz. How much
does the package weigh?

9. The piston in the cylinder head of a locomotive has a stroke
of 76.5 cm. What is the maximum speed of the piston if the
drive wheels make 193 rev/min and the piston moves with
simple harmonic motion?

10. A 2.14-kg object hangs from a spring. A 325-g body hung be-
low the object stretches the spring 1.80 cm farther. The 325-g
body is removed and the object is set into oscillation. Find the
period of the motion.

11. At a certain harbor, the tides cause the ocean surface to rise
and fall in simple harmonic motion, with a period of 12.5 h.
How long does it take for the water to fall from its maximum
height to one-half its maximum height above its average
(equilibrium) level?

x � (6.12 m) cos[(8.38 rad /s)t � 1.92 rad].

12. A block is on a piston that is moving vertically with simple
harmonic motion. (a) At what amplitude of motion will the
block and the piston separate if the period of the piston’s mo-
tion is 1.18 s? (b) If the piston has an amplitude of 5.12 cm in
its motion, find the maximum frequency for which the block
and piston will be in contact continuously.

13. An oscillator consists of a block attached to a spring (k �
456 N/m). At some time t, the position (measured from the
equilibrium location), velocity, and acceleration of the block
are x � 0.112 m, vx � � 13.6 m/s, ax � � 123 m/s2. Calcu-
late (a) the frequency, (b) the mass of the block, and (c) the
amplitude of oscillation.

14. Two particles execute simple harmonic motion of the same
amplitude and frequency along the same straight line. They
pass one another when going in opposite directions each time
their displacement is half their amplitude. Find the phase dif-
ference between them.

15. Three 10,000-kg ore cars are held at rest on a 26.0° incline on
a mine railway using a cable that is parallel to the incline
(Fig. 17-23). The cable is observed to stretch 14.2 cm just be-
fore a coupling breaks, detaching one of the cars. Find (a) the
frequency of the resulting oscillations of the remaining two
cars and (b) the amplitude of the oscillations.

Exercises 393

Figure 17-23. Exercise 15.

Figure 17-24. Exercise 17.

26°

16. A U-tube is filled with a single homogeneous liquid. The liq-
uid is temporarily depressed in one side by a piston. The pis-
ton is removed and the level of liquid in each side oscillates.
Show that the period of oscillation is where L is the
total length of the liquid in the tube.

17. A cylindrical wooden log is loaded with lead at one end so
that it floats upright in water as in Fig. 17-24. The length of
the submerged portion is L � 2.56 m. The log is set into ver-
tical oscillation. (a) Show that the oscillation is simple har-
monic. (b) Find the period of the oscillation. Neglect the fact
that the water has a damping effect on the motion.

�√2L /g,

Air

WaterL
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17-4 Energy in Simple Harmonic Motion
18. An oscillating block– spring system has a mechanical energy

of 1.18 J, an amplitude of 9.84 cm, and a maximum speed of
1.22 m/s. Find (a) the force constant of the spring, (b) the
mass of the block, and (c) the frequency of oscillation.

19. A (hypothetical) large slingshot is stretched 1.53 m to launch
a 130-g projectile with speed sufficient to escape from the
Earth (11.2 km/s). (a) What is the force constant of the de-
vice, if all the potential energy is converted to kinetic energy?
(b) Assume that an average person can exert a force of 220 N.
How many people are required to stretch the slingshot?

20. (a) When the displacement is one-half the amplitude xm , what
fraction of the total energy is kinetic and what fraction is po-
tential in simple harmonic motion? (b) At what displacement
is the energy half kinetic and half potential?

21. A 12.3-kg particle is undergoing simple harmonic motion
with an amplitude of 1.86 mm. The maximum acceleration
experienced by the particle is 7.93 km/s2. (a) Find the period
of the motion. (b) What is the maximum speed of the parti-
cle? (c) Calculate the total mechanical energy of this simple
harmonic oscillator.

22. A 5.13-kg object moves on a horizontal frictionless surface
under the influence of a spring with force constant 9.88 N/cm.
The object is displaced 53.5 cm and given an initial velocity
of 11.2 m/s back toward the equilibrium position. Find (a) the
frequency of the motion, (b) the initial potential energy of the
system, (c) the initial kinetic energy, and (d) the amplitude of
the motion.

23. An object of mass 1.26 kg attached to a spring of force con-
stant 5.38 N/cm is set into oscillation by extending the spring
26.3 cm and giving the object a velocity of 3.72 m/s toward
the equilibrium position of the spring. Using the results ob-
tained in Problem 9, calculate (a) the amplitude and (b) the
phase angle of the resulting simple harmonic motion.

24. A 4.00-kg block is suspended from a spring with a force con-
stant of 5.00 N/cm. A 50.0-g bullet is fired into the block
from below with a speed of 150 m/s and comes to rest in the
block. (a) Find the amplitude of the resulting simple har-
monic motion. (b) What fraction of the original kinetic energy
of the bullet appears as mechanical energy in the oscillator?

17-5 Applications of Simple Harmonic Motion
25. Find the legnth of a simple pendulum whose period is 1.00 s

at a location where g � 9.82 m/s2.
26. A simple pendulum of length 1.53 m makes 72.0 oscillations

in 180 s at a certain location. Find the acceleration due to
gravity at this point.

27. The period of a simple pendulum is given by the series in Eq.
17-25. (a) For what value of �m is the second term of the se-
ries equal to 0.02? (b) What is the value of the third term in
the series at this amplitude?

28. If a pendulum has a period of 1.00 s at the equator, what
would be its period at the south pole? See Fig. 14-6.

29. The fact that g varies from place to place over the Earth’s sur-
face drew attention when Jean Richer in 1672 took a pendu-
lum clock from Paris to Cayenne, French Guiana, and found
that it lost 2.5 min/day. If g � 9.81 m/s2 in Paris, calculate g
in Cayenne.

30. g is to be determined by measuring the period of a pendulum.
How accurately (in seconds) would you have to measure the

time for 100 oscillations of a 10-m-long pendulum to achieve
a 0.1% error in the measurement of g? Calculate the percent
error and an absolute error, in milliseconds. Compare your
answer to Exercise 9 in Chapter 14.

31. A 2500-kg demolition ball swings from the end of a crane, as
shown in Fig. 17-25. The length of the swinging segment of
cable is 17.3 m. Find the period of swing, assuming that the
system can be treated as a simple pendulum.

Figure 17-25. Exercise 31.

Figure 17-26. Exercise 32.

32. There is an interesting relation between the block– spring sys-
tem and the simple pendulum. Suppose that you hang an ob-
ject of mass M on the end of a spring, and when the object is
in equilibrium the spring is stretched a distance h. Show that
the frequency of this block– spring system is the same as that
of a simple pendulum of mass m and length h, even if m �
M; see Fig. 17-26.

33. A circular hoop of radius 65.3 cm and mass 2.16 kg is sus-
pended on a horizontal nail. (a) Find its frequency of oscilla-
tion for small displacements from equilibrium. (b) What is the
legnth of the equivalent simple pendulum?

34. An engineer wants to find the rotational inertia of an odd-
shaped object of mass 11.3 kg about an axis through its center
of mass. The object is supported with a wire through its cen-
ter of mass and along the desired axis. The wire has a tor-
sional constant � � 0.513 N � m. The engineer observes that
this torsional pendulum oscillates through 20.0 cycles in 
48.7 s. What value of the rotational inertia is calculated?

35. A 95.2-kg solid sphere with a 14.8-cm radius is suspended by
a vertical wire attached to the ceiling of a room. A torque of
0.192 N � m is required to swist the sphere through an angle of

k

k

h

M

m

h



0.850 rad. Find the period of oscillation when the sphere is
released from this position.

36. A physical pendulum consists of a meter stick that is pivoted
at a small hole drilled through the stick a distance x from the
50.0-cm mark. The period of oscillation is observed to be
2.50 s. Find the distance x.

37. A meter stick swinging from one end oscillates with a fre-
quency f0 . What would be the frequency, in terms of f0 , if the
bottom third of the stick were cut off?

38. Figure 17-27 shows a physical pendulum constructed from
equal-length sections of identical pipe. The inner radius of the
pipe is 10.2 cm and the thickness is 6.40 mm. (a) Calculate
the period of oscillation about the pivot shown. (b) Suppose
that a new physical pendulum is constructed by rotating the
bottom section 90° about a vertical axis through its center.
Show that the new period of oscillation about the same pivot
is about 2% less than the period of the original pendulum.

force is given by � b(dx/dt), where b � 227 g/s. Suppose
that the block is pulled aside a distance 12.5 cm and released.
(a) Calculate the time interval required for the amplitude to
fall to one-third of its initial value. (b) How many oscillations
are made by the block in this time?

45. Verify by taking derivatives, that Eq. 17-39 is a solution of
Eq. 17-38 for the damped oscillator, provided that the fre-
quency 	� is given by Eq. 17-40.

46. A damped harmonic oscillator involves a block (m �
1.91 kg), a spring (k � 12.6 N/m), and a damping force F �
� bvx . Initially, it oscillates with an amplitude of 26.2 cm; be-
cause of the damping, the amplitude falls to three-fourths of
this initial value after four complete cycles. (a) What is the
value of b? (b) How much energy has been “lost” during
these four cycles?

17-8 Forced Oscillations and Resonance
47. Consider the forced oscillations of a damped block– spring

system. Show that at resonance (a) the amplitude of oscilla-
tion is xm � Fm /b	, and (b) the maximum speed of the oscil-
lating block is vmax � Fm/b.

48. Verify that Eq. 17-43 is a solution of Eq. 17-42 by direct sub-
stitution.

49. Verify that Eq. 17-43 is the most general form for the steady-
state solution to the driven oscillator (Eq. 17-42). Let

and show that 	� must equal the driving frequency 	�.

50. (a) Show that Eq. 17-39, the solution to the damped harmonic
oscillator without a driving force, is also a solution to Eq. 17-
42, the equation for a driven damped harmonic oscillator. Do
so by direct substitution. (b) Physically, what does this solu-
tion represent?

51. A 2200-lb car carrying four 180-lb people is traveling over a
rough “washboard” dirt road. The corrugations in the road are
13 ft apart. The car is observed to bounce with maximum am-
plitude when its speed is 10 mi/h. The car now stops and the
four people get out. By how much does the car body rise on
its suspension because of this decrease in weight?

52. Starting from Eq. 17-43, find the velocity vx (� dx/dt) in
forced oscillatory motion. Show that the velocity amplitude is

vm � Fm/[(m	� � k/	�)2 � b2]1/2.

The equations of Section 17-8 are identical in form with those
representing an electrical circuit containing a resistance R,
and inductance L, and a capacitance C in series with an alter-
nating emf V � Vm cos 	�t. Hence b, m, k, and Fm , are analo-
gous to R, L, 1/C, and Vm , respectively, and x and v are analo-
gous to electric charge q and current i, respectively. In the
electrical case the current amplitude im , analogous to the ve-
locity amplitude vm above, is used to describe the quality of
the resonance.

17-9 Two-Body Oscillations
53. Suppose that the spring in Fig. 17-21a has a force constant 

k � 252 N/m. Let m1 � 1.13 kg and m2 � 3.24 kg. Calculate
the period of oscillation of the two-body system.

54. (a) Calculate the reduced mass of each of the following di-
atomic molecules: O2 , HF, and CO. Express your answers in
unified atomic mass units, the mass of a hydrogen atom being

x(t) �
Fm

G
 cos(	�t � �)
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Figure 17-27. Exercise 38.

39. A pendulum whose upper end is attached so as to allow the
pendulum to swing freely in any direction can be used to re-
peat an experiment first shown publicly by Foucault in Paris
in 1851. If the pendulum is set oscillating, the plane of oscil-
lation slowly rotates with respect to a line drawn on the floor,
even though the tension in the wire supporting the bob and
the gravitational pull of the Earth on the bob lie in a vertical
plane. (a) Show that this is a result of the fact that the Earth is
not an inertial reference frame. (b) Show that for a Foucault
pendulum at a latitude �, the period of rotation of the plane, in
hours, is 24 sin �. (c) Explain in simple terms the result at 
� � 90° (the poles) and � � 0° (the equator).

17-6 Simple Harmonic Motion and Uniform Circular
Motion
40. Sketch the path of a particle that moves in the xy plane ac-

cording to x � xm cos (	t � �/2) and y � 2xm cos 	t.
41. Electrons in an oscilloscope are deflected by two mutually per-

pendicular electric forces in such a way that at any time t the
displacement is given by x � A cos 	t and y � A cos (	t � 
y).
Describe the path of the electrons and determine its equation
when (a) 
y � 0°, (b) 
y � 30°, and (c) 
y � 90°.

42. A particle of mass m moves in a fixed plane along the trajec-
tory (a) Sketch the trajectory of
the particle. (b) Find the force acting on the particle. Also find
(c) its potential energy and (d) its total energy as functions of
time. (e) Is the motion periodic? If so, find the period.

43. The orbit of the Moon around the Earth as projected along a
diameter can be viewed as simple harmonic motion. Calculate
the effective force constant k for this motion.

17-7 Damped Harmonic Motion
44. For the system shown in Fig. 17-17, the block has a mass of

1.52 kg and the force constant is 8.13 N/m. The frictional

rB � î A cos 	t � ĵA cos 3	t.

Pivot



1.01 u. (b) An HF molecule is known to vibrate at a frequency
of f � 8.7 � 1013 Hz. Find the effective “force constant” k
for the coupling forces between the atoms. In terms of your
experience with ordinary springs, would you say that this
“molecular spring” is relatively stiff or not?

55. Show that the kinetic energy of the two-body oscillator of
Fig. 17-21a is given by where m is the reduced
mass and vx (� v1x � v2x) is the relative velocity. It may help
to note that linear momentum is conserved while the system
oscillates.

K � 1
2 mv 2

x ,
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PROBLEMS

1. The vibration frequencies of atoms in solids at normal tem-
peratures are of the order of 10.0 THz. Imagine the atoms to
be connected to one another by “springs.” Suppose that a sin-
gle silver atom vibrates with this frequency and that all the
other atoms are at rest. Compute the effective force constant.
One mole of silver has a mass of 108 g and contains 6.02 �
1023 atoms.

2. Figure 17-28 shows an astronaut on a Body Mass Measure-
ment Device (BMMD). Designed for use on orbiting space
vehicles, its purpose is to allow astronauts to measure their
mass in the weightless conditions in Earth orbit. The BMMD
is a spring-mounted chair; an astronaut measures his or her
period of oscillation in the chair; the mass follows from the
formula for the period of an oscillating block– spring system.
(a) If M is the mass of the astronaut and m the effective mass
of that part of the BMMD that also oscillates, show that

where T is the period of oscillation and k is the force constant.
(b) The force constant is k � 605.6 N/m for the BMMD, and
the period of oscillation of the empty chair is 0.90149 s. Cal-
culate the effective mass of the chair. (c) With an astronaut in
the chair, the period of oscillation becomes 2.08832 s. Calcu-
late the mass of the astronaut.

M � (k /4� 2)T 2 � m,

3. Two blocks (m � 1.22 kg and M � 8.73 kg) and a spring 
(k � 344 N/m) are arranged on a horizontal, frictionless sur-
face as shown in Fig. 17-29. The coefficient of static friction
between the blocks is 0.42. Find the maximum possible am-
plitude of the simple harmonic motion if no slippage is to oc-
cur between the blocks.

6. Two springs are joined and connected to a block of mass m as
shown in Fig. 17-31. The surfaces are frictionless. If the
springs separately have force constants k1 and k2 , show that
the frequency of oscillation of the block is

where f1 and f2 are the frequencies at which the block would
oscillate if connected only to spring 1 or spring 2. (The elec-
trical analog of this system is a parallel combination of two
capacitors.)

f �
1

2� √ k 1k 2

(k 1 � k 2)m
�

f1 f2

√f 2
1 � f 2

2

,

4. The force of interaction between two atoms in certain di-
atomic molecules can be represented by F � � a/r 2 � b/r 3

in which a and b are positive constants and r is the separation
distance of the atoms. Make a graph of F versus r. Then (a)
show that the separation at equilibrium is b/a; (b) show that
for small oscillations about this equilibrium separation the
force constant is a4/b3; (c) find the period of this motion.

5. Two springs are attached to a block of mass m, free to slide
on a frictionless horizontal surface, as shown in Fig. 17-30.
Show that the frequency of oscillation of the block is

where f1 and f2 are the frequencies at which the block would
oscillate if connected only to spring 1 or spring 2. (The elec-
trical analog of this system is a series combination of two ca-
pacitors.)

f �
1

2� √ k 1 � k 2

m
� √ f 2

1 � f 2
2 ,

Figure 17-28. Problem 2.

Figure 17-29. Problem 3.

Figure 17-30. Problem 5.

Figure 17-31. Problem 6.
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k1 k2
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k1 k2
m



7. A massless spring of force constant 3.60 N/cm is cut into
halves. (a) What is the force constant of each half? (b) The
two halves, suspended separately, support a block of mass M
(see Fig. 17-32). The system vibrates at a frequency of 
2.87 Hz. Find the value of the mass M.

such a field, with the one change that the equilibrium position
has been displaced by mg/k. (d) Now consider the energy of
the system, constant, and show
that time differentiation leads to the equation of motion of
part (b). (e) Show that when the object falls from x � 0 to the
static equilibrium position, x � mg/k, the loss in gravitational
potential energy goes half into a gain in elastic potential en-
ergy and half into a gain in kinetic energy. ( f ) Finally, con-
sider the system in motion about the static equilibrium posi-
tion. Compute separately the change in gravitational potential
energy and in elastic potential energy when the object moves
up through a displacement xm , and when the object moves
down through a displacement xm . Show that the total change
in potential energy is the same in each case—namely,
In view of the results of (c) and ( f ), one can simply ignore the
uniform gravitational field in the analysis merely by shifting
the reference position from x � 0 to x0 � x � mg/k � 0. The
new potential energy curve has
the same parabolic shape as the potential energy curve in the
absence of a gravitational field [U(x) � 1

2 kx 2].

[U(x 0) � 1
2 kx 2

0 � constant]

1
2 kx 2

m .

1
2 mv 2 � 1

2 kx 2 � mg(h � x) �
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8. If the mass of a spring ms is not negligible but is small com-
pared to the mass m of the object suspended from it, the pe-
riod of motion is T � Derive this result.
(Hint: The condition ms �� m is equivalent to the assumption
that the spring stretches proportionally along its length.) (See
H. L. Armstrong, American Journal of Physics, Vol. 37, 1969,
p. 447, for a complete solution of the general case.)

9. Show that the general relationships between the two initial
values of position x(0) and velocity vx(0), and amplitude xm

and phase angle 
 of Eq. 17-6, are

10. Solve Eq. 17-16, which expresses conservation of energy, for
dt and integrate the result. Assume that x � xm at t � 0, and
show that Eq. 17-6 (with 
 � 0), the displacement as a func-
tion of time, is obtained.

11. A block of mass M, at rest on a horizontal, frictionless table,
is attached to a rigid support by a spring of force constant k. A
bullet of mass m and speed v strikes the block as shown in
Fig. 17-33. The bullet remains embedded in the block. Deter-
mine the amplitude of the resulting simple harmonic motion,
in terms of m, M, v, and k.

x m � √[x(0)]2 � [vx(0)/	]2 and tan 
 � �vx(0)/	x(0).

2�√(m � ms /3) /k.

12. Consider a massless spring of force constant k in a uniform
gravitational field. Attach an object of mass m to the spring.
(a) Show that if x � 0 marks the slack position of the spring,
the static equilibrium position is given by x � mg/k (see Fig.
17-34). (b) Show that the equation of motion of the mass-
spring system is

and that the solution for the displacement as a function of
time is x � xm cos (	t � 
) � mglk, where as be-
fore. (c) Show therefore that the system has the same 	, v, a,
f, and T in a uniform gravitational field as in the absence of

	 � √k /m

m
d 2x

dt 2 � kx � mg

Figure 17-32. Problem 7.

Figure 17-33. Problem 11.

Figure 17-34. Problem 12.

Figure 17-35. Problem 13.
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k
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v

h

m

x = 0

Ground level

x = mg/k

13. A solid cylinder is attached to a horizontal massless spring so
that it can roll without slipping along a horizontal surface, as
in Fig. 17-35. The force constant k of the spring is 2.94 N/cm.
If the system is released from rest at a position in which the
spring is stretched by 23.9 cm, find (a) the translational ki-
netic energy and (b) the rotational kinetic energy of the cylin-
der as it passes through the equilibrium position. (c) Show
that under these conditions the center of mass of the cylinder
executes simple harmonic motion with a period

where M is the mass of the cylinder.

T � 2�√3M /2k,

14. (a) Prove that in simple harmonic motion the average poten-
tial energy equals the average kinetic energy when the aver-
age is taken with respect to time over one period of the mo-
tion, and that each average equals (b) Prove that when
the average is taken with respect to position over one cycle,
the average potential energy equals and the average ki-
netic energy equals (c) Explain physically why the re-
sults for (a) and (b) are different.

1
3 kx 2

m .

1
6 kx 2

m

1
4 kx 2

m .

k

M



15. A physical pendulum consists of a uniform solid disk of mass
M � 563 g and radius R � 14.4 cm supported in a vertical
plane by a pivot located a distance d � 10.2 cm from the cen-
ter of the disk, as shown in Fig. 17-36. The disk is displaced
by a small angle and released. Find the period of the resulting
simple harmonic motion.

19. A particle is released from rest at a point P inside a friction-
less hemispherical bowl of radius R. (a) Show that when P is
near the bottom of the bowl the particle undergoes simple
harmonic motion. (b) Find the length of the equivalent simple
pendulum.

20. A physical pendulum has two possible pivot points; one has a
fixed position and the other is adjustable along the length of
the pendulum, as shown in Fig. 17-39. The period of the pen-
dulum when suspended from the fixed pivot is T. The pendu-
lum is then reversed and suspended from the adjustable pivot.
The position of this pivot is moved until, by trial and error,
the pendulum has the same period as before—namely, T.
Show that the free-fall acceleration g is given by

in which L is the distance between the two pivot points. Note
that g can be measured in this way without needing to know
the rotational inertia of the pendulum or any of its other di-
mensions except L.

g �
4� 2L

T 2 ,
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Figure 17-36. Problem 15.

Figure 17-37. Problem 16. Figure 17-39. Problem 20.

Figure 17-38. Problem 18.

Figure 17-40. Problem 21.

R

Pivot
d

16. A pendulum consists of a uniform disk with radius 10.3 cm
and mass 488 g attached to a 52.4-cm-long uniform rod with
mass 272 g; see Fig. 17-37. (a) Calculate the rotational inertia
of the pendulum about the pivot. (b) What is the distance be-
tween the pivot and the center of mass of the pendulum? (c)
Calculate the small-angle period of oscillation.

17. A pendulum is formed by pivoting a long, thin rod of length L
and mass m about a point on the rod that is a distance d above
the center of the rod. (a) Find the small-amplitude period of
this pendulum in terms of d, L, m, and g. (b) Show that the 
period has a minimum value when 

18. A wheel is free to rotate about its fixed axle. A spring is at-
tached to one of its spokes a distance r from the axle, as
shown in Fig. 17-38. Assuming that the wheel is a hoop of
mass M and radius R, obtain the angular frequency of small
oscillations of this system in terms of M, R, r, and the force
constant k. Discuss the special cases r � R and r � 0.

d � L/√12 � 0.289L.

21. A 2.50-kg disk, 42.0 cm in diameter, is supported by a light
rod, 76.0 cm long, which is pivoted at its end, as shown in Fig.
17-40. (a) The light, torsional spring is initially not connected.
What is the period of oscillation? (b) The torsional spring is
now connected so that, in equilibrium, the rod hangs vertically.
What should be the torsional constant of the spring so that the
new period of oscillation is 500 ms shorter than before?

22. A simple pendulum of length L and mass m is suspended in a
car that is traveling with a constant speed v around a circle of

52.4 cm

10.3 cm

r
R

k

L

cm

76.0 cm

42.0 cm



radius R. If the pendulum undergoes small oscillations in a ra-
dial direction about its equilibrium position, what will its fre-
quency of oscillation be?

23. Consider an unusual galaxy, in which the stars are uniformly
distributed around a ring of radius R and total mass M, except
for one star (mass m) that resides at the center of the ring. 
(a) Suppose the central star is displaced a distance z from 
the plane of the ring along its symmetry axis. Show that the
gravitational force on the star due to the ring is Fz �
GMmz/(R2 � z2)3/2. (b) Assuming z �� R, find the oscillation
frequency f if the central star is displaced a distance z along
the axis and then released. (c) Estimate the oscillation fre-
quency for a galaxy of mass and radius equal to that of the
Milky Way.

24. Suppose an impulsive force F acts horizontally to the right at
point O (the center of oscillation) in Fig. 17-12. Assume that
the pendulum is initially at rest. (a) By combining the effects
of translation and rotation, show that the resulting accelera-
tion of a particle at point P is zero. (b) What do you conclude
about the force at P that results from the applied force F? Be-
cause of this property, the center of oscillation is often called
the center of percussion.

25. Assume that you are examining the characteristics of a sus-
pension system of a 2000-kg automobile. The suspension
“sags” 10 cm when the weight of the entire automobile is
placed on it. In addition, the amplitude of oscillation de-
creases by 50% during one complete oscillation. Estimate the
values of k and b for the spring and shock absorber system of
each wheel. Assume that each wheel supports 500 kg.

26. Driven nonlinear oscillators do not need to oscillate at the dri-
ving frequency. Consider the driven quartic oscillator

where m, k, F, and 	d are constants. Show that x(t) � A cos
	t is a solution to this equation if (1) 	 � 	d /3 and 
(2) F �

27. (a) Show that when m2 : � in Eq. 17-46, m : m1 . (b) Show
that the effect of a noninfinite wall (m2 � �) on the oscilla-
tions of a body of mass m1 at the end of a spring attached to
the wall is to reduce the period, or increase the frequency, of
oscillation compared to (a). (c) Show that when m2 � m1 the
effect is as though the spring were cut in half, each body os-
cillating independently about the center of mass at the middle.

	3
d .

m
d 2x

dt 2 � kx3 � F cos 	d t,
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COMPUTER PROBLEMS

1. Consider a system composed of two objects constrained 
to move along the x axis. The first object is connected to 
a spring that is attached to the origin, and the second object
is connected to a spring that is attached to the first object.
Both objects have the same mass, 0.10 kg, and both springs
have the same force constant, 1.0 N/m. (a) Numerically 
simulate the motion of the objects, assuming that the second
object is pulled and then released a distance of 1.0 cm 
from the equilibrium position. Generate a graph of the mo-
tion of the objects. (b) Use a fast Fourier transform (avail-
able on some spread sheet programs) to show that there 

are two characteristic frequencies of the motion. What are
these frequencies?

2. An object of mass m moves subject to a force that results in a
potential energy of U(x) � kx4. This type of motion is called
a quartic oscillator. Note that the frequency of oscillation de-
pends on the amplitude of the oscillations here. Assuming a
mass m � 0.10 kg and a force constant of k � 100 N/m3, nu-
merically simulate the motion for several different ampli-
tudes. Graph the results, and find the relation between ampli-
tude and frequency for this system.

1
4





401

WAVE MOTION

Wave motion appears in almost every branch of

physics. Surface waves on bodies of water are commonly observed. Sound waves and light waves are essen-

tial to our perception of the environment, because we have receptors (eyes and ears) capable of their detec-

tion. In the past century we learned how to produce and use radio waves. The similarity of the physical and

mathematical descriptions of these different kinds of waves indicates that wave motion is one of the unify-

ing themes of physics.

In this chapter and the next we develop the verbal and mathematical descriptions of waves. We use the

example of mechanical waves, in part because we have already developed the laws of mechanics in this

text. Later in the text we develop the laws that govern other types of waves (light and other electromagnetic

waves, for example). For simplicity, we concentrate on the study of harmonic waves (that is, those that can

be represented by sine and cosine functions), but the principles that we develop apply to more complex

waveforms as well.

18-1 MECHANICAL WAVES

Waves are a common and essential part of our environment.
We are surrounded by sound waves, light waves, water
waves, and other kinds of waves, which we can control and
use to convey information or transport energy from one lo-
cation to another.

All types of waves use similar mathematical descrip-
tions. We can therefore learn a great deal about waves in
general by making a careful study of one type of wave. In
this chapter we consider only mechanical waves, which in-
clude sound waves and water waves. In particular, we
choose one special type of mechanical wave—the oscilla-
tion of a stretched string such as might be found on a guitar.

Mechanical waves travel through an elastic medium.
They can originate when we cause an initial disturbance at
one location in the medium. Because of the elastic properties
of the medium, the disturbance travels through the medium.

On a microscopic level, the forces between atoms are
responsible for the propagation of mechanical waves. Each

atom exerts a force on the atoms that surround it, and
through this force the motion of the atom is transmitted to
its neighbors. However, the particles of the medium do not
experience any net displacement in the direction of the
wave—as the wave passes, the particles simply move back
and forth through small distances about their equilibrium
positions.

For example, a leaf floating on a lake may bob up and
down as a wave passes, but after the wave has passed the
leaf returns very nearly to its original position. A sound
wave can travel through air, but there is no net motion of
the air molecules in the direction that the wave is moving.
The wave can transport energy and momentum from one
location to another without any material particles making
that journey. As Leonardo da Vinci observed about water
waves in the 15th century: “It often happens that the wave
flees the place of its creation, while the water does not; like
the waves made in a field of grain by the wind, where we
see the waves running across the field while the grain re-
mains in place.”

CHAPTER 18CHAPTER 18



18-2 TYPES OF WAVES

In listing water waves, light waves, and sound waves as ex-
amples of wave motion, we are classifying waves according
to their broad physical properties. Waves can also be classi-
fied in other ways.

1. Direction of particle motion. We can classify me-
chanical waves by considering how the direction of motion
of the particles of the medium is related to the direction of
propagation of the wave. If the motion of the particles is
perpendicular to the direction of propagation of the wave it-
self, we have a transverse wave. For example, when a string
under tension is set oscillating back and forth at one end, a
transverse wave travels along the string; the disturbance
moves along the string but the string particles vibrate at
right angles to the direction of propagation of the distur-
bance (Fig. 18-1a). Light waves, although they are not me-
chanical waves, are also transverse waves.

If, however, the motion of the particles in a mechanical
wave is back and forth along the direction of propagation,
we have a longitudinal wave. For example, when a spring
under tension is set oscillating back and forth at one end, a
longitudinal wave travels along the spring; the coils vibrate
back and forth parallel to the direction in which the distur-
bance travels along the spring (Fig. 18-1b). Sound waves in
a gas are longitudinal waves. We discuss them in greater
detail in Chapter 19.

Some waves are neither purely longitudinal nor purely
transverse. For example, in waves on the surface of water the
particles of water move both up and down and back and
forth, tracing out elliptical paths as the water waves move by.

2. Number of dimensions. Waves can also be classified
as propagating in one, two, and three dimensions. Waves

moving along the string or spring of Fig. 18-1 are one-
dimensional. Surface waves or ripples on water, caused by
dropping a pebble into a quiet pond, are two-dimensional
(Fig. 18-2). Sound waves and light waves traveling radially
outward from a small source are three-dimensional.

3. Periodicity. Waves may be classified further accord-
ing to how the particles of the medium move in time. For
example, we can produce a pulse traveling down a stretched
string by applying a single sidewise movement at its end
(Fig. 18-1c). Each particle remains at rest until the pulse
reaches it, then it moves during a short time, and then it
again remains at rest. If we continue to move the end of the
string back and forth (Fig. 18-1a), we produce a train of
waves traveling along the string. If our motion is periodic,
we produce a periodic train of waves in which each particle
of the string has a periodic motion. The simplest special
case of a periodic wave is a harmonic wave, in which each
particle undergoes simple harmonic motion.

4. Shape of wavefronts. Imagine a stone dropped in a still
lake. Circular ripples spread outward from the point where the
stone entered the water (Fig. 18-2). Along a given circular rip-
ple, all points are in the same state of motion. Those points
define a surface called a wavefront. If the medium is of uni-
form density, the direction of motion of the waves is at right
angles to the wavefront. A line normal to the wavefronts, indi-
cating the direction of motion of the waves, is called a ray.

Wavefronts can have many shapes. A point source at the
surface of water produces two-dimensional waves with cir-
cular wavefronts and rays that radiate outward from the
point of the disturbance (as in Fig. 18-2). On the other hand,
a very long stick dropped horizontally into the water would
produce (near its center) disturbances that travel as straight
lines, in which the rays are parallel lines. The three-dimen-
sional analogy, in which the disturbances travel in a single
direction, is the plane wave. At a given instant, conditions
are the same everywhere on any plane perpendicular to the
direction of propagation. The wavefronts are planes, and the
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Figure 18-1. (a) Sending a transverse wave along a string.
Each element of the string vibrates at right angles to the direction
of propagation of the wave. (b) Sending a longitudinal wave along
a spring. Each element of the spring vibrates parallel to the direc-
tion of propagation of the wave. (c) Sending a single transverse
pulse along a string.

Figure 18-2. Waves on the surface of a lake. The circular
ripples represent wavefronts. The rays, which are perpendicular to
the wavefronts, indicate the direction of motion of the wave.



rays are parallel straight lines (Fig. 18-3a). The three-di-
mensional analogy of circular waves is spherical waves.
Here the disturbance is propagated outward in all directions
from a point source of waves. The wavefronts are spherical,
and the rays are radial lines leaving the point source in all
directions (Fig. 18-3b). Far from the source the spherical
wavefronts have very small curvature, and over a limited re-
gion they can often be regarded as planes. Of course, there
are many other possible shapes for wavefronts.

18-3 TRAVELING WAVES

As an example of a mechanical wave, we consider a trans-
verse waveform that travels on a long stretched string. We
assume an “ideal” string, in which the disturbance, whether
it is a pulse or a train of waves, keeps its form as it travels.
For this to occur, frictional losses and other means of en-
ergy dissipation must be negligibly small. The disturbance
lies in the xy plane and travels in the x direction.

Figure 18-4a shows an arbitrary waveform at t � 0; we
can consider this to be a snapshot of the pulse traveling
along the string shown in Fig. 18-1c. Let the pulse move in
the positive x direction with speed v. At a later time t, the
pulse has moved a distance vt, as shown in Fig. 18-4b. Note
that the waveform is the same at t � 0 as it is at later times.

The coordinate y indicates the transverse displacement
of a particular point on the string. This coordinate depends
on both the position x and the time t. We indicate this de-
pendence on two variables as y(x, t).

We can represent the waveform of Fig. 18-4a as

y(x, 0) � f (x), (18-1)

where f is a function that describes the shape of the wave.
At time t, the waveform must still be described by the same
function f, because we have assumed that the shape does
not change as the wave travels. Relative to the origin O� of
a reference frame that travels with the pulse, the shape is
described by the function f (x�), as indicated in Fig. 18-4b.
The relationship between the x coordinates in the two refer-
ence frames is x� � x � vt, as you can see from Fig. 18-4b.
Thus, at time t, the wave is described by

y(x, t) � f (x�) � f (x � vt). (18-2)

That is, the function f (x � vt) has the same shape relative
to the point x � vt at time t that the function f (x) has rela-
tive to the point x � 0 at time t � 0.

To describe the wave completely, we must specify the
function f. Later we shall consider harmonic waves, for
which f is a sine or cosine function.

Equations 18-1 and 18-2 together indicate that we can
change a function of any shape into a wave traveling in the
positive x direction by merely substituting the quantity 
x � vt for x everywhere that it appears in f (x). For exam-
ple, if f (x) � x2, then f (x � vt) � (x � vt)2. Furthermore, a
wave traveling in the positive x direction must depend on x
and t only in the combination x � vt; thus x2 � (vt)2 does
not represent such a traveling wave.

Let us follow the motion of a particular part (or phase)
of the wave, such as that of location P of the waveform of
Fig. 18-4. If the wave is to keep its shape as it travels, then
the y coordinate yP of P must not change. We see from Eq.
18-2 that the only way this can happen is for xP, the x coor-
dinate of P, to increase as t increases in such a way that the
quantity xP � vt keeps a fixed value. That is, evaluating the
quantity xP � vt gives the same result at P in Fig. 18-4b
and at P in Fig. 18-4a. This remains true for any location
on the waveform and for all times t. Thus for the motion of
any particular phase of the wave we must have

x � vt � constant. (18-3)

We can verify that Eq. 18-3 characterizes the motion of
the phase of the waveform by differentiating with respect to
time, which gives

or (18-4)
dx

dt
� v.

dx

dt
� v � 0
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(a) (b)

Figure 18-3. (a) A plane wave. The planes represent wave-
fronts spaced one wavelength apart, and the arrows represent rays.
(b) A spherical wave. The wavefronts, spaced one wavelength
apart, are spherical surfaces, and the rays are in the radial direction.
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Figure 18-4. (a) A transverse pulse, shown as a snapshot at
time t � 0. The point P represents a particular location on the
phase of the pulse, not a particular point of the medium (the
string, for instance). (b) At a time t later, the pulse has moved a
distance vt in the positive x direction. The point P on the phase has
also moved a distance vt. The peak of the pulse defines the origin
of the x� coordinate.



The velocity dx/dt describes the motion of the phase of the
wave, and so it is known as the phase velocity. We take v to
be a positive constant, independent of any property of the
wave but possibly (as we shall see) depending on properties
of the medium.

If the wave moves in the negative x direction, all we
need do is replace v by � v. In this case we would obtain

y(x, t) � f (x � vt), (18-5)

where once again f(x) represents the shape at t � 0. That
is, substituting in f(x) the quantity x � vt in place of x
gives a wave that would move to the left in Fig. 18-4. The
motion of any phase of the wave would then be character-
ized by the requirement that x � vt � constant, and by
analogy with Eq. 18-4 we can show that dx/dt � � v, indi-
cating that the x component of the phase velocity in this
case is indeed negative.

The function y(x, t) contains the complete description of
the shape of the wave and its motion. At any particular time,
say t1, the function y(x, t1) gives y as a function of x, which
defines a curve; this curve represents the actual shape of the
string at that time and can be regarded as a “snapshot” of the
wave. On the other hand, we can consider the motion of a
particular point on the string, say at the fixed coordinate x1.
The function y(x1, t) then tells us the y coordinate of that point
as a function of the time. Figure 18-5 shows how a point on
the x axis might move with time as the pulse of Fig. 18-4
passes, moving in the positive x direction. At times near t �
0, the point is not moving at all. It then begins to move gradu-
ally, as the leading edge of the pulse of Fig. 18-4 arrives. Af-
ter the peak of the wave passes, the displacement of the point
drops rapidly back to zero as the trailing edge passes.

Sinusoidal Waves
The above description is quite general. It holds for arbitrary
wave shapes, and it holds for transverse as well as longitu-
dinal waves. Let us consider, for example, a transverse
waveform having a sinusoidal shape, which has particularly
important applications. Suppose that at the time t � 0 we
have a wavetrain along the string given by

(18-6)y(x, 0) � ym sin 
2�

�
x.

The wave shape is shown in Fig. 18-6. The maximum dis-
placement ym is called the amplitude of the sine curve. The
value of the transverse displacement y is the same at any x
as it is at x � �, x � 2�, and so on. The symbol � repre-
sents the wavelength of the wavetrain and indicates the dis-
tance between two adjacent points in the wave having the
same phase. If the wave travels in the � x direction with
phase speed v, then the equation of the wave is

(18-7)

Note that this has the form f (x � vt) required for a travel-
ing wave (Eq. 18-2).

The period T of the wave is the time necessary for a
point at any particular x coordinate to undergo one com-
plete cycle of transverse motion. During this time T, the
wave travels a distance vT that must correspond to one
wavelength �, so that

� � vT. (18-8)

The inverse of the period is called the frequency f of the
wave: f � 1/T. Frequency has units of cycles per second, or
hertz (Hz). Period and frequency were previously discussed
in Chapter 17.

Putting Eq. 18-8 into Eq. 18-7, we obtain another ex-
pression for the wave:

(18-9)

From this form it is clear that y, at any given time, has the
same value at x, x � �, x � 2�, and so on, and that y, at
any given position, has the same value at the times t, t � T,
t � 2T, and so on.

To reduce Eq. 18-9 to a more compact form, we intro-
duce two quantities, the wave number k and the angular
frequency �. They are defined by

and (18-10)

The wave number k is, like �, an angular quantity, and units
for both involve radians. Units for k might be, for instance,
rad/m, and for �, rad/s. In terms of these quantities, the
equation of a sine wave traveling in the positive x direction
(to the right in Fig. 18-6) is

y(x, t) � ym sin (kx � �t). (18-11)

� �
2�

T
� 2� f.k �

2�

�

y(x, t) � ym sin 2� � x

�
�

t

T � .

y(x, t) � ym sin 
2�

�
 (x � vt).
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Figure 18-5. An observer stationed at a particular point on
the x axis would record this y displacement as a function of time as
the pulse of Fig. 18-4 passes. Note that the form appears to be re-
versed, because the leading edge of the traveling pulse arrives at the
observer at the earliest times. That is, the displacements recorded
by the observer at earlier times are closer to the origin here.

Figure 18-6. At t � 0 (darker color), the string has the sinu-
soidal shape given by y � ym sin 2�x/�. At a later time t (lighter
color), the wave has moved to the right a distance x � vt, and the
string has a shape given by y � ym sin 2�(x � vt)/�.
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The equation of a sine wave traveling in the negative x di-
rection (to the left in Fig. 18-6) is

y(x, t) � ym sin (kx � �t). (18-12)

Comparing Eqs. 18-8 and 18-10, we see that the phase
speed v of the wave (which we will often call the wave
speed ) is given by

(18-13)

Transverse Velocity of a Particle
The motion of a particle in a transverse wave such as that of
Fig. 18-6 is in the y direction. The wave speed describes the
motion of the wave along the direction of travel (the x di-
rection). The wave speed does not characterize the trans-
verse motion of the particles of the string.

To find the transverse velocity of a particle of the string,
we must find the change in the y coordinate with time. We
focus our attention on a single particle of the string— that
is, on a certain coordinate x. We therefore need the deriva-
tive of y with respect to t at constant x. This is represented
by the symbol , which indicates the partial derivative
of y with respect to t, holding constant all other variables on
which y may depend. We represent the particle velocity,
which varies with x (the location of the particle) as well as
with t, as uy(x, t). Assuming that we are dealing with a sinu-
soidal wave of the form of Eq. 18-11, we then have

(18-14)

Depending on a particle’s location and on the time at which
it is observed, Eq. 18-14 shows that the transverse velocity
can range from � ym� to � ym�.

Continuing in this way, we can find the transverse accel-
eration of the particle at this location x according to

(18-15)

Equation 18-15 has the same form as Eq. 17-5; the trans-
verse acceleration of any point is proportional to its trans-
verse displacement, but oppositely directed. This shows that
each particle of the string undergoes transverse simple har-
monic motion as the sinusoidal wave passes.

Keep in mind the differences between the speed v of the
wave and the transverse velocity uy of a particle. The speed
v represents the entire wave; all points on the phase of the
wave move in the same direction with the same speed v.
However, the transverse velocity uy of a particle depends on
the location of the particle and on the time. At one instant
of time, one particle might have uy � 0 while another parti-
cle might be moving with the maximum transverse velocity
(which is ym� according to Eq. 18-14). At some other in-

� ��2y.

ay(x, t) �
	2y

	t 2 �
	uy

	t
� �ym�2 sin (kx � �t)

� �ym� cos (kx � �t)

uy(x, t) �
	y

	t
�

	

	t
 [ym sin (kx � �t]

	y/	t

v � � f �
�

T
�

�

k
.

stant, these roles might be reversed. It is also important to
note that, as we discuss in the next section, the wave speed
v depends on the properties of the medium and not on the
properties of the wave. The transverse particle velocity, on
the other hand, depends on the properties of the wave such
as amplitude and frequency, as Eq. 18-14 shows, and not on
the properties of the medium.

Phase and Phase Constant
In the traveling waves of Eqs. 18-11 and 18-12 we have as-
sumed that the displacement y is zero at the position x � 0 at
the time t � 0. This, of course, need not be the case. The gen-
eral expression for a sinusoidal wave traveling in the positive
x direction is

y(x, t) � ym sin (kx � �t � 
). (18-16)

The quantity that appears in the argument of the sine,
namely, kx � �t � 
, is called the phase of the wave. Two
waves with the same phase (or with phases differing by any
integer multiple of 2�) are said to be “in phase”; they exe-
cute the same motion at the same time.

The angle 
 is called the phase constant. The phase
constant does not affect the shape of the wave; it moves the
wave forward or backward in space or time. To see this, we
rewrite Eq. 18-16 in two equivalent forms:

(18-17a)

or

(18-17b)

Figure 18-7a shows a “snapshot” at any time t of the two
waves represented by Eqs. 18-11 (in which 
 � 0) and 

y(x, t) � ym sin �kx � � �t �



� ��.

y(x, t) � ym sin �k �x �



k � � �t�
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Figure 18-7. (a) A snapshot of two sine waves traveling in the
positive x direction. Wave A has phase constant 
, and wave B has 

 � 0. Wave A is a distance of 
/k ahead of wave B. (b) The motion
of a single point in time due to the same two waves. Wave A is a time

/� ahead of wave B. Note that, in a graph of y versus t, “ahead of ”
means “to the left of,” whereas in a graph of y versus x, “ahead of ”
means “to the right of,” if the waves travel in the positive x direction.
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18-16. Note that any particular point on the wave described
by Eq. 18-17a (say, a certain wave crest) is a distance 
/k
ahead of the corresponding point in the wave described by
Eq. 18-11.

Equivalently, if we were to observe the displacement at
a fixed position x resulting from each of the two waves rep-
resented by Eqs. 18-11 and 18-16, we would obtain the re-
sult indicated by Fig. 18-7b. The wave described by Eq. 18-
17b is similarly ahead of the wave having 
 � 0, in this
case by a time difference 
/�.

When the phase constant in Eq. 18-16 is positive, the
corresponding wave is ahead of a wave described by a simi-
lar equation having 
 � 0. It is for this reason that we intro-
duced the phase constant with a negative sign in Eq. 18-16.
When one wave is ahead of another in time or space, it is
said to “lead.” On the other hand, putting a negative phase
constant into Eq. 18-16 moves the corresponding wave be-
hind the one with 
 � 0. Such a wave is said to “lag.”

If we fix our attention on a particular point of the string,
say x1 , the displacement y at that point can be written

y(t) � � ym sin (�t � 
�),

where we have substituted a new phase constant 
� �

 � kx1. This expression for y(t) is similar to Eq. 17-6 for
simple harmonic motion. Hence any particular element of the
string undergoes simple harmonic motion about its equilib-
rium position as this wavetrain travels along the string.

Sample Problem 18-1. A transverse sinusoidal wave is
generated at one end of a long horizontal string by a bar that
moves the end up and down through a distance of 1.30 cm. The
motion is continuous and is repeated regularly 125 times per sec-
ond. (a) If the distance between adjacent wave crests is observed
to be 15.6 cm, find the amplitude, frequency, speed, and wave-
length of the wave motion. (b) Assuming the wave moves in the
� x direction and that, at t � 0, the element of the string at x � 0
is at its equilibrium position y � 0 and moving downward, find
the equation of the wave.

Solution (a) As the bar moves a total of 1.30 cm, the end of the
string moves (1.30 cm) � 0.65 cm away from the equilibrium
position, first above it, then below it; therefore the amplitude ym is
0.65 cm.

The entire motion is repeated 125 times each second, and thus
the frequency is 125 vibrations per second, or f � 125 Hz.

The distance between adjacent wave crests, which is given as
15.6 cm, is the wavelength, as Fig. 18-6 shows. Thus � �
15.6 cm � 0.156 m.

The wave speed is given by Eq. 18-13:

v � � f � (0.156 m)(125 s� 1) � 19.5 m/s.

(b) The general expression for a transverse sinusoidal wave mov-
ing in the � x direction is given by Eq. 18-16,

y(x, t) � ym sin (kx � �t � 
).

Imposing the given initial conditions (y � 0 and for 
x � 0 and t � 0) yields

ym sin (� 
) � 0 and � ym� cos (� 
) � 0,

	y/	t � 0

1
2

which means that the phase constant 
 may be taken to be zero
(or any integer multiple of 2�). Hence, for this wave

y(x, t) � ym sin (kx � �t),

and with the values just found,

we obtain as the equation for the wave

y(x, t) � (0.65 cm) sin [(40.3 rad/m)x � (786 rad/s)t].

Sample Problem 18-2. As the wave of Sample Prob-
lem 18-1 passes along the string, each particle of the string moves
up and down at right angles to the direction of the wave motion.
(a) Find expressions for the velocity and acceleration of a particle
P located at xP � 0.245 m. (b) Evaluate the transverse displace-
ment, velocity, and acceleration of this particle at t � 15.0 ms.

Solution (a) For a particle at xP � 0.245 m in the wave of Sample
Problem 18-1, we obtain, using Eq. 18-14,

Similarly, using Eq. 18-15, we find the magnitude of the maxi-
mum acceleration to be �2ym � 4.02 � 105 cm/s2, and so

ay(xP, t) � � (4.02 � 105 cm/s2) sin [9.87 rad � (786 rad/s)t].

(b) At t � 15.0 ms, we evaluate the expressions for y, uy , and ay to
give

y � � 0.61 cm, uy � � 173 cm/s, ay � � 3.8 � 105 cm/s2.

That is, the particle is close to its maximum negative displace-
ment, it is moving in the positive y direction (away from that max-
imum), and it is accelerating in the positive y direction (its veloc-
ity is increasing in magnitude as the particle moves toward its
equilibrium position).

18-4 WAVE SPEED ON A
STRETCHED STRING

So far we have obtained a general expression for a trans-
verse wave— for example, Eq. 18-16. The phase speed was
given in Eq. 18-13: v � � f � �/k. However, this expres-
sion does not tell us about the phase speed itself; it shows
only how the wavelength and frequency are related to one
another in terms of the wave speed.

The phase speed of a sinusoidal wave can be derived
based on the mechanical properties of the medium through
which the wave travels, in our case a stretched string. In this
section we will obtain the phase speed by applying New-
ton’s laws to the motion of the wave along the string. In
other cases, such as sound traveling in a gas, similar meth-
ods can be used to find an expression for the wave speed.

� � (511 cm/s) cos [9.87 rad � (786 rad /s)t].
� cos [(40.3 rad /m)(0.245 m) � (786 rad /s)t]

uy(xP, t) � � (0.65 cm)(786 rad /s) 

� � vk � (19.5 m/s)(40.3 rad /m) � 786 rad /s,

k �
2�

�
�

2�

0.156 m
� 40.3 rad/m,

ym � 0.65 cm,
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The speed of a wave depends on the properties of the
medium and is assumed to be independent of frequency and
wavelength. (If the speed does depend on the frequency or
wavelength of the wave, the medium is said to be dispersive,
which we discuss later in this section.) Each element of the
string pulls on its neighbors with a force given by the ten-
sion F in the string. The stronger the tension, the greater the
force between neighboring elements and the more rapidly
any disturbance will propagate down the string. Thus the
wave speed should increase with increasing tension.

On the other hand, the inertia of each element limits
how effective the tension will be in accelerating that ele-
ment to move the wave along the string. Thus, for the same
tension, the wave speed will be smaller in strings having
more massive elements. The mass of each small element
can be given in terms of the mass density  (mass per unit
length), which for a uniform string is equal to its mass di-
vided by its length. On the basis of these general principles
we therefore expect

,

where a and b are exponents that must be determined from
the analysis.

It turns out that we can deduce the values of a and b
based on a dimensional analysis; that is, there is only one
combination of force and mass density that gives a quantity
with the dimensions of velocity. From this type of analysis
(see Exercise 5), we deduce and , so that

or, introducing a constant of proportionality C,
we have . As we see next, the analysis using
Newton’s laws gives this same result and shows that C � 1.

Mechanical Analysis
Now let us derive an expression for the speed of a pulse in a
stretched string by a mechanical analysis. In Fig. 18-8 we
show a “snapshot” of a wave pulse that is moving from left
to right in the string with a speed v. We can imagine instead
that the entire string is moved from right to left with this
same speed so that the wave pulse remains fixed in space
(perhaps by pulling the string through a frictionless tube
having the desired shape of the pulse). This simply means
that, instead of taking our reference frame to be the walls
between which the string is stretched, we choose a refer-

v � C √F/
v � √F/

b � 1
2a � 1

2

v �
Fa

b

ence frame that is in uniform motion with respect to that
one. In effect, we observe the pulse while running along the
string at the same speed as the pulse. Because Newton’s
laws involve only accelerations, which are the same in both
frames, we can use them in either frame. We just happen to
choose a more convenient frame.

We consider a small section of the pulse of length �l, as
shown in Fig. 18-8. This section approximately forms an
arc of a circle of radius R. The mass �m of this element is 
 �l, where  is the mass density of the string. The tension
F in the string is a tangential pull at each end of this small
segment of the string. The horizontal components of can-
cel, and the vertical components are each equal to F sin �.
Hence the total vertical force Fy is 2F sin �. Because � is
small, we can take sin � � �. From Fig. 18-8, we see that
2� � �l/R, and so we obtain

(18-18)

This gives the force supplying the centripetal acceleration
v2/R of the string particles directed toward O. Note that the
tangential velocity v of this mass element along the top of
the arc is horizontal and is in magnitude equal to the wave
speed. Applying Newton’s second law to the string element
�m, we have � Fy � (�m) ay or, using Eq. 18-18,

where we have used ay � v2/R for the centripetal accelera-
tion and �m � �l for the mass of the string element. From
the first and last terms of this equation, we obtain

(18-19)

Equation 18-19 shows from a mechanical analysis that the
constant C introduced in the dimensional analysis has the
value 1.

If the amplitude of the pulse were very large compared
to the length of the string, we would have been unable to
use the approximation sin � � �. Furthermore, the tension
F in the string would be changed by the presence of the
pulse, whereas we assumed F to be unchanged from the
original tension in the stretched string. Therefore our result
holds only for relatively small transverse displacements of
the string, a case that is widely applicable in practice.

A periodic wave that enters a medium usually results
from an external influence that disturbs the medium at a
certain frequency. The wave that travels through that
medium will have the same frequency as the source of the
wave. The speed of the wave is determined by the proper-
ties of the medium. Given the frequency f of the wave and
its speed v in the medium, the wavelength of the periodic
wave in that medium is determined from Eq. 18-13, � �
v/f. When a wave passes from one medium to another
medium of different wave speed (for example, two strings

v � √ F
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Figure 18-8. A pulse moving to the right on a stationary
string is equivalent to a pulse in a fixed position on a string that is
moving to the left. We consider the tension forces on a section of
string of length �l on the “fixed” pulse.



of different linear mass densities), the frequency in one
medium must be the same as the frequency in the other.
(Otherwise there would be a discontinuity at the point
where the two strings are joined.) The wavelengths, how-
ever, will differ from one another. The relationship between
the wavelengths follows from the equality of the frequen-
cies f1 and f2 in the two media; that is, f1 � f2 gives

(18-20)

Group Speed and Dispersion (Optional)
Pure sinusoidal waves are useful mathematical devices for
helping us understand wave motion. In practice, we use
other kinds of waves to transport energy and information.
These waves may be periodic but nonsinusoidal, such as
square waves or “sawtooth” waves, or they may be nonperi-
odic pulses, such as that of Fig. 18-4.

We have used the phase speed to describe the motion of
two kinds of waves: the pulse that preserves its shape as it
travels (Fig. 18-4) and the pure sine wave (Fig. 18-6). In
other cases, we must use a different speed, called the group
speed, which is the speed at which energy or information
travels in a real wave.

Figure 18-9 shows a pulse traveling through a medium.
The shape of the pulse changes as it travels; the pulse
spreads out, or disperses. (Dispersion is not the same as en-
ergy dissipation. The energy content of the pulse in Fig. 18-
9 may remain constant as it travels, even though the pulse
disperses. We assume that the medium is dispersive, but not
necessarily dissipative.) As we see in Section 18-7, any pe-
riodic wave can be regarded as the sum or superposition of
a series of sinusoidal waves of different frequencies or
wavelengths. The frequencies, amplitudes, and phases of
the component sinusoidal waves must be carefully chosen
according to a prescribed mathematical procedure, known
as Fourier analysis, so that the waves add to give the de-
sired waveform. In most real media, the speed of propaga-
tion of these component waves (that is, the phase speed) de-

v1

�1
�

v2

�2
.

pends on the frequency or wavelength of the particular
component. Each component wave may travel with its own
unique speed. Thus, as the wave travels, the phase relation-
ships of the components may change, and the waveform of
the sum of the components will correspondingly change as
the wave travels. This is the origin of dispersion— the com-
ponent waves travel at different phase speeds. There is no
simple relationship between the phase speeds of the compo-
nents and the group speed of the wave; the relationship de-
pends on the dispersion of the medium.

Some real media are approximately nondispersive, in
which case the wave keeps its shape, and all component
waves travel with the same speed. An example is sound
waves in air. If air were strongly dispersive for sound waves,
conversation would be impossible, because the waveform
produced by your friend’s vocal cords would be jumbled by
the time it reached your ears. Furthermore, the care taken by
the players in an orchestra to play precisely at the same time
would be to no avail, because (if air were dispersive for
sound) the notes of high frequency would travel to the lis-
tener’s ear at a speed different from that of the notes of low
frequency, and the listener would hear the sounds at differ-
ent times. Fortunately, this does not occur for sound waves.
Light waves in vacuum are perfectly nondispersive; the dis-
persion of light waves in real media is responsible for such
effects as the spectrum of colors in rainbows.

In a nondispersive medium, all the component waves in
a complex waveform travel at the same phase speed, and
the group speed of the waveform is equal to that common
value of the phase speed. Only in this case can we speak of
the phase speed of the entire waveform. In this chapter, we
assume that we are dealing with mechanical waves that
propagate in a nondispersive medium. �

18-5 THE WAVE EQUATION
(Optional)

In Chapter 17 we discussed the commonly encountered
phenomenon of oscillation. One reason that this phenome-
non is so common is that the basic equation that describes
an oscillating system [x � xm cos (�t � 
), Eq. 17-6] is a
solution of Eq. 17-5,

which is an equation of a general form that can be derived
from a mechanical analysis of a variety of physical situa-
tions, some of which were discussed in Section 17-5.

The situation is similar in the case of wave motion. As we
demonstrate in this section, the mechanical analysis gives an
equation of another commonly encountered form, the solu-
tion of which is a wave of the form of Eq. 18-2 or 18-5.

Figure 18-10 shows an element of a long string that is
under tension F. A passing wave has caused the element to
be displaced from its equilibrium position at y � 0. We

d 2x

dt 2 � �� k

m � x,
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Figure 18-9. In a dispersive medium, the waveform changes
as the wave travels.
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consider the element of the string of length �x, and we ap-
ply Newton’s second law to analyze how this element is
made to move.

The element is acted on by two forces, exerted by the
portions of the string on either side of the element. These
forces have equal magnitudes, because the tension is evenly
distributed along the string, but they have slightly different
directions, because they act tangent to the string at the end-
points of the element. The y component of the net force is

We consider only small displacements from equilibrium,
so that the angles �1 and �2 are small, and we can write 
sin � � tan �, which gives

(18-21)

where �(tan �) � tan �2 � tan �1. This resultant force must
be equal to the mass of the element, �m �  �x, times the y
component of the acceleration. If frictional or other dissipa-
tive forces can be neglected, Newton’s second law gives

For the y component of the acceleration ay, we use the
transverse acceleration for a particle, . We also re-
place tan �, which is the slope of the string, by the equiva-
lent partial derivative . Making these substitutions, we
obtain

(18-22)

We now take the limit of Eq. 18-22 as the mass element
becomes very small. The left side is in the standard form
for expressing the derivative with respect to x as a limit:

and Eq. 18-22 becomes

(18-23)
	2y
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	t 2 .
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	y/	x
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�(tan �)

�x
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F
ay.

F�(tan �) �  �x ay

� Fy � �m ay

� Fy � F tan �2 � F tan �1 � F �(tan �),

� Fy � F sin �2 � F sin �1 .

Using Eq. 18-19 to replace /F with 1/v2, we obtain

(18-24)

Equation 18-24 is the general form of equation that de-
scribes waves: the second derivative of the wave displace-
ment y with respect to the coordinate x in the direction of
propagation is equal to 1/v2 times the second derivative
with respect to time. This general form of equation is called
the wave equation. It arises not only in mechanics but in
other situations as well. For example, as we discuss in
Chapter 38, if we use the equations of electromagnetism in-
stead of the equations of mechanics (Newton’s laws), we
obtain an equation of exactly the same form as Eq. 18-24,
except that the displacement y is replaced by the strength of
an electric or magnetic field. The speed of propagation v for
electromagnetic waves traveling in a vacuum becomes the
speed of light c.

Let us see how our general formula for a traveling wave,
y(x, t) � f (x � vt), is the solution of Eq. 18-24. We make a
simple change of variable and let z represent x � vt, so that
y � f (z). Then, repeatedly using the chain rule of calculus,

Thus

and Eq. 18-24 is satisfied. It can be shown that only the
combinations x � vt in f satisfy the wave equation, so that
all traveling waves must be in the form of Eq. 18-2 or 18-5.

To express these results in another way, Eq. 18-23,
which was derived from Newton’s laws, represents a travel-
ing wave only when /F � 1/v2. This discussion thus pro-
vides an independent derivation of Eq. 18-19 for the veloc-
ity of propagation of waves along a stretched string. �

18-6 ENERGY IN WAVE MOTION

If, as in Fig 18-1, you shake one end of a long string, your
hand is doing work on the string. You are thus providing en-
ergy to the string. That energy travels along the string as a
wave, and a friend at the other end of the string could ex-
tract that energy. Energy transport is an important property
of waves, and in this section we examine the energy of a
wave on a stretched string.
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Figure 18-10. A small element of length �x of a long string
under tension F. The figure represents a snapshot of the element at
a particular time during the passage of a wave.



Figure 18-11a shows a wave traveling along the string
at times t1 and t2 (a time T/4 later). Consider two elements
on the string, each of length dx. The element at A was lo-
cated on a wave crest at t1, after which it moved downward
and is crossing the axis at t2. The element at B was crossing
the axis at t1 but is on a wave crest at t2.

Element A is at rest at t1, while at t2 it has the maximum
particle speed. This element therefore gains kinetic energy be-
tween t1 and t2. Element A has very nearly its relaxed length
dx at time t1, but at time t2 it has been stretched to a greater
length by the tension in the string. It thus gains potential en-
ergy from t1 to t2. On the other hand, element B loses kinetic
energy between t1 and t2. Moreover, element B is stretched at
t1 but has its relaxed length at t2, so its potential energy also
decreases. We can thus view the travel of a wave along the
string in terms of the kinetic and potential energy of each ele-
ment of the string. By calculating how the energy changes
with time, we can determine the power delivered by the wave.

Figure 18-11b shows an expanded view of a string ele-
ment at an arbitrary point in its motion. Its length has been
stretched from its relaxed length dx to dl. The element has
mass dm �  dx and is moving with velocity uy given by
Eq. 18-14, so its kinetic energy dK is

(18-25)dK � 1
2 dm u2

y � 1
2 ( dx)[�ym� cos (kx � �t)]2.

This change in kinetic energy has occurred in the time dt
that it takes for the wave to move a distance along the x axis
equal to the x component of the length of the element; that
is, dt � dx/v, where v is the wave speed. The rate at which
kinetic energy is transported by the wave is dK/dt, or

(18-26)

To find the potential energy in the element, we must
evaluate the work done by the tension force F as it stretches
the element from length dx to length dl, or dU �
F(dl � dx). Approximating dl as the hypotenuse of a right
triangle, as in Fig. 18-11b, we have

. (18-27)

The quantity gives the slope of the string, and if the
amplitude of the wave is not too large this slope will be
small. We can then use the binomial expansion (1 � z)n �
1 � nz � � � � to write

. (18-28)

With we find the rate at
which potential energy is transported along the string to be

(18-29)

Using Eqs. 18-19 and 18-13 we can write F � v2 �
(�/k)2; substituting this result into Eq. 18-29 and compar-
ing with Eq. 18-26, it immediately follows that dU/dt �
dK/dt.

Note that dK and dU are both zero when the element
has its maximum displacement (as in the case of element A
at time t1), and both dK and dU have their maximum values
when the element crosses the x axis (as in the case of ele-
ment A at time t2). Although the motion of an element of
the string reminds us of the simple harmonic oscillator,
there is an important difference: the mechanical energy 
dE � dU � dK of the mass element is not a constant, but
instead it varies from zero at the crests and valleys to a
maximum where the string crosses the axis. This should not
be a surprise, because the mass element is not an isolated
system—neighboring mass elements are doing work on it
to change its energy.

Power and Intensity in Wave Motion
Because dU/dt � dK/dt, we have

(18-30)
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Figure 18-11. (a) Two small elements of string, labeled A
and B, are shown on a wave at time t1 and again at a time t2 (one-
quarter of a cycle later). The wave is moving to the right (in the
direction of increasing x). (b) A magnified view of a small element
of the string at an arbitrary time.
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The rate at which mechanical energy is transmitted along
the string is simply the power: P � dE/dt. This quantity
varies with location along the string as well as with time.
Usually we are more interested in the average power Pav:

. (18-31)

Often we observe waves over a time that is very long com-
pared with the period of the wave, so that we take the aver-
age over many cycles of the oscillation. The average value
of the cos2 over any number of full cycles is , and so

(18-32)

The dependence of the average rate of energy transfer on
the square of the amplitude and the square of the frequency
is a general characteristic property of waves.

This calculation assumes that the wave transports en-
ergy with no losses due to friction or other dissipative
forces. None of the mechanical energy is lost to internal en-
ergy of the string or heat transferred to the surroundings.

We have also assumed that the amplitude of the wave
remains constant as it travels. This remains true (in the
ideal approximation) for waves on a string, and it is strictly
true for the ideal plane wave (as in Fig. 18-3a). However,
for spherical wavefronts (as in Fig. 18-3b), the energy con-
tent of each wavefront remains the same, but that energy is
spread over an increasing area as the wave travels. For such
spherical waves, it is often more useful to describe the wave
in terms of its intensity I, which is defined as the average
power per unit area transmitted across an area A perpen-
dicular to the direction in which the wave is traveling, or

. (18-33)

The SI unit of intensity is watts per meter squared (W/m2).
Just as with the power of a wave, the intensity is always

proportional to the square of the amplitude. However, for
circular or spherical waves, the amplitude is not constant as
the wavefront advances. In a spherical wave, such as might
be emitted by a point source of light or sound, the surface
area of a wavefront of radius r is 4�r2, so the intensity is
proportional to 1/r2. If the distance from a source of spheri-
cal waves is doubled, the intensity becomes one-quarter as
large while the amplitude of the wave becomes half as
large.

18-7 THE PRINCIPLE OF
SUPERPOSITION

We often observe two or more waves to travel simultane-
ously through the same region of space independently of
one another. For example, the sound reaching our ears from
a symphony orchestra is very complex, but we can pick out
the sound made by individual instruments. The electrons in
the antennas of our radio and TV sets are set into motion by

I �
Pav

A

Pav � 1
2�2y2

mv.

1
2

Pav � � dE

dt �av
� �2y2

mv[cos2(kx � �t)]av

a whole array of signals from different broadcasting cen-
ters, but we can nevertheless tune to any particular station,
and the signal we receive from that station is in principle
the same as that which we would receive if all other sta-
tions were to stop broadcasting.

The above examples illustrate the principle of superpo-
sition, which asserts that, when several waves combine at a
point, the displacement of any particle at any given time is
simply the sum of the displacements that each individual
wave acting alone would give it. For example, suppose that
two waves travel simultaneously along the same stretched
string. Let y1(x, t) and y2(x, t) be the displacements that the
string would experience if each wave acted alone. The dis-
placement of the string when both waves act is then

y(x, t) � y1(x, t) � y2(x, t). (18-34)

For mechanical waves in elastic media, the superposition
principle holds whenever the restoring force varies linearly
with the displacement.

Figure 18-12 shows a time sequence of “snapshots” of
two pulses traveling in opposite directions in the same
stretched string. When the pulses overlap, the displacement
of the string is the algebraic sum of the individual displace-
ments of the string caused by each of the two pulses alone,
as Eq. 18-34 requires. The pulses simply move through one
another, each moving along as if the other were not present.
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Figure 18-12. Two pulses travel in opposite directions along
a stretched string. The superposition principle applies as they
move through each other.



The superposition principle may seem to be an obvious
result, but there are instances in which it does not hold. Sup-
pose, for instance, that one of the waves has such a large
amplitude that the elastic limit of the medium is exceeded.
The restoring force is no longer directly proportional to the
displacement of a particle in the medium. Then, no matter
what the amplitude of the second wave (even if it is very
small), its effect at a point is not a linear function of its am-
plitude. Furthermore, the second wave will be changed by
passing through the nonlinear region, and its subsequent be-
havior will be altered. This situation arises only very rarely,
and in most circumstances the principle of superposition is
valid (as we assume throughout this text).

Fourier Analysis (Optional)
The importance of the superposition principle physically is
that, where it holds, it makes it possible to analyze a com-
plicated wave motion as a combination of simple waves. In
fact, as was shown by the French mathematician J. Fourier
(1768–1830), all that we need to build up the most general
form of periodic wave are simple harmonic waves. Fourier
showed that any periodic motion of a particle can be repre-
sented as a combination of simple harmonic motions. For
example, if y(x) represents the waveform (at a particular
time) of a source of waves having a wavelength �, we can
analyze y(x) as follows:

y(x) � A0 � A1 sin kx � A2 sin 2kx � A3 sin 3kx � � � �
� B1 cos kx � B2 cos 2kx � B3 cos 3kx � � � � , (18-35)

where k � 2�/�. This expression is called a Fourier series.
The coefficients An and Bn have definite values for any par-
ticular periodic motion y(x). For example, the so-called
sawtooth wave of Fig. 18-13a can be described by

If the motion is not periodic, as in the case of a pulse, the
sum is replaced by an integral— the Fourier integral. Hence
any motion (pulsed or continuous) of a source of waves can
be represented in terms of a superposition of simple har-
monic motions, and any waveform so generated can be ana-
lyzed as a combination of components that are individually
simple harmonic waves. This once again illustrates the im-
portance of harmonic motion and harmonic waves.

Only in the case of a nondispersive medium will the
waveform maintain its shape as it travels. In a dispersive
medium, the waveforms of the sinusoidal component waves
do not change, but each may travel at a different speed. In
this case, the combined waveform changes as the phase re-
lationship between the components is altered. The wave can
also change its shape if it loses mechanical energy to the
medium, such as by air resistance, viscosity, or internal
friction. Such dissipative forces often depend on the speed,
and so the Fourier components most strongly affected are
those with higher particle speeds (that is, those with high
frequencies, according to Eq. 18-14 in which uy is seen to

y(x) � �
1

�
 sin kx �

1

2�
 sin 2kx �

1

3�
 sin 3kx � � � � .

depend on �). Here again the wave shape may change, as
the higher frequency components lose amplitude more
quickly. The decay with time of the sound of piano strings
is an example of this phenomenon. The vibrational motion
of a piano string, immediately after it is struck by the ham-
mer, includes a wide range of frequencies, which give it its
characteristic tone. The higher frequency components of
this complex motion dissipate their energy more rapidly
than the lower frequency components, and thus the charac-
ter of a sustained tone may change with time. �

18-8 INTERFERENCE OF WAVES

When two or more waves combine at a particular point, they
are said to interfere, and the phenomenon is called interfer-
ence. As we shall see, the resultant waveform is strongly de-
pendent on the relative phases of the interfering waves. Fig-
ure 18-14 shows an example of interfering waves.

Let us first consider two transverse sinusoidal waves of
equal amplitude and wavelength, which travel in the x direc-
tion with the same speed. We take the phase constant of one
wave to be 
, while the other has 
 � 0. Figure 18-15
shows two individual waves y1 and y2 and their sum y1 � y2

at a particular time for the two cases of 
 nearly 0 (the
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Figure 18-13. (a) The dashed line is a sawtooth wave com-
monly encountered in electronics. It can be represented as a Fourier
series of sine waves. (b) The first six sine waves of the Fourier se-
ries that represents the sawtooth wave are shown, and their sum is
shown as the solid curve in part (a). As more terms are included, the
Fourier series becomes a better approximation of the wave.



waves are nearly in phase) and 
 nearly 180° (the waves are
nearly out of phase). You can see by merely adding the indi-
vidual displacements at each x that in the first case there is
nearly complete reinforcement of the two waves and the re-
sultant has nearly double the amplitude of the individual
components, whereas in the second case there is nearly
complete cancellation at every point and the resultant am-
plitude is close to zero. These cases are known, respectively,
as constructive interference and destructive interference.

Let us see how interference arises from the equations
for the waves. We consider a general case in which the two
waves have phase constants 
1 and 
2, respectively. The
equations of the two waves are

y1(x, t) � ym sin (kx � �t � 
1) (18-36)

and
y2(x, t) � ym sin (kx � �t � 
2). (18-37)

Now let us find the resultant wave. Using the principle
of superposition, we take the sum of Eqs. 18-36 and 18-37,
which gives

(18-38)

From the trigonometric identity for the sum of the sines
of two angles,

(18-39)

we obtain, after some rearrangement,

y(x, t) � [2ym cos (�
/2)] sin (kx � �t � 
�), (18-40)

where 
� � (
1 � 
2)/2. The quantity �
 � (
2 � 
1) is
called the phase difference between the two waves.

This resultant wave corresponds to a new wave having the
same frequency but with an amplitude 2ym�cos (�
/2)�. If �

is very small (close to 0°), the resultant amplitude is nearly
2ym (as shown in Fig. 18-15a). When �
 is zero, the two
waves overlap completely: the crest of one falls on the crest of
the other and likewise for the valleys, which gives total con-
structive interference. The resultant amplitude is just twice
that of either wave alone. If �
 is close to 180°, on the other
hand, the resultant amplitude is nearly zero (as shown in Fig.
18-15b). When �
 is exactly 180°, the crest of one wave falls
exactly on the valley of the other. The resultant amplitude is
zero, corresponding to total destructive interference.

Notice that Eq. 18-40 always has the form of a sinu-
soidal wave. Thus adding two sine waves of the same wave-
length and amplitude always gives a sine wave of the iden-
tical wavelength. We can also add components that have the
same wavelength but different amplitudes. In this case the
resultant again is a sine wave with the identical wavelength,
but the resultant amplitude does not have the simple form
given by Eq. 18-40. If the individual amplitudes are y1m and
y2m , then if the waves are in phase (�
 � 0) the resultant
amplitude is y1m � y2m (Fig. 18-16a), whereas if they 

sin B � sin C � 2 sin 12 (B � C ) cos 12 (B � C ),

� sin (kx � �t � 
2)].

� ym[sin (kx � �t � 
1)

y(x, t) � y1(x, t) � y2(x, t) 
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Figure 18-14. Two wave trains, in this case circular ripples
from two different disturbances, interfere where they overlap at
particular points. The displacement at any point is the superposi-
tion of the individual displacements due to each of the two waves.

Figure 18-15. (a) The superposition of two waves of equal
wavelength and amplitude that are almost in phase results in a
wave of almost twice the amplitude of either component. (b) The
superposition of two waves of equal wavelength and amplitude
that are almost 180° out of phase results in a wave whose ampli-
tude is nearly zero. Note that the wavelength of the resultant is un-
changed in either case.
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Figure 18-16. The addition of two waves of the same wave-
length and phase but differing amplitudes (lighter color) gives a
resultant of the same wavelength and phase. (a) The amplitudes
add if the waves are in phase, and (b) they subtract if the waves
are 180° out of phase.
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are out of phase (
 � 180°) the resultant amplitude is 
�y1m � y2m� (Fig. 18-16b). There can be no complete de-
structive interference in this case, although there is partial
destructive interference.

Sample Problem 18-3. Two waves travel in the same
direction along a string and interfere. The waves have the same
wavelength and travel with the same speed. The amplitude of each
wave is 9.7 mm, and there is a phase difference of 110° between
them. (a) What is the amplitude of the combined wave resulting
from the interference of the two waves? (b) To what value should
the phase difference be changed so that the combined wave will
have an amplitude equal to that of one of the original waves?

Solution (a) The amplitude of the combined wave (always a posi-
tive quantity) was given in Eq. 18-40:

2ym�cos (�
/2)� � 2(9.7 mm)�cos (110°/2)� � 11.1 mm.

(b) If the quantity 2ym�cos (�
/2)� is to equal ym, then we must
have

2�cos (�
/2)� � 1,
or

Either wave can be leading the other by 120° (plus or minus any
integer multiple of 360°) to produce the desired combination
wave.

18-9 STANDING WAVES

In the previous section we considered the effect of super-
posing two component waves of equal amplitude and fre-
quency moving in the same direction on a string. What is
the effect if the waves are moving along the string in oppo-
site directions?

Figure 18-17 is a graphical indication of the effect of
adding the component waveforms to obtain the resultant.
Two traveling waves are shown in the figure, one moving to
the left and the other to the right. “Snapshots” are shown of
the two component waves and their resultant at intervals of
one-quarter period.

One particular feature results from this superposition:
there are certain points along the string, called nodes, at

�
 � 2 cos�1(1
2) � 120� or �120�.

which the displacement is zero at all times. (Figure 18-16
also showed some points in which the resultant had zero
displacement, but that figure represented a snapshot of trav-
eling waves at a particular time. If we took another snap-
shot an instant later, we would find that those points no
longer had zero displacement, because the wave is travel-
ing. In Fig. 18-17c, the zeros remain zeros at all times.) Be-
tween the nodes are the antinodes, where the displacement
oscillates with the largest amplitude. Such a pattern of
nodes and antinodes is known as a standing wave.

To analyze the standing wave mathematically, we repre-
sent the two waves by

y1(x, t) � ym sin (kx � �t),

y2(x, t) � ym sin (kx � �t).

Hence the resultant may be written

(18-41)

or, making use of the trigonometric relation of Eq. 18-39,

y(x, t) � [2ym sin kx] cos �t. (18-42)

Equation 18-42 is the equation of a standing wave. It can-
not represent a traveling wave, because x and t do not ap-
pear in the combination x � vt or x � vt required for a
traveling wave.

Note that a particle at any particular location x under-
goes simple harmonic motion, and that all particles vibrate
with the same angular frequency �. In a traveling wave
each particle of the string vibrates with the same amplitude.
In a standing wave, however, the amplitude is not the same
for different particles but varies with the location x of the
particle. In fact, the amplitude, �2ym sin kx�, has a maximum
value of 2ym at positions where . . . .
That is,

or, substituting k � 2�/�,

(18-43)x � �n �
1

2 �
�

2
n � 0, 1, 2, . . .

kx � �n �
1

2 � � n � 0, 1, 2, . . .

kx � 1
2�, 32�, 52�,

� ym sin (kx � �t) � ym sin (kx � �t)

y(x, t) � y1(x, t) � y2(x, t)
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Figure 18-17. (a, b) Two travel-
ing waves of the same wavelength
and amplitude, moving in opposite di-
rections. (c) The superposition of the
two waves at different instants of
time. The nodes in the standing wave
pattern are indicated by dots. Note
that the traveling waves have no
nodes.



These points are the antinodes and are spaced one-half
wavelength apart.

The amplitude has a minimum value of zero at positions
where kx � 0, �, 2�, 3�, . . . , so

kx � n� n � 0, 1, 2, . . .
or

(18-44)

These points are the nodes and are also spaced one-half
wavelength apart. The separation between a node and an
adjacent antinode is one-quarter wavelength.

It is clear that energy is not transported along the string
to the right or to the left, for energy cannot flow past the
nodes in the string, which are permanently at rest. Hence
the energy remains “standing” in the string, although it al-
ternates between vibrational kinetic energy and elastic po-
tential energy. When the antinodes are all at their maximum
displacements, the energy is stored entirely as potential en-
ergy, in particular as the elastic potential energy associated
with the stretching of the string. When all parts of the string
are simultaneously passing through equilibrium (as in the
second and fourth snapshots of Fig. 18-17c), the energy is
stored entirely as kinetic energy. Figure 18-18 shows a

x � n
�

2
n � 0, 1, 2, . . . .

more detailed description of the shifting of energy between
kinetic and potential forms during one cycle of oscillation.
Compare Fig. 18-18 with Fig. 12-5 for the oscillating
block– spring system. How are these systems similar?

We can equally well regard the motion as an oscillation
of the string as a whole, each particle undergoing simple
harmonic motion of angular frequency � and with an am-
plitude that depends on its location. Each small part of the
string has inertia and elasticity, and the string as a whole
can be thought of as a collection of coupled oscillators.
Hence the vibrating string is the same in principle as the
block– spring system, except that the block– spring system
has only one natural frequency, and a vibrating string has a
large number of natural frequencies (see Section 18-10.)

Reflection at a Boundary
To set up a standing wave in a string, we want to superim-
pose two waves traveling in opposite directions. One way
to achieve this is to send a wave along a string so that it
meets its reflection coming back. Here we consider the re-
flection process in more detail.

By way of illustration we consider a pulse rather than a
sinusoidal wave. Suppose a pulse travels along a string that
is fixed at one end, as shown in Fig. 18-19a. When the
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Figure 18-18. A standing wave on a stretched string, showing
one cycle of oscillation. At (a) the string is momentarily at rest with
the antinodes at their maximum displacement. The energy of the
string is all elastic potential energy. (b) One-eighth of a cycle later,
the displacement is reduced and the energy is partly potential and
partly kinetic. The vectors show the instantaneous velocities of par-
ticles of the string at certain locations. (c) The displacement is zero;
there is no potential energy, and the kinetic energy is maximum. The
particles of the string have their maximum velocities. (d–h) The mo-
tion continues through the remainder of the cycle, with the energy
being continually exchanged between potential and kinetic forms.

U K(a) U K(e)

U K
(c)

U K
(g)

U K
(b)

U K
(d)

U K
(f)

U K
(h)

Figure 18-19. (a) A transverse pulse incident from the right is
reflected by a rigid wall. Note that the phase of the reflected pulse is
inverted, or changed by 180°. (b) Here the end of the string is free
to move, the string being attached to a loop that can slide freely
along the rod. The phase of the reflected pulse is unchanged.

(a) (b)



pulse arrives at that end, it exerts an upward force on the
support. Because the support is rigid, it does not move, and
by Newton’s third law it must exert an equal but oppositely
directed force on the string. That force would be downward
in Fig. 18-19a and causes an inverted pulse to travel in the
opposite direction along the string. The incident and re-
flected pulses must tend to produce opposite displacements
at the fixed end of the string, in order to keep that point
fixed. We can consider this to be a situation of total destruc-
tive interference— the incident and reflected waves must be
180° out of phase. On reflection from a fixed end, a trans-
verse wave undergoes a phase change of 180°.

The reflection of a pulse at a free end of a stretched
string— that is, at an end that is free to move trans-
versely— is represented in Fig. 18-19b. The end of the
string is attached to a very light ring that is free to slide
without friction along a transverse rod. When the pulse ar-
rives at the free end, it exerts a force on the element of
string there. This element is accelerated, and (as in the case
of a pendulum) its motion carries it past the equilibrium
point; it “overshoots” and exerts a reaction force on the
string. This generates a pulse that travels back along the
string in a direction opposite to that of the incident pulse.
Once again we get reflection, but now at a free end. The
free end will obviously suffer the maximum displacement
of the particles on the string; an incident and a reflected
wavetrain must interfere constructively at that point if we
are to have a maximum there. Hence the reflected wave is
always in phase with the incident wave at that point. At a
free end, a transverse wave is reflected without change of
phase.

So far we have assumed that the wave reflects at the
boundary with no loss of intensity. In practice, we always
find that at any boundary between two media there is partial
reflection and partial transmission; for example, looking at
a piece of ordinary window glass, you can see some light
reflected back toward you and some transmitted through the
glass. We can demonstrate this effect with transverse waves
on strings by tying together two strings of different mass
densities. When a wave traveling along one of the strings
reaches the point where the strings are joined, part of the
wave energy is transmitted to the other string and part is re-
flected back. The amplitude of the reflected wave is less
than the amplitude of the original incident wave, because
the wave transmitted to the second string carries away some
of the incident energy.

If the second string has a greater mass density than the
first, the wave reflected back into the first string still suffers
a phase shift of 180° on reflection. However, because its
amplitude is less than the incident wave, the boundary point
is not a node and moves. Thus a net energy transfer occurs
along the first string into the second. If the second string
has a smaller mass density than the first, partial reflection
occurs without change of phase, but once again energy is
transmitted to the second string. In practice, the best way to
realize a “free end” for a string is to attach it to a long and

very much lighter string. The energy transmitted is negligi-
ble, and the second string serves to maintain the tension in
the first one.

Note that the transmitted wave travels with a speed dif-
ferent from that of the incident and reflected waves. The
wave speed is determined by the relation the
tension is the same in both strings, but their densities are
different. Hence the wave travels more slowly in the denser
string. The frequency of the transmitted wave is the same as
that of the incident and reflected waves. (If this were not
true, there would be a discontinuity at the point where the
strings are joined.) Waves having the same frequency but
traveling with different speeds have different wavelengths.
From the relation � � v/f, we conclude that in the denser
string, where v is smaller, the wavelength is shorter. This
phenomenon of change of wavelength as a wave passes
from one medium to another will be encountered frequently
in our study of light waves. It also occurs for sound waves:
a string, such as on a guitar, vibrates with a certain fre-
quency and wavelength; the wave transmitted to the air has
the same frequency as that of the string, but a different
wavelength, because the speed of waves on the string dif-
fers from their speed in air.

18-10 STANDING WAVES AND
RESONANCE

Consider a string of length L that is fixed at both ends, such
as we might find on a guitar or a violin. If we pluck the
string near the middle and then examine its motion, we
might find that it looks like Fig. 18-20a. A standing wave is
established with a node at each end and an antinode in the
middle.

How is it possible that by plucking the string we set up
standing waves? The initial shape of the string, just as we
release it, might have a triangular shape that we can analyze
as a sum of sine and cosine terms using the method of

v � √F/;
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Figure 18-20. Standing wave patterns on a string of length L
stretched between two fixed supports. Four different patterns are
shown, corresponding to different wavelengths and frequencies.

L

n = 1

n = 2

n = 3

n = 4
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(b)

(c)

(d)



Fourier analysis described in Section 18-7. Each of these
waves travels along the string, reflects from the ends, and
interferes with all of the waves traveling on the string. The
higher frequencies tend to damp out more rapidly, leaving
us with only the standing wave corresponding to the lowest
possible frequency, which is shown in Fig. 18-20a. The
spacing between nodes is always �/2, so for the standing
wave pattern shown in Fig. 18-20a we have L � �/2.

We can produce a different standing wave on the string
by placing a finger lightly near the center to keep it from
moving and plucking about 1/4 of the way from either end.
This procedure will produce a standing wave that looks like
Fig. 18-20b. For this wave L � �. By damping and pluck-
ing the string in suitably chosen locations, we can produce
the standing wave patterns shown in Figs. 18-20c and 18-
20d, for which L � 3�/2 and L � 2�, respectively.

You can see that the condition for a standing wave to be
set up in a string of length L fixed at both ends is

or

(18-45)

where �n is the nth wavelength in this infinite series. Note
that n is the number of half-wavelengths or “loops” that ap-
pear in the patterns of Fig. 18-20. Using Eq. 18-13 (v �
�f ) , we can write Eq. 18-45 as

(18-46)

These are the allowed frequencies of the standing waves on
the string.

If we consider the similarity between a vibrating spring
and a simple harmonic oscillator, we may wonder why the
simple oscillator such as the block– spring system has only
one allowed frequency whereas the string has an infinite
number. In the block– spring system, the inertia is concen-
trated (“lumped”) in a single element of the system (the
block), but in the string the inertia is distributed throughout
the system. Similarly, the elasticity of the block– spring

fn �
v

�n

� n
v

2L
(n � 1, 2, 3, . . .).

�n �
2L

n
(n � 1, 2, 3, . . .),

L � n
�

2
(n � 1, 2, 3, . . .)

system is lumped in one element (the spring) but in the
string it is distributed throughout the system. Although
there is only one way for the block– spring system to store
kinetic and potential energy, the vibrating spring has an in-
finite number of ways to store its energy.

In general, a lumped system of N elements has N differ-
ent oscillating frequencies, each of which corresponds to a
different pattern of oscillation. Figure 18-21 shows an ex-
ample of a lumped system with one, two, or three elements.
The limit as N tends to infinity leads us to the completely
distributed system of the stretched string, with its infinite
number of vibrational frequencies.

Resonance in the Stretched String
Figure 18-22 shows time exposures of a student shaking
one end of a string that is fixed at the other end. The result-
ing patterns of oscillation look just like the standing waves
of Fig. 18-20. Careful examination would show that the stu-
dent’s hand is moving back and forth at small amplitude
with one of the frequencies given by Eq. 18-46. We can re-
gard those frequencies as the natural frequencies of the vi-
brating system. The student’s hand is the driving force that
sets the string into oscillation, and when the driving fre-
quency matches one of the natural frequencies we get an
oscillation at large amplitude, in exact analogy with our
discussion of resonance of the forced oscillator in Section
17-8.

As the student shakes the string, his hand is doing work
on it to pump energy into the vibrating system. Energy is
lost by the system, perhaps to internal energy of the string,
to air resistance, or to the support at the fixed end. As in the
case of the forced oscillator, eventually a steady state is
reached in which the energy supplied by the student exactly
balances the energy lost by the string to dissipative forces.

If the student shakes the string at a frequency that dif-
fers from one of the natural frequencies, the reflected wave
returns to the student’s hand out of phase with the motion
of the hand. In this case the string does work on the hand,
in addition to the hand doing work on the string. No fixed
standing wave pattern is produced; the amplitude of the re-
sulting motion of the string is small and not much different
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N = 1 N = 2 N = 3 Figure 18-21. Some patterns of os-
cillation of an oscillator having lumped
elements— in this case oscillating bodies
connected by springs of negligible mass.
Each different pattern of motion has a dif-
ferent natural frequency, the number of
natural frequencies being equal to the
number of oscillating bodies.



from the motion of the student’s hand. This situation is
analogous to the erratic, small-amplitude motion of a swing
being pushed with a frequency other than its natural one. At
resonance, the motion of the student’s hand is in phase with
that of the string, so no energy is lost by the string through
work done on the student’s hand.

In actuality, the motion of the string is a very good ap-
proximation to the standing wave patterns of Fig. 18-20,
but not quite an exact one. The resonant frequency is al-
most, but not exactly, a natural frequency of the system.
The apparent nodes are not true nodes, because some en-
ergy must be flowing past them along the string to compen-
sate for losses due to damping. If there were no damping,
the resonant frequency would be exactly a natural fre-
quency, and the amplitude would increase without limit as
energy continued to be supplied to the string by the stu-
dent’s hand. Eventually the elastic limit would be exceeded
and the string would break.

If it were possible to shake the string with an assortment
of frequencies, the motion of the string would select those
frequencies that were equal to its natural frequencies. Mo-
tion at those frequencies would be reinforced and would oc-
cur at large amplitude, whereas motion at the other frequen-
cies would be damped or suppressed. This principle
governs the production of sound by musical instruments, as
we discuss in the next chapter.

Sample Problem 18-4. In the arrangement of Fig. 18-
23, a motor sets the string into motion at a frequency of 120 Hz.
The string has a length of L � 1.2 m, and its linear mass density is
1.6 g/m. To what value must the tension be adjusted (by increas-
ing the hanging weight) to obtain the pattern of motion having
four loops?

Solution To find the tension, we can substitute Eq. 18-19 into Eq.
18-46 and obtain

.

The tension corresponding to n � 4 (for 4 loops) is found to be

This corresponds to a hanging weight of about 2 lb.

Sample Problem 18-5. A violin string tuned to concert
A (440 Hz) has a length of 0.34 m. (a) What are the three longest
wavelengths of the resonances of the string? (b) What are the cor-
responding wavelengths that reach the ear of the listener?

Solution (a) The resonant wavelengths of a string of length L �
0.34 m can be found directly from Eq. 18-45:

�3 � 2L /3 � 0.23 m.

�2 � 2L /2 � 0.34 m,

�1 � 2L /1 � 2(0.34 m) � 0.68 m,

F �
4(1.2 m)2(120 Hz)2(0.0016 kg/m)

42 � 8.3 N.

F �
4L2 f 2

n

n2
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Figure 18-22. A student
shakes a stretched string (actually a
rubber tube) at four resonant fre-
quencies, producing four different
patterns of standing waves. The let-
ters N and A indicate the nodes and
antinodes, respectively.

Figure 18-23. Sample Problem 18-4. A string under tension
is connected to a vibrator. For a fixed vibrator frequency, standing
wave patterns will occur for certain discrete values of the tension
in the string.

Motor
P Q

W



(b) When a wave passes from one medium (the string) to another
(the air) of differing wave speed, the frequency remains the same,
but the wavelength changes. Equation 18-20 gives the relationship
between the wavelengths. To find the wave speed on the string, we
note that in the lowest resonant mode f � 440 Hz and � � 0.68
m, so that

v � f� � (440 Hz)(0.68 m) � 299 m/s.

In air, the wave speed is 343 m/s, and from Eq. 18-20 we obtain

We thus find the wavelengths in air:

�1 � 0.78 m, �2 � 0.39 m, �3 � 0.26 m.

�air � �string
vair

vstring
� �string

343 m/s

299 m/s
� 1.15�string
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MULTIPLE CHOICE

18-1 Mechanical Waves

18-2 Types of Waves

18-3 Traveling Waves
1. A disturbance can be written

This disturbance is
(A) not a traveling wave.
(B) a traveling wave with speed v � a.
(C) a traveling wave with speed v � a/b.
(D) a traveling wave with speed v � b.

2. A traveling wave is of the form

which can also be written as

y(x, t) � D sin (kx � �t � 
),
where

(a)

(A) D � A � B (B) D � �A� � �B�
(C) D2 � A2 � B2 (D) D � A � B

and

(b)

(A) 
 � tan� 1 (A/B). (B) 
 � tan� 1 (B/A).
(C) 
 � tan� 1 (� A/B). (D) 
 � 0.

3. Consider the maximum transverse speed umax of a particle in a
wave and the wave speed v. Which of the following state-
ments is most true?

(A) umax is always greater than v.
(B) umax is always equal to v.
(C) umax is always less than v.
(D) umax is unrelated to v.

18-4 Wave Speed on a Stretched Spring
4. A string is stretched horizontally between a fixed point and a

frictionless pulley; the string passes over the pulley and an
object of mass m is hanging from the end of the string. The
tension in this string is T0; the speed of a wave on this string
is v0. A second string is connected beside the first, passes over
the same pulley, and then is attached to the same object. As-
suming both strings support the object equally,

(a) the tension in the first string is now

(A) T0 /2. (B) T0 (C) 2T0.

(b) The speed of a wave on the first string would now be

(A) (B) v0 / (C) v0 /2.
(D) v0. (E) v0.√2

√2.√v0 /2.

y(x, t) � A cos (kx � �t) � B sin (kx � �t),

y(x, t) � (e�(x/b)2
e2xt/be�t2

)a.

The two strings are now twisted together to make one string
with twice the mass density. This new string is still attached
to the same hanging object.

(c) The speed of a wave on this new string would now be

(A) . (B) v0 / . (C) v0 /2.
(D) v0. (E)

5. Dispersion happens as a wave pulse travels through a medium
because

(A) different wave frequencies lose energy at different
rates.

(B) different wave amplitudes lose energy at different
rates.

(C) different wave frequencies travel through the medium
at different wave speeds.

(D) different wave amplitudes travel through the medium
with different wavelengths.

18-5 The Wave Equation
6. Which of the following functions is not a solution to the wave

equation (Eq. 18-24)?
(A) y � sin x cos t (B) y � tan (x � t)
(C) y � x 3 � 6x 2t � 12xt 2 � 8t 3

(D) y � sin (x � t) cos (x � t)

7. Which of the following functions is a solution to the wave
equation (Eq. 18-24)?

(A) y � x 2 � t 2 (B) y � sin x 2 sin t
(C) y � log (x 2 � t 2) � log (x � t)
(D) y � ex sin t

18-6 Energy in Wave Motion
8. A certain wave on a string with amplitude A0 and frequency f0

transfers energy at an average rate of P0. If the amplitude and
frequency are both doubled, the new wave would transfer en-
ergy at an average rate of

(A) P0. (B) 4P0. (C) � 2P0.
(D) 4� 2P0. (E) 16P0.

9. A wave on a string passes the point x � 0 with amplitude A0,
angular frequency �0, and average rate of energy transfer P0.
As the wave travels down the string it gradually loses energy;
at the point x � l the average rate of energy transfer is now
P0 /2.
(a) At the point x � l the angular frequency of the wave

(A) is still �0.
(B) can be less than �0 but is more than �0/ .
(C) can be less than �0 but is more than �0/2.
(D) is equal to �0/ .
(E) is equal to �0/2.

√2

√2

√2v0.
√2√v0 /2



(b) At the point x � l the amplitude of the wave

(A) is still A0 .
(B) can be less than A0 but is more than A0/ .
(C) can be less than A0 but is more than A0/2.
(D) is equal to A0/ .
(E) is equal to A0/2.

18-7 The Principle of Superposition

18-8 Interference of Waves
10. Two waves travel down the same string. The waves have the

same velocity, frequency ( f0), and wavelength but different
phase constants (
1 � 
2) and amplitudes (A1 � A2).
(a) According to the principle of superposition, the resultant
wave has an amplitude A such that

(A) A � A1 � A2. (B) A � A1 � A2.
(C) A2 � A � A1. (D) A1 � A2 � A � A1 � A2.

(b) According to the principle of superposition, the resultant
wave has a frequency f such that

(A) f � f0. (B) f0/2 � f � f0.
(C) 0 � f � f0. (D) f � 2f0.

11. Two waves moving along the same string are defined by y1 �
2 sin (kx � �t � 0) and y2 � 2 sin (kx � �t � 2�). The am-
plitude of the resultant wave is

(A) 0. (B) 2. (C) 2 . (D) 4.

18-9 Standing Waves
12. In the equation for the standing wave (Eq. 18-42), what does

the quantity �/k represent?
(A) The transverse speed of the particles of the string.
(B) The speed of either of the component waves.
(C) The speed of the standing wave.
(D) A quantity that is independent of the properties of the

string.

13. A standing wave occurs on a string when two waves of equal
amplitude, frequency, and wavelength move in opposite direc-
tions on a string. If the wavelength of the two waves is de-
creased to one-half the original length while the wave speed
remains unchanged, then the angular frequency of oscillation
of the standing wave will

(A) decrease to one-half. (B) remain the same.
(C) double.

√2

√2

√2

14. Assume that one of the components of the standing wave (as
written in Eq. 18-41) has an additional phase constant �
.
How will this affect the standing wave?

(A) The standing wave will have a different frequency.
(B) The standing wave will have a different amplitude.
(C) The standing wave will have a different spacing be-

tween the nodes.
(D) None of these things will happen.

15. In a standing wave on a string, the spacing between nodes is
�x. If the tension in the string is doubled but the frequency of
the standing waves is fixed, then the spacing between the
nodes will change to

(A) 2�x. (B) �x.
(C) �x/2. (D) �x/ .

18-10 Standing Waves and Resonance
16. A string is stretched between fixed points. The string has a

mass density , is under a tension F, and has a length L. The
string is vibrating at the lowest allowed frequency.
(a) The wave speed on this string is a function of

(A) . (B) F. (C) L.
(D)  and F. (E) , F, and L.

(b) The lowest allowed standing wave frequency is a function
of

(A) . (B) F. (C) L.
(D)  and F. (E) , F, and L.

(c) The lowest allowed standing wave wavelength is a func-
tion of

(A) . (B) F. (C) L.
(D)  and F. (E) , F, and L.

17. A 10-cm-long rubber band obeys Hooke’s law. When the rub-
ber band is stretched to a total length of 12 cm the lowest res-
onant frequency is f0. The rubber band is then stretched to a
length of 13 cm. The lowest resonant frequency will now be

(A) higher than f0.
(B) the same as f0.
(C) lower than f0.
(D) changed, but the direction of the change depends on

the elastic constant and the original tension.

√2
√2
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QUESTIONS

1. How could you prove experimentally that energy is associated
with a wave?

2. Energy can be transferred by particles as well as by waves.
How can we experimentally distinguish between these meth-
ods of energy transfer?

3. Can a wave motion be generated in which the particles of the
medium vibrate with angular simple harmonic motion? If so,
explain how and describe the wave.

4. In analyzing the motion of an elastic wave through a material
medium, we often ignore the molecular structure of matter.
When is this justified and when is it not?

5. How do the amplitude and the intensity of surface water
waves vary with the distance from the source?

6. How can one create plane waves? Spherical waves?

7. A passing motor boat creates a wake that causes waves to
wash ashore. As time goes on, the period of the arriving
waves grows shorter and shorter. Why?

8. The following functions in which A is a constant are of the
form y � f (x � vt):

Explain why these functions are not useful in wave motion.

9. Can one produce on a string a waveform that has a disconti-
nuity in slope at a point— that is, a sharp corner? Explain.

y � A ln (x � vt).y � A(x � vt)2,

y � A√x � vt,y � A(x � vt),



10. The inverse-square law does not apply exactly to the decrease
in intensity of sounds with distance. Why not?

11. When two waves interfere, does one alter the progress of the
other?

12. When waves interfere, is there a loss of energy? Explain your
answer.

13. Why do we not observe interference effects between the light
beams emitted from two flashlights or between the sound
waves emitted by two violins?

14. As Fig. 18-17 shows, twice during the cycle the configuration
of standing waves in a stretched string is a straight line, ex-
actly what it would be if the string were not vibrating at all.
Discuss from the point of view of energy conservation.

15. Two waves of the same amplitude and frequency are traveling
on the same string. At a certain instant the string looks like a
straight line. Are the two waves necessarily traveling in the
same direction? What is the phase relationship between the
two waves?

16. If two waves differ only in amplitude and are propagated in
opposite directions through a medium, will they produce
standing waves? Is energy transported? Are there any nodes?

17. The partial reflection of wave energy by discontinuities in the
path of transmission is usually wasteful and can be mini-
mized by insertion of “impedance matching” devices be-
tween sections of the path bordering on the discontinuity. For
example, a megaphone helps match the air column of mouth
and throat to the air outside the mouth. Give other examples

and explain qualitatively how such devices minimize reflec-
tion losses.

18. Consider the standing waves in a string to be a superposition
of traveling waves and explain, using superposition ideas,
why there are no true nodes in the resonating string of Fig.
18-23, even at the “fixed” end. (Hint: Consider damping ef-
fects.)

19. Standing waves in a string are demonstrated by an arrange-
ment such as that of Fig. 18-23. The string is illuminated by a
fluorescent light and the vibrator is driven by the same elec-
tric outlet that powers the light. The string exhibits a curious
color variation in the transverse direction. Explain.

20. In the discussion of transverse waves on a string, we have
dealt only with displacements in a single plane, the xy plane.
If all displacements lie in one plane, the wave is said to be
plane polarized. Can there be displacements in a plane other
than the plane dealt with? If so, can two different plane polar-
ized waves be combined? What appearance would such a
combined wave have?

21. A wave transmits energy. Does it transfer momentum? Can it
transfer angular momentum? (See “Energy and Momentum
Transport in String Waves,” by D. W. Juenker, American
Journal of Physics, January 1976, p. 94.)

22. In the Mexico City earthquake of September 19, 1985, areas
with high damage alternated with areas of low damage. Also,
buildings between 5 and 15 stories high sustained the most
damage. Discuss these effects in terms of standing waves and
resonance.
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EXERCISES

18-1 Mechanical Waves

18-2 Types of Waves

18-3 Traveling Waves
1. A wave has a wave speed of 243 m/s and a wavelength of

3.27 cm. Calculate (a) the frequency and (b) the period of the
wave.

2. By rocking a boat, a child produces surface water waves on a
previously quiet lake. It is observed that the boat performs 12
oscillations in 30 s and also that a given wave crest reaches
shore 15 m away in 5.0 s. Find (a) the frequency, (b) the
speed, and (c) the wavelength of the waves.

3. A sinusoidal wave travels along a string. The time for a par-
ticular point to move from maximum displacement to zero
displacement is 178 ms. The wavelength of the wave is 1.38
m. Find (a) the period, (b) the frequency, and (c) the speed of
the wave.

4. Write an expression describing a transverse wave traveling
along a string in the � x direction with wavelength 11.4 cm,
frequency 385 Hz, and amplitude 2.13 cm.

18-4 Wave Speed on a Stretched Spring
5. Assuming that the wave speed on a stretched string depends

on the tension F and linear mass density  as v � Fa/b, use
dimensional analysis to show that and .b � 1

2a � 1
2

6. The equation of a transverse wave traveling along a string is
given by

y � (2.30 mm) sin [(1822 rad/m)x � (588 rad/s)t].

Find (a) the amplitude, (b) the frequency, (c) the velocity, (d)
the wavelength of the wave, and (e) the maximum transverse
speed of a particle in the string.

7. The equation of a transverse wave traveling along a very long
string is given by

y � (6.0 cm) sin [(2.0� rad/m)x � (4.0� rad/s)t].

Calculate (a) the amplitude, (b) the wavelength, (c) the fre-
quency, (d) the speed, (e) the direction of propagation of the
wave, and ( f ) the maximum transverse speed of a particle in
the string.

8. Calculate the speed of a transverse wave in a string of length
2.15 m and mass 62.5 g under a tension of 487 N.

9. The speed of a wave on a string is 172 m/s when the tension
is 123 N. To what value must the tension be increased in or-
der to raise the wave speed to 180 m/s?

10. The equation of a particular transverse wave on a string is

y � (1.8 mm) sin [(23.8 rad/m)x � (317 rad/s)t].

The string is under a tension of 16.3 N. Find the linear mass
density of the string.



11. A simple harmonic transverse wave is propagating along a
string toward the left (or � x) direction. Figure 18-24 shows a
plot of the displacement as a function of position at time t �
0. The string tension is 3.6 N and its linear density is 25 g/m.
Calculate (a) the amplitude, (b) the wavelength, (c) the wave
speed, (d) the period, and (e) the maximum speed of a parti-
cle in the string. ( f ) Write an equation describing the travel-
ing wave.

(a) Show that 

is a solution to this wave equation. (b) What are the dimen-
sions of the constant A?

18-6 Energy in Wave Motion
15. A string 2.72 m long has a mass of 263 g. The tension in the

string is 36.1 N. What must be the frequency of traveling
waves of amplitude 7.70 mm in order that the average trans-
mitted power be 85.5 W?

16. A line source emits a cylindrical expanding wave. Assuming
that the medium absorbs no energy, find how (a) the intensity
and (b) the amplitude of the wave depend on the distance
from the source.

17. An observer measures an intensity of 1.13 W/m2 at an un-
known distance from a source of spherical waves whose
power output is also unknown. The observer walks 5.30 m
closer to the source and measures an intensity of 2.41 W/m2

at this new location. Calculate the power output of the source. 

18. (a) Show that the intensity I is the product of the energy den-
sity u (energy per unit volume) and the speed of propagation v
of a wave disturbance; that is, show that I � uv. (b) Calculate
the energy density in a sound wave 4.82 km from a 47.5-kW
siren, assuming the waves to be spherical, the propagation
isotropic with no atmospheric absorption, and the speed of
sound to be 343 m/s.

18-7 The Principle of Superposition

18-8 Interference of Waves
19. What phase difference between two otherwise identical trav-

eling waves, moving in the same direction along a stretched
string, will result in the combined wave having an amplitude
1.65 times that of the common amplitude of the two combin-
ing waves? Express your answer in both degrees and radians.

20. Determine the amplitude of the resultant wave when two si-
nusoidal waves having the same frequency and traveling in
the same direction are combined, if their amplitudes are 
3.20 cm and 4.19 cm and they differ in phase by �/2 rad.

21. For the case in which the component waves in Eq. 
18-38 have different amplitudes ym1 and ym2, show that 
the quantity in square brackets in Eq. 18-40 becomes

and the phase constant f′
becomes

.

Check that both expressions reduce to the expected results
when ym1 � ym2 � ym.

22. Two pulses are traveling along a string in opposite directions,
as shown in Fig. 18-26. (a) If the wave speed is 2.0 m/s and
the pulses are 6.0 cm apart, sketch the patterns after 5.0, 10,
15, 20, and 25 ms. (b) What has happened to the energy at 
t � 15 ms?


� � sin�1� ym1 sin 
1 � ym2 sin 
2

(y2
m1 � y2

m2 � 2ym1ym2 cos �
)1/2 �

[y2
m1 � y2

m2 � 2ym1ym2 cos �
]1/2

y(r, t) �
A

r
 sin (kr � �t)

422 Chapter 18 / Wave Motion

Figure 18-24. Exercise 11.

Figure 18-25. Exercise 12.

Figure 18-26. Exercise 22.
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12. In Fig. 18-25a, string 1 has a linear mass density of 3.31 g/m,
and string 2 has a linear mass density of 4.87 g/m. They are
under tension due to the hanging block of mass M � 511 g.
(a) Calculate the wave speed in each string. (b) The block is
now divided into two blocks (with M1 � M2 � M ) and the
apparatus is rearranged as shown in Fig. 18-25b. Find M1 and
M2 such that the wave speeds in the two strings are equal.

13. A wire 10.3 m long and having a mass of 97.8 g is stretched
under a tension of 248 N. If two pulses, separated in time by
29.6 ms, are generated one at each end of the wire, where will
the pulses meet?

18-5 The Wave Equation
14. In a spherically symmetric system, the three-dimensional

wave equation is given by

1

r 2

	

	r �r 2 	y

	r � �
1

v2

	2y

	t 2 .

String 2

String 2

String 1
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Knot

M
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v

–v
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23. Three sinusoidal waves travel in the positive x direction along
the same string. All three waves have the same frequency.
Their amplitudes are in the ratio 1 : : and their phase angles
are 0, �/2, and �, respectively. Plot the resultant waveform
and discuss its behavior as t increases.

24. Four sinusoidal waves travel in the positive x direction along
the same string. Their frequencies are in the ratio 1 :2 :3 :4
and their amplitudes are in the ratio 1 : : : , respectively.
When t � 0, at x � 0, the first and third waves are 180° out
of phase with the second and fourth. Plot the resultant wave-
form when t � 0 and discuss its behavior as t increases.

18-9 Standing Waves
25. A string fixed at both ends is 8.36 m long and has a mass of

122 g. It is subjected to a tension of 96.7 N and set vibrating.
(a) What is the speed of the waves in the string? (b) What is
the wavelength of the longest possible standing wave? (c)
Give the frequency of that wave.

26. A nylon guitar string has a linear mass density of 7.16 g/m
and is under a tension of 152 N. The fixed supports are 
89.4 cm apart. The string is vibrating in the standing wave
pattern shown in Fig. 18-27. Calculate the (a) speed, (b)
wavelength, and (c) frequency of the component waves whose
superposition gives rise to this vibration.

1
4

1
3

1
2

1
3

1
2

the distance between nodes. (c) What is the velocity of a 
particle of the string at the position x � 1.47 cm at time t �
1.36 s?

29. Vibrations from a 622-Hz tuning fork set up standing waves
in a string clamped at both ends. The wave speed for the
string is 388 m/s. The standing wave has four loops and an
amplitude of 1.90 mm. (a) What is the length of the string?
(b) Write an equation for the displacement of the string as a
function of position and time.

18-10 Standing Waves and Resonance
30. A 15.0-cm violin string, fixed at both ends, is vibrating in its

n � 1 mode. The speed of waves in this wire is 250 m/s, and
the speed of sound in air is 348 m/s. What are (a) the fre-
quency and (b) the wavelength of the emitted sound wave?

31. What are the three lowest frequencies for standing waves on a
wire 9.88 m long having a mass of 0.107 kg, which is
stretched under a tension of 236 N?

32. A 1.48-m-long wire has a mass of 8.62 g and is held under a
tension of 122 N. The wire is held rigidly at both ends and set
into vibration. Calculate (a) the speed of waves on the wire,
(b) the wavelengths of the waves that produce one- and two-
loop standing waves on the wire, and (c) the frequencies of
the waves in (b).

33. One end of a 120-cm string is held fixed. The other end is at-
tached to a weightless ring that can slide along a frictionless
rod as shown in Fig. 18-28. What are the three longest possi-
ble wavelengths for standing waves in this string? Sketch the
corresponding standing waves.

Problems 423

Figure 18-27. Exercise 26.

Figure 18-28. Exercise 33.

89.4 cm

27. The equation of a transverse wave traveling in a string is
given by

y � (0.15 m) sin [(0.79 rad/m)x � (13 rad/s)t].

(a) What is the displacement at x � 2.3 m, t � 0.16 s? 
(b) Write down the equation of a wave that, when added to
the given one, would produce standing waves on the string.
(c) What is the displacement of the resultant standing wave at 
x � 2.3 m, t � 0.16 s?

28. A string vibrates according to the equation

y � (0.520 cm) sin [(1.14 rad/cm)x] cos [(137 rad/s)t].

(a) What are the amplitude and speed of the component waves
whose superposition can give rise to this vibration? (b) Find

34. A 75.6-cm string is stretched between fixed supports. It is ob-
served to have resonant frequencies of 420 and 315 Hz, and
no other resonant frequencies between these two. (a) What is
the lowest resonant frequency for this string? (b) What is the
wave speed for this string?

PROBLEMS

1. A wave of frequency 493 Hz has a speed of 353 m/s. (a) How
far apart are two points differing in phase by 55.0°? (b) Find
the difference in phase between two displacements at the
same point but at times differing by 1.12 ms.

2. Write the equation for a wave traveling in the negative direc-
tion along the x axis and having an amplitude of 1.12 cm, a
frequency of 548 Hz, and a speed of 326 m/s.

3. The tensile stress S in a wire is defined as the tension force
per unit cross-sectional area. Show that the speed of trans-
verse waves in a wire is v � (S/�)1/2 where � is the mass den-
sity of the wire. (b) Allowing for a reasonable safety factor,
the maximum tensile stress to which steel should be subject is
720 MPa. The density of steel is 7.8 g/cm3. Find the maxi-
mum speed of a transverse wave in a steel wire.



4. A continuous sinusoidal wave is traveling on a string with
speed 82.6 cm/s. The displacement of the particles of the
string at x � 9.60 cm is found to vary with time according to
the equation y � (5.12 cm) sin [(1.16 rad) � (4.08 rad/s)t].
The linear mass density of the string is 3.86 g/cm. (a) Find
the frequency of the wave. (b) Find the wavelength of the
wave. (c) Write the general equation giving the transverse dis-
placement of the particles of the string as a function of posi-
tion and time. (d ) Calculate the tension in the string.

5. Prove that the slope of a string at any point is numerically
equal to the ratio of the particle speed to the wave speed at
that point.

6. For a wave on a stretched cord, find the ratio of the maximum
particle speed (the maximum speed with which a single parti-
cle in the cord moves transverse to the wave) to the wave
speed. If a wave having a certain frequency and amplitude is
imposed on a cord, would this speed ratio depend on the ma-
terial of which the cord is made, such as wire or nylon?

7. The type of rubber band used inside some baseballs and golf
balls obeys Hooke’s law over a wide range of elongation of
the band. A segment of this material has an unstretched length
L and a mass m. When a force F is applied, the band stretches
an additional length �L. (a) What is the speed (in terms of m,
�L, and the force constant k) of transverse waves on this rub-
ber band? (b) Using your answer to (a), show that the time re-
quired for a transverse pulse to travel the length of the rubber
band is proportional to if �L �� L and is constant if
�L �� L.

8. A uniform rope of mass m and length L hangs from a ceiling.
(a) Show that the speed of a transverse wave in the rope is a
function of y, the distance from the lower end, and is given by

. (b) Show that the time it takes a transverse wave to
travel the length of the rope is given by . (c) Does
the actual mass of the rope affect the results of (a) and (b)?

9. A nonuniform wire of length L and mass M has a variable lin-
ear mass density given by m � kx, where x is the distance
from one end of the wire and k is a constant. (a) Show that 
M � kL2/2. (b) Show that the time t required for a pulse gen-
erated at one end of the wire to travel to the other end is given
by where F is the tension in the wire.

10. A uniform circular hoop of string is rotating clockwise in the
absence of gravity (see Fig. 18-29). The tangential speed is v.
Find the speed of waves on this string. (Note that the answer
is independent of the radius of the hoop and the linear mass
density of the string!)

t � √8ML /9F

t � 2√L /g
v � √gy

1/√�L

12. A transverse sinusoidal wave is generated at one end of a
long, horizontal string by a bar that moves up and down
through a distance of 1.12 cm. The motion is continuous 
and is repeated regularly 120 times per second. The string
has linear density 117 g/m and is kept under a tension 
of 91.4 N. Find (a) the maximum magnitude of the 
transverse speed uy and (b) the maximum magnitude of 
the transverse component of the tension. (c) Show that the
two maximum values calculated above occur at the same
phase values for the wave. What is the transverse displace-
ment y of the string at these phases? (d ) What is the maxi-
mum power transferred along the string? (e) What is the
transverse displacement y for conditions under which this
maximum power transfer occurs? ( f ) What is the minimum
power transfer along the string? (g) What is the transverse
displacement y for conditions under which this minimum
power transfer occurs?

13. Consider two point sources S1 and S2 in Fig. 18-30,
which emit waves of the same frequency f and amplitude 
A. The waves start in the same phase, and this phase rela-
tion at the sources is maintained throughout time. Consider
point P at which r1 is nearly equal to r2. (a) Show that 
the superposition of these two waves gives a wave whose
amplitude ym varies with the position P approximately ac-
cording to

in which r � (r1 � r2 )/2. (b) Then show that total cancella-
tion occurs when n being any integer,
and that total reinforcement occurs when r1 � r2 � n�. The
locus of points whose difference in distance from two fixed
points is a constant is a hyperbola, the fixed points being the
foci. Hence each value of n gives a hyperbolic line of con-
structive interference and a hyperbolic line of destructive in-
terference. At points at which r1 and r2 are not approximately
equal (as near the sources), the amplitudes of the waves from
S1 and S2 differ and the cancellations are only partial. (This is
the basis of the OMEGA navigation system.)

r1 � r2 � (n � 1
2)�,

ym �
2A

r
 cos 

k

2
 (r1 � r2) ,
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Figure 18-29. Problem 10.

Figure 18-30. Problem 13.

11. Violins in Handel’s time were constructed to play an “A” at
422.5 Hz. (How could we know this?) Modern orchestras,
however, are tuned to play an “A” at 440 Hz. Assuming that
all other things are equal, by what percentage does a player
need to increase the tension on the strings to get a Handel era
violin to play in tune today?

r1

r2

PS1

S2

14. A source S and a detector D of high-frequency waves are a
distance d apart on the ground. The direct wave from S is
found to be in phase at D with the wave from S that is re-
flected from a horizontal layer at an altitude H (Fig. 18-31).
The incident and reflected rays make the same angle with the
reflecting layer. When the layer rises a distance h, no signal is
detected at D. Neglect absorption in the atmosphere and find
the relation between d, h, H, and the wavelength � of the
waves.



15. Refer to Problem 14 and Fig. 18-31. Suppose that d �
230 km and H � 510 km. The waves are 13.0 MHz radio
waves (v � 3.00 � 108 m/s). At the detector D the combined
signal strength varies from a maximum to zero and back to a
maximum again six times in 1 min. At what vertical speed is
the reflecting layer moving? (The layer is moving slowly, so
that the vertical distance moved in 1 min is small compared to
H and d.)

16. Consider a standing wave that is the sum of two waves travel-
ing in opposite directions but otherwise identical. Show that
the maximum kinetic energy in each loop of the standing
wave is 2� 2y 2

m fv.

17. An incident traveling wave, amplitude Ai, is only partially re-
flected from a boundary, with the amplitude of the reflected
wave being Ar. The resulting superposition of two waves with
different amplitudes and traveling in opposite directions gives
a standing wave pattern of waves whose envelope is shown in
Fig. 18-32. The standing wave ratio (SWR) is defined as 
(Ai � Ar)/(Ai � Ar) � Amax /Amin, and the percent reflection is
defined as the ratio of the average power in the reflected wave
to the average power in the incident wave, times 100. (a)
Show that for 100% reflection SWR � � and that for no re-
flection SWR � 1. (b) Show that a measurement of the SWR
just before the boundary reveals the percent reflection occur-
ring at the boundary according to the formula

% reflection � [(SWR � 1)2/(SWR � 1)2](100).

A sin k1(x � v1t) in the string of density 1 reaches the junc-
tion between the two strings, at which it is partly transmitted
into the string of density  2 and partly reflected. Call these
waves B sin k2(x � v2t) and C sin k1(x � v1t), respectively. (a)
Assuming that k2v2 � k1v1 � � and that the displacement of
the knot arising from the incident and reflected waves is the
same as that arising from the transmitted wave, show that 
A � B � C. (b) If it is assumed that both strings near the knot
have the same slope (why?)— that is, dy/dx in string 1 �
dy/dx in string 2— show that

Under what conditions is C negative?

20. Wave interference can occur for waves with different frequen-
cies. (a) Show that the resultant of the two waves

y1(x, t) � ym sin (k1x � �1t)

y2(x, t) � ym sin (k2x � �2t)

can be written as

(b) What is ��/k�? (c) Qualitatively describe the motion of
this wave.

21. In an experiment on standing waves, a string 92.4 cm long is
attached to the prong of an electrically driven tuning fork,
which vibrates perpendicular to the length of the string at a
frequency of 60.0 Hz. The mass of the string is 44.2 g. How
much tension must the string be under (weights are attached
to the other end) if it is to vibrate with four loops?

22. An aluminum wire of length L1 � 60.0 cm and of cross-
sectional area 1.00 � 10� 2 cm2 is connected to a steel wire of
the same cross-sectional area. The compound wire, loaded
with a block m of mass 10.0 kg, is arranged as shown in Fig.
18-33 so that the distance L2 from the joint to the supporting
pulley is 86.6 cm. Transverse waves are set up in the wire by
using an external source of variable frequency. (a) Find the
lowest frequency of excitation for which standing waves are
observed such that the joint in the wire is a node. (b) What is
the total number of nodes observed at this frequency, exclud-
ing the two at the ends of the wire? The density of aluminum
is 2.60 g/cm3 and that of steel is 7.80 g/cm3.

y(x, t) � 2ym cos � 1

2
 (�kx � �� t)� sin (k�x � ��t ).

C � A
k2 � k1

k2 � k1
� A

v1 � v2

v1 � v2
.
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Figure 18-31. Problems 14 and 15.

Figure 18-32. Problems 17 and 18.

Figure 18-33. Problem 22.
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18. Estimate (a) the SWR (standing wave ratio) and (b) the per-
cent reflection at the boundary for the envelope of the stand-
ing wave pattern shown in Fig. 18-32.

19. Two strings of linear mass density 1 and 2 are knotted to-
gether at x � 0 and stretched to a tension F. A wave y �

L1 L2

SteelAluminum

m



COMPUTER PROBLEM

1. A simple function is given by y(x) � x(� � x) in the region 
0 � x � �. It is desired that this function be approximated by
a series of sine functions in the form y(x) � a1 sin x �
a3 sin 3x � a5 sin 5x � � � � . (a) Use a graphing program and
estimate the values for a1, a3, and a5 that give the best visual
fit. (b) Use a symbolic math program (such as Maple or Math-
ematica to evaluate the integrals

and

I0 � 	�

0
 sin nx sin mx dx,

In � 	�

0
 sin2 nx dx

where n and m are integers, but not equal to each other. 
(c) Find the exact values of the coefficients an for

by evaluating

Why does this work? Compare your answers to the visual in-
spection process.

an �
1

In
	�

0
x(� � x) sin nx dx.

n�{1, 2, 3, 4, 5}

426 Chapter 18 / Wave Motion



427

SOUND WAVES

In Chapter 18 we studied transverse mechanical

waves, in particular the vibrations of a stretched string. Now we turn our attention to longitudinal mechani-

cal waves, in particular sound waves. What we call sound is a longitudinal mechanical vibration with fre-

quencies from about 20 Hz to about 20,000 Hz, which is the typical range of human hearing. Longitudinal

waves of higher frequency, which are called ultrasonic waves, are used in locating underwater objects and

in medical imaging. Longitudinal (and transverse) mechanical waves of lower frequency, called infrasonic,

occur as seismic waves in earthquakes.

In this chapter we discuss the properties of sound waves, their propagation, and their production by vi-

brating systems.

19-1 PROPERTIES OF SOUND
WAVES

Like the transverse wave on the string, sound is a mechani-
cal wave, meaning that the disturbance propagates due to
the mechanical (elastic) forces between particles in the
medium. Mechanical waves can travel through any material
medium (solid, liquid, or gas). In solids, mechanical waves
can be longitudinal or transverse, but in fluids (which can-
not support shearing forces) the waves are only longitudi-
nal, which means that the particles of the medium oscillate
along the same direction that the wave is traveling.

When we discuss sound waves, we normally mean lon-
gitudinal waves in the frequency range 20 Hz to 20,000 Hz,
the normal range of human hearing. However, the branch of
physics and engineering that deals with the study of sound
waves, called acoustics, generally includes the study of me-
chanical waves of all frequencies, with transverse as well as
longitudinal vibrations in the case of solids. In this chapter
we consider mainly sound waves in air, which are strictly
longitudinal.

Although a small source of sound in an open area emits
waves that are three-dimensional, we will simplify the prob-

lem by considering one-dimensional waves. Figure 19-1
shows how a one-dimensional sound wave might be estab-
lished in a long tube filled with air. At one end of the tube is
a piston, which might represent the moving cone of a loud-

CHAPTER 19CHAPTER 19

Figure 19-1. Sound waves generated in a tube by a moving
piston, which might represent the moving cone of a loudspeaker.
The vertical lines divide the compressible medium in the tube into
layers of equal mass.



speaker. As the piston moves back and forth, it alternately
compresses and expands (rarefies) the air next to it. This dis-
turbance travels down the tube as a sound wave. As the wave
passes any point, air molecules at that location move back
and forth about their equilibrium positions parallel to the di-
rection that the wave is traveling.

As we will see, we can describe the sound wave either
in terms of changes in the local pressure in the medium or
else in terms of the displacement of the air molecules from
their equilibrium positions. These two descriptions convey
the same information, but they have somewhat different
mathematical forms.

19-2 TRAVELING SOUND WAVES

As the piston in Fig. 19-1 oscillates, it causes variations in
the density of the air in the tube from one place to another
and also from one instant of time to another, as Fig. 19-1
shows. The regions of high density are called compressions,
and the regions of low density are called rarefactions. As
the sound wave travels, the compressions and rarefactions
travel along the tube.

We express the density in the tube as �(x, t), a function
both of location and time. The undisturbed density of the
air in the tube is �0 , and the sound wave causes fluctuations
in the density ��(x, t) that are very small compared with
�0 . That is �(x, t) � �0 � ��(x, t), where ��(x, t) can be
positive or negative but ���(x, t) � �� �0 .

We can also describe the sound wave in terms of the
variation in the pressure in the tube. The pressure variations
travel along the tube in phase with the density variations:
when the density reaches its maximum at a particular loca-
tion, the pressure also reaches its maximum at that location.
The undisturbed pressure in the absence of the sound wave
is p0 , and the pressure fluctuations �p(x, t) can be positive
or negative but are very small in comparison with p0 . The
total pressure at the point with coordinate x and at time t is
p(x, t) � p0 � �p(x, t).

Let us assume that the piston is driven so that its posi-
tion can be described by a sine or cosine function; then the
density and pressure of air in the tube will also vary sinus-
oidally. Figure 19-2a shows a “snapshot” of the density of
the air in the tube at a particular instant of time, and Figs.
19-2b and c show the corresponding variations in the den-
sity and pressure of the air. The density fluctuates with am-
plitude ��m about the value �0 , and the pressure with am-
plitude �pm about p0 . For sinusoidal waves, neglecting for
now any phase constant, we can write

(19-1)

The pressure variations can be written similarly as

(19-2)

Usually it is most convenient to describe the sound wave in
terms of its pressure variation.

�p(x, t) � �pm sin (kx � �t).

��(x, t) � ��m sin (kx � �t).

The relationship between the pressure amplitude �pm

and the density amplitude ��m depends on the mechanical
properties of the medium. In Eq. 15-5 we introduced the
bulk modulus B � � �p/(�V/V ), which describes the rela-
tive change in volume of an element of fluid in response to
a change in pressure. With � � m/V, we have d� �
� (m/V 2)dV � � (�/V )dV. Replacing the differentials with
differences, we can write �� � � �(�V/V ). Using Eq. 15-5
to replace �V/V with � �p/B, and replacing � with its
undisturbed value �0 (because the fluctuations �� are
small), we have

or, in terms of the density and pressure amplitudes,

(19-3)

Because Eq. 15-5 applies to all fluids (not only to air), Eq.
19-3 similarly applies to sound waves in all fluids.

There is one special caution that must be observed in
using Eq. 19-3. As a sound wave moves along the tube, it
alternately compresses and expands each small volume of
air. When a volume element of gas is compressed, work is
done on it, so that its internal energy and its temperature in-
crease. In fluids, the rate at which energy can flow (as heat)
from one volume element to another is generally rather
small, so that the internal energy increase associated with

��m � �pm
�0

B
.

�� � ��
�V

V
� ��0

��p

B
� �p

�0

B
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Figure 19-2. (a) Compressions C and rarefactions R in a
sound wave traveling along a tube. (b) A snapshot of the density,
which varies with amplitude ��m about the value �0 . (c) A snap-
shot of the pressure, which varies with amplitude �pm about p0 .
(d ) The longitudinal displacement, which shows at every location
x how a small element of air has been displaced from its equilib-
rium position. (e) The longitudinal velocity of the small elements
of air.



the compression does not have sufficient time at sound-
wave frequencies to be transferred as heat to the adjacent
cooler regions associated with the rarefactions. We call this
an adiabatic (no heat transfer) process, and in Eq. 19-3 we
must therefore use the adiabatic bulk modulus. Otherwise,
if heat could flow so that the adjacent regions could reach a
common temperature, we would use the isothermal (con-
stant temperature) bulk modulus. For a gas such as air, the
adiabatic bulk modulus is about 1.4 times the isothermal
bulk modulus. Isothermal and adiabatic processes are con-
sidered in greater detail in Chapter 23.

Sound as a Displacement Wave
Just as we considered the displacement and velocity of
“particles” of the medium for transverse mechanical waves
on a string in Chapter 18, it is also instructive to consider
the displacement and velocity associated with the longitudi-
nal sound wave. In this case, “particles” of the medium re-
fer to elements of volume of the fluid.

Figure 19-3 shows an element of gas inside the tube
through which the sound wave is traveling. The element has
mass 	m, and in the equilibrium state it is located at the co-
ordinate x and has thickness 	x and cross-sectional area A.
The undisturbed density of this fluid element is

(19-4)

As the sound wave passes, this element of fluid oscillates
about its equilibrium position. We represent the displace-
ment of the fluid element from this equilibrium position by
the function s(x, t). The value of this function varies from
place to place and also from time to time, as different fluid
elements are moved in different directions by the sound
wave. The function s(x, t) is similar to the transverse wave
function y(x, t), with one important exception: the displace-
ment s is measured along the direction of propagation for a
longitudinal wave, instead of at right angles to the direction
of propagation (in the case of the transverse wave of Chap-
ter 18).

�0 �
	m

A 	x
.

In response to the sound wave, the left-hand edge of the
fluid element moves from coordinate x to coordinate 
x � s(x, t), as shown in Fig. 19-3. The right-hand edge 
of the element moves from coordinate x � 	x to 
x � 	x � s(x � 	x, t). That is, in response to the sound
wave, the fluid element not only moves, but its thickness
changes from 	x to [x � 	x � s(x � 	x, t)] � [x � s(x, t)] �
	x � s(x � 	x, t) � s(x, t), which we can write as

In the limit of a very thin volume element, in which 	x :
0, the quotient in this expression can be written as 
s/
x,
the partial derivative of s with respect to x, so that the thick-
ness of the element is 	x[1 � 
s/
x]. The density of this
fluid element is now

(19-5)

using Eq. 19-4 for �0 . We have assumed that the density
variations are very small, so that 
s/
x �� 1. Using the bi-
nomial expansion (see Appendix I), (1 � z)�1 � 1 � z �
���, we keep only the first term in the expansion and obtain
� � �0(1 � 
s/
x). The change in density is ��(x, t) �
� � �0 , or

(19-6)

For sinusoidal waves, we can use Eq. 19-1 for ��(x, t), and
so obtain

Integrating with respect to x gives

(19-7)

The displacement amplitude is

(19-8)

where we have used Eq. 19-3 to relate ��m to �pm .
Note that the displacement variation is expressed as a

cosine function when the pressure and density variations
are expressed as sine functions. Thus the displacement vari-
ations are 90° out of phase with the pressure and density
variations. The displacement waveform is shown in Fig. 19-
2d. At locations where the pressure and density are a maxi-
mum or minimum, the displacement of the elements of
fluid is zero; the displacement is a maximum or minimum
where the pressure and density variations are zero. For ex-
ample, at a compression, fluid elements to the left must
have positive displacements and fluid elements to the right
must have negative displacements, consistent with fluid ele-
ments at the center of the compression having zero dis-
placements.

sm �
��m

k�0
�

�pm

kB
,

s(x, t) �
��m

k�0
 cos(kx � �t) � sm cos (kx � �t).


s


x
� �

��(x, t)

�0
� �

��m

�0
 sin (kx � �t).

��(x, t) � ��0

s


x
.

� �
	m

A 	x(1 � 
s/
x)
�

�0

1 � 
s/
x

	x �1 �
s(x � 	x, t) � s(x, t)

	x �.
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Figure 19-3. An element of air thickness 	x and cross-
sectional area A is originally located at x. The sound wave dis-
places the element by an amount s(x, t).

x

A

s(x + δx, t)

x + s(x, t)

x + δx + s(x + δx, t)x = 0

s(x, t)

δx



As a fluid element oscillates about its equilibrium posi-
tion, its longitudinal velocity is

(19-9)

where the amplitude of the velocity variations is

(19-10)

using Eq. 19-8 and Eq. 18-13 (v � �/k). Once again, it is
important to note that this is a longitudinal velocity, di-
rected along the axis of the tube (parallel to the direction of
propagation of the wave). The velocity variations are in
phase with the pressure and density variations, as shown in
Fig. 19-2e.

Although we have described a sound wave in terms of
either a pressure wave or a displacement wave, the two de-
scriptions are in general not equivalent. Only when a single
longitudinal wave is propagating in a single direction can
we easily shift back and forth between the two descriptions.
When we consider the reflection of a sound wave at the end
of a tube, or when we superimpose two sound waves that
interfere at a point, using the displacement wave descrip-
tion can lead to serious errors.* For example, consider two
sound waves from different sources (two loudspeakers, for
instance) that travel along different directions and interfere
at a point, such that one wave gives a pressure change �p
and the other � �p. On the basis of the pressure descrip-
tion, we expect complete destructive interference at that
point, because the pressures add like scalars. However, the
displacements (which are along the directions of travel of
the two waves) do not add to zero, because they are vectors
in different directions. It is usually preferable to describe a
sound wave as a pressure wave to avoid such difficulties.
Moreover, as we shall see in the next section, it is the pres-
sure change, not the displacement, that is detected by ears
and microphones.

Sample Problem 19-1. The maximum pressure varia-
tion �pm that the ear can tolerate in loud sounds is about 28 Pa at
1000 Hz. The faintest sound that can be heard at 1000 Hz has a
pressure amplitude of about 2.8 � 10�5 Pa. Find the correspond-
ing density and displacement amplitudes. The bulk modulus for
air under standard conditions is 1.4 � 105 Pa, and the speed of
sound in air is 343 m/s at room temperature.

Solution The wave number is

k �
2

�
�

2 f

v
�

2 � 103 Hz

343 m/s
� 18.3 rad/m.

um � �sm �
��pm

kB
�

v�pm

B

ux(x, t) �

s


t
� �sm sin (kx � �t) � um sin (kx � �t),

The density of air under these conditions is 1.21 kg/m3. Hence for
�pm � 28 Pa, we obtain, using Eq. 19-3,

and, using Eq. 19-8,

The displacement amplitudes for the loudest sounds are about
10�5 m, a very small value indeed. For the faintest sounds, we
have similarly

and

This is about one-tenth of the radius of a typical atom and sug-
gests how sensitive the ear must be to detect vibrations of such a
small amplitude.

19-3 THE SPEED OF SOUND

As in the case of the transverse mechanical wave, the speed
of a sound wave depends on the ratio of an elastic property
of the medium and an inertial property. In analogy with
Section 18-4, we might guess that the elastic property is the
undisturbed pressure and the inertial property is the undis-
turbed density and try to do a dimensional analysis based
on

to determine the exponents a and b. The dimensional analy-
sis gives as you should verify. However, in this
case we are not as fortunate as we were in the case of trans-
verse waves— the expression v � ( p0/�0)1/2 does not give
the correct value for the speed of sound. For example, in air
at 20°C we would obtain v � 289 m/s from this expres-
sion, which is in poor agreement with the measured value,
v � 343 m/s. You will recall that dimensional analysis
gives us only the functional dependence and is unable to
provide the values of any dimensionless constants that may
be part of the equation. In this case we are clearly missing
an important constant.

Let us turn instead to a mechanical analysis. Rather than
a sinusoidal wave, it is simpler to consider only a single
compressional pulse that is traveling down the tube. The
pulse is traveling at speed v, the wave speed. Within the

a � b � 1
2,

v �
pa

0

� b
0

sm �
2.8 � 10�5 Pa

(18.3 rad/m)(1.4 � 105 Pa)
� 1.1 � 10�11 m.

� 2.4 � 10�10 kg/m3

��m � (2.8 � 10�5 Pa) 
1.21 kg/m3

1.4 � 105 Pa

� 1.1 � 10�5 m.

sm �
� pm

kB
�

28 Pa

(18.3 rad /m)(1.4 � 105 Pa)

� 2.4 � 10�4 kg/m3

��m � �pm
�0

B
� (28 Pa) 

1.21 kg/m3

1.4 � 105 Pa
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* For a careful discussion of this point, see “Pressure and Displacement in
Sound Waves,” by C. T. Tindle, American Journal of Physics, September
1984, p. 749.



pulse, which has a width L, the pressure increase is a con-
stant �p.

Figure 19-4a shows the pulse as it is just about to enter
a fluid element of length L0 and cross-sectional area A
where the undisturbed pressure is p0 . After a time t, the
leading edge of the pulse has reached the end of the fluid
element, which has now been compressed into a length L
(Fig. 19-4b).

During the time t two horizontal forces act on the ele-
ment: the compressional pulse exerts a force ( p0 � �p)A to
the right, while the undisturbed fluid on the right of the ele-
ment exerts a force p0A that acts to the left. The net external
force on the element during this interval is A �p, acting to
the right.

We cannot apply the particle form of Newton’s laws to
this element, because it does not behave like a particle; all
parts of the element do not move in the same way. Instead,
we can treat the element as a system of particles and use
Newton’s law in the form of Eq. 7-17 (� Fext, x � Macm, x).
Measured from the right-hand end of the element, the cen-
ter of mass moves from a location � L0/2 to � L/2 in a
time t. The acceleration of the center of mass is, using Eq.
2-28 in the form x � x0 �

(19-11)

where �L � L � L0 is the change in length of the fluid ele-
ment. The mass of the fluid element is M � �0 AL0 and so
Newtons’ second law gives

(19-12)

If the pulse moves with speed v, the time needed for it to
move through the fluid element is t � L0/v. Making this
substitution into Eq. 19-12 and rearranging terms, we ob-
tain

(19-13)

The quantity A �L is the change in volume �V of the fluid
element, and AL0 is its original volume V. With these sub-
stitutions, the second factor on the right of Eq. 19-13 be-

v 2 �
1

�0

��p

A �L /AL 0
.

A �p � (�0 AL 0)(��L /t 2).

a cm,x �
2(x � x 0)

t 2 �
2[(�L /2) � (�L 0 /2)]

t 2 � �
�L

t 2 ,

1
2axt 2,

comes � �p/(�V/V ), which is just the bulk modulus B.
Taking the square root on both sides, we can thus write Eq.
19-13 as

(19-14)

Equation 19-14 gives the speed of sound in fluids in terms
of the bulk modulus and the density. Note that, as in the
case of transverse waves on a string, the speed of sound in a
fluid depends only on the properties of the medium and not
on the frequency or wavelength of the wave.

In gases, the bulk modulus can be written �p0 , where �
is a constant (called the specific heat ratio and discussed in
Chapter 23) that depends on the type of gas and typically
has values between 1.3 and 1.7. For air, � � 1.4; this factor
accounts for the discrepancy in the result for the speed of
sound obtained from the dimensional analysis at the begin-
ning of this section.

Equation 19-14 applies to fluids (gases and liquids) but
not to solids. In solids, a shearing modulus as well as a
compressional modulus may be present, and the analysis is
often more complicated than the simple one-dimensional
case presented here.

Table 19-1 gives some representative values for the
speed of sound in various materials.

Finally, we note that in this section we have treated the
fluid as a continuous medium. In a gas, however, the spaces
between molecules are large (compared with the size of the
molecules), and the molecules move with a random thermal
motion. The oscillations produced by a sound wave are su-
perimposed on these random thermal motions. An impulse
given to one molecule is passed on to another molecule only
after the first has moved through the empty space between
them and collided with the second. There is thus a close
connection between the average molecular speed in a fluid
and the speed of sound in that fluid. In particular, as we in-

v � √ B

�0
.
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Figure 19-4. (a) A compressional pulse is about to enter a
fluid element of undisturbed length L0 . (b) A time t later, the pulse
has reached the right-hand end of the element and compressed the
element to a length L.

v

A

LL

∆p

L0(a) (b)

Medium Speed (m/s)

Gases
Air (0°C) 331
Air (20°C) 343
Helium 965
Hydrogen 1284

Liquids
Water (0°C) 1402
Water (20°C) 1482
Seawaterb 1522

Solidsc

Aluminum 6420
Steel 5941
Granite 6000

a At 0°C and 1 atm pressure, unless indicated otherwise.
b At 20°C and 3.5% salinity.
c Longitudinal waves; speeds of transverse waves are about half as large as
those for longitudinal waves.

Table 19-1 The Speed of Sounda



crease the temperature, the average molecular speed and the
speed of sound in a gas increase in exactly the same manner.

19-4 POWER AND INTENSITY OF
SOUND WAVES

In Section 18-6 we found the intensity of transverse waves
on a string by considering the kinetic and potential energies
associated with the wave motion. We can do the same type
of analysis for sound waves by calculating the kinetic en-
ergy due to the motion of each fluid element and the inter-
nal energy stored in each fluid element (which is very simi-
lar in form to potential energy) as the wave passes.
However, the internal energy calculation requires details of
the dynamic behavior of gases that we shall not discuss un-
til Chapter 23. As a result, we will use a different method to
find the power transferred by a sound wave.

As the wave travels, each fluid element exerts a force on
the fluid element ahead of it. If the pressure increase in the
fluid element is �p, the force it exerts on the next element
is Fx � A �p, where A is the cross-sectional area of the
fluid element. Using Eq. 19-2 for the pressure, we find that
the force is

(19-15)

The velocity ux of the thin slice of fluid is given by Eq. 19-
9. The power delivered to the fluid element is

(19-16)

Using Eq. 19-10 we can write this as

(19-17)

As we did in Section 18-6, we assume that we observe the
waves during a time that is very long compared with the pe-
riod of oscillation of the wave. Since the average value of
sin2 � over any number of full cycles is the average
power is

(19-18)

using Eq. 19-14 to replace B with �v2.
As in the case of the transverse wave, the power depends

on the square of the amplitude, in this case the pressure am-
plitude. Note also that the frequency does not appear explic-
itly in Eq. 19-18 (although it would appear if we instead ex-
pressed the average power in terms of the displacement
amplitude). Hence, by measuring pressure amplitudes, we
can directly compare the intensities of sounds having differ-
ent frequencies. For this reason, instruments that measure
pressure changes are preferable to those that measure dis-
placements; moreover, as we learned from Sample Problem
19-1, displacements from the weakest audible sounds are
very small and would be difficult to measure directly.

When we are comparing different sounds, it is more
useful to use the intensity (average power per unit area) of

Pav �
Av(�pm)2

2B
�

A(�pm)2

2�v

1
2,

P �
Av(�pm)2

B
 sin2(kx � �t).

P � uxFx � A �pmum sin2(kx � �t).

Fx � A �pm sin (kx � �t).

the wave. From Eq. 19-18, we can immediately obtain the
intensity I:

(19-19)

The response of the ear to sound of increasing intensity
is approximately logarithmic, so it is convenient to intro-
duce a logarithmic scale of intensity called the sound level
SL:

(19-20)

The SL is defined with respect to a reference intensity I0 ,
which is chosen to be 10�12 W/m2 (a typical value for the
threshold of human hearing). Sound levels defined in this
way are measured in units of decibels (dB). A sound of in-
tensity I0 has a sound level of 0 dB, whereas sound at the
upper range of human hearing, called the threshold of pain,
has an intensity of 1 W/m2 and a SL of 120 dB. Multiplica-
tion of the intensity I by a factor of 10 corresponds to
adding 10 dB to the SL.

We can also use dB as a relative measure to compare
different sounds with one another, rather than with the ref-
erence intensity. Suppose we wish to compare two sounds
of intensities I1 and I2 :

(19-21)

For example, two sounds whose intensity ratio is 2 differ in
SL by 10 log 2 � 3 dB.

The sensitivity of the human ear varies with frequency.
The threshold of 10�12 W/m2 applies only to the midrange

� 10 log 
I1

I2
. 

SL 1 � SL 2 � 10 log 
I1

I0
� 10 log 

I2

I0

SL � 10 log 
I

I0
.

I �
Pav

A
�

(�pm)2

2�v
.
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Figure 19-5. The average range of sound levels for human
hearing. Note the dependence of the threshold levels on frequency.
A sound that we can just hear at 100 Hz must have 1000 times the
acoustic power (30 dB greater sound level) than one we can just
hear at 1000 Hz, because our ear is that much less sensitive at 
100 Hz.



frequencies around 1000 Hz. At the higher frequencies, say
10,000 Hz, the threshold rises to about 10 dB (10�11 W/m2),
whereas at a lower frequency of 100 Hz the threshold is
about 30 dB (10�9 W/m2). It takes 1000 times the sound in-
tensity at 100 Hz to produce the same physiological re-
sponse as a given sound intensity at 1000 Hz. Figure 19-5
shows the variation with frequency of the thresholds of hear-
ing and of pain, and Table 19-2 shows some representative
sound levels and their corresponding intensities.

Sample Problem 19-2. Spherical sound waves are
emitted uniformly in all directions from a point source, the radi-
ated power P being 25 W. What are the intensity and the sound
level of the sound wave a distance r � 2.5 m from the source?

Solution All the radiated power P must pass through a sphere of
radius r centered on the source. Thus

We see that the intensity of the sound drops off as the inverse
square of the distance from the source. Numerically, we have

and

A comparison of this result with the list in Table 19-2 shows this
sound level to be dangerous to a person’s hearing.

19-5 INTERFERENCE OF SOUND
WAVES

In Section 18-8 we discussed the interference that can oc-
cur when two different waves exist at the same point in
space at the same time. The principle of superposition,

� 10 log 
0.32 W/m2

10�12 W/m2 � 115 dB.

SL � 10 log 
I

I0

I �
25 W

(4)(2.5 m)2 � 0.32 W/m2

I �
P

4r 2 .

which we used to add transverse waves on a string, also ap-
plies to sound waves.

Figure 19-6 shows two loudspeakers driven from a com-
mon source. At point P, the pressure variation due only to
speaker S1 is �p1 , and that due to S2 alone is �p2 . (Note
that these are spherical waves and are therefore not de-
scribed by Eq. 19-2; in particular, the pressure amplitude
does not remain constant as a spherical wave travels but in-
stead decreases like 1/r). The total pressure disturbance at
point P is �p � �p1 � �p2 .

The type of interference that occurs at point P depends
on the phase difference �� between the waves. In contrast
to Section 18-8, in which the phase difference between the
waves was due to their different phase constants, in this case
the phase difference comes about because the waves may
travel different distances from the speakers to arrive at point
P. The phase difference �� between the two waves arriving
at P depends on the path difference �L � �r1 � r2 � from the
speakers to point P. Path difference and phase difference are
related by

(19-22)

That is, a phase difference of  corresponds to a path dif-
ference of �/2, a phase difference of 2 corresponds to a
path difference of �, and so forth.

For some locations of point P, the pressure variations ar-
rive in phase (�� � 0, 2, 4, . . .) and interfere construc-
tively. For other locations of P, the waves arrive out of phase
(�� � , 3, 5, . . .) and interfere destructively. Using
the condition for constructive interference, �� � m(2)
with m � 0, 1, 2, . . . , Eq. 19-22 shows that the corre-
sponding path difference for constructive interference is

�L � m� (m � 0, 1, 2, . . .). (19-23)

That is, at locations where �r1 � r2 � � 0, �, 2�, . . . , the
intensity reaches a maximum value. If the speakers are dri-

��

2
�

�L

�
.
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Sound
Intensity I Level

Sound (W/m2) (dB)

Threshold of hearing 1 � 10�12 0
Rustle of leaves 1 � 10�11 10
Whisper (at 1 m) 1 � 10�10 20
City street, no traffic 1 � 10�9 30
Office, classroom 1 � 10�7 50
Normal conversation (at 1 m) 1 � 10�6 60
Jackhammer (at 1 m) 1 � 10�3 90
Rock group 1 � 10�1 110
Threshold of pain 1 120
Jet engine (at 50 m) 10 130
Space shuttle engine (at 50 m) 1 � 108 200

Table 19-2 Some Intensities and Sound Levels

Figure 19-6. Two loudspeakers S1 and S2 , driven by a com-
mon source, send signals to point P, where the signals interfere.

Source

S2

S1

A B

r2

r1

P



ven in phase, then at all points equidistant from the speak-
ers (the line AB, which represents the entire midplane) there
is constructive interference.

For destructive interference, the phase difference is
with m � 0, 1, 2, . . . , so the path dif-

ference for destructive interference is

(19-24)

That is, at locations where �r1 � r2 � � �/2, 3�/2, 5�/2,
. . . , the intensity has a minimum value (not necessarily
zero, because in general the two waves arrive at point P
with difference amplitudes). Locations of destructive inter-
ference correspond to “dead spots” in the listening environ-
ment of the speakers.

If the speakers emit a mixture of many different wave-
lengths, some points P might show destructive interference
for one wavelength and constructive interference for another.

Sample Problem 19-3. In the geometry of Fig. 19-6, a
listener is seated at a point a distance of 1.2 m directly in front of
one speaker. The two speakers, which are separated by a distance
D of 2.3 m, emit pure tones of wavelength �. The waves are in
phase when they leave the speakers. For what wavelengths will
the listener hear a minimum in the sound intensity?

Solution The minimum sound intensity occurs when the waves
from the two speakers interfere destructively, according to the cri-
teria of Eq. 19-24. If the listener is seated in front of speaker 2,
then r2 � 1.2 m, and r1 can be found from the Pythagorean for-
mula,

Thus r1 � r2 � 2.6 m � 1.2 m � 1.4 m, and, according to Eq.
19-24, we have

1.4 m � �/2, 3�/2, 5�/2, . . . ,

corresponding to

� � 2.8 m, 0.93 m, 0.56 m, . . . .

Complete destructive interference will not occur at this location,
because the two waves arriving at the observation point have dif-
ferent amplitudes, if they leave the speakers with equal ampli-
tudes.

19-6 STANDING LONGITUDINAL
WAVES

We now consider what happens when a sound wave such as
that shown in Fig. 19-1 reaches the end of the tube. In anal-
ogy with the transverse wave on the string (see Fig. 18-19),
a reflection occurs, and the reflected wave travels back
down the tube in the opposite direction. The behavior of the
wave at the reflecting end depends on whether the end of
the tube is open or closed.

Let us first consider a tube that is closed at the end. As
the wave travels down the tube and reaches the end, it can

r1 � √r 2
2 � D 2 � √(1.2 m)2 � (2.3 m)2 � 2.6 m.

�L � (m � 1
2)� (m � 0, 1, 2, . . .).

�� � (m � 1
2)2

compress the layers of air at the closed end against the fixed
barrier. At that end, the pressure can therefore vary with its
maximum amplitude, and the closed end is a pressure an-
tinode. A pressure wave reflects from a closed end in a
manner similar to the reflection of a transverse displace-
ment wave at the free end of a string (Fig. 18-19b). If a
compression, for example, is incident on the closed end, it
reflects back along the tube as a compression. In analogy
with our discussion of transverse waves on strings, we say
that a longitudinal pressure wave is reflected from a closed
end with no change of phase. The same effect occurs in the
case of a longitudinal wave traveling on a spring such as a
Slinky toy and reflecting from a fixed end: a compression is
reflected as a compression.

Now consider what happens if the end of the tube is
open. The pressure at the end of the open tube is the same
as the ambient pressure p0 in the surrounding room. We
cannot change the pressure at that end of the tube unless we
change the pressure in the entire room. The pressure at the
open end therefore remains at the value p0 , and the open
end is a pressure node. Comparison with Fig. 18-19a shows
that this case is analogous to the transverse displacement
wave reflecting from the fixed end of the string. The at-
tempt by the wave incident on the open end to compress the
air at that end causes a rarefaction, which travels back
down the tube in the opposite direction. Thus a longitudinal
pressure wave is reflected from an open end with a phase
change of 180°. The same effect can again be observed with
a coiled spring: a compression is reflected as a rarefaction.

Let us now assume that we have a train of sinusoidal
waves traveling down the tube. The waves are reflected at
the end, which will behave either as a pressure node (if the
end is open) or a pressure antinode (if the end is closed).
We assume the source of the wavetrain is a speaker at the
opposite end. The movement of the speaker sends a com-
pressional wave down the tube, and the superposition of the
original and reflected waves gives a pattern of standing
waves, just as was the case for the transverse waves on the
string. Within the tube will be a pattern of pressure nodes
and antinodes (which are not points, as in the case of trans-
verse waves on a string, but planes).

If the frequency (or wavelength) of the source of the
waves is selected to be a particular value that depends on
the length of the tube, then a standing wave pattern is estab-
lished along the entire tube, in analogy with the case of the
standing wave patterns shown in Fig. 18-20. If there is a
node of pressure at the speaker end, then little energy is
given back to the speaker from the standing wave pattern in
the tube, and we have a condition of resonance. The driving
frequency must be equal to one of the natural frequencies
of the system, which are determined by the length of the
tube.

Figure 19-7a shows a tube that is driven by a speaker at
one end and is open at the other end. As we have discussed
previously, the speaker end is a pressure node at resonance
and the open end is likewise a pressure node. In Fig. 19-7a
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are shown the resulting variations in the pressure amplitude
of the standing waves.* These patterns look very similar to
those of Fig. 18-20. In the first mode of oscillation, the
length L of the tube is equal to �/2, where � is the wave-
length of the wave produced by the speaker for that particu-
lar resonant condition. The wavelength is therefore 2L, and
the corresponding frequency is f � v/� � v/2L. The other
resonances shown in Fig. 19-7a have successively smaller
wavelengths, which can be written in general as

(19-25)

The corresponding resonant frequencies, determined using
the expression f � v/� with the above wavelengths, are

(19-26)

Here v represents the speed of the wave in the medium that
fills the tube, usually air.

fn � n
v

2L
, n � 1, 2, 3, . . . (open tube).

�n �
2L

n
, n � 1, 2, 3, . . . .

Figure 19-7b shows the case in which the tube is closed
at one end and open at the other end. In this case, the closed
end must be a pressure antinode. In the first resonant mode,
the length L of the tube is and so the source must be
producing a wave whose wavelength is 4L. In the next
mode, the wavelength changes so that now L is and thus

Continuing the series, we see that in this case the
general expression for the wavelengths of the resonant
modes is

(19-27)

Note that only odd values of the integer n appear in this
case. The corresponding resonant frequencies are

(19-28)

As we discuss in the next section, the resonant frequencies
given by Eq. 19-26 or 19-28 determine the musical notes
played by the wind instruments.

The actual location of the pressure node at an open end
is not exactly at the end of the tube. The wave extends
slightly into the medium beyond the tube, so the effective
length of the tube is a bit greater than its actual length and
the resonant frequencies are a bit smaller. For narrow tubes
of cylindrical shape, the length correction is roughly equal
to 0.6R, where R is the radius of the tube. For a tube open
at both ends, the length correction must be applied at each
end. For a tube of length 0.6 m and radius 1 cm (typical
values for the smaller wind instruments such as the clarinet
or flute), the lowest frquency without the end correction
would be 286 Hz if the tube were open and 143 Hz if the
tube were closed. With the end correction, the correspond-
ing values would be 280 Hz and 142 Hz. The corrections
are small, but nevertheless quite important.

Sample Problem 19-4. Figure 19-8 shows an appara-
tus that can be used to measure the speed of sound in air by using
the resonance condition. A small speaker is held above a cylindri-
cal tube partially filled with water. By adjusting the water level,
the length of the air column can be changed until the tube is in
resonance, at which point an increase in the sound intensity can be
heard. In an experiment, the speaker is driven at a fixed frequency
of 1080 Hz, and three resonances are observed when the water
level is at distances of x1 � 6.5 cm, x2 � 22.2 cm, and x3 �
37.7 cm below the top of the tube. Find the value of the speed of
sound from these data.

Solution The air column acts like a tube of variable length closed
at one end. The pattern of standing waves shows a pressure node
near the speaker and a pressure antinode at the surface of the wa-
ter. Since we do not know the end correction, we cannot use the
given data directly to find the speed of sound from Eq. 19-28.
However, we note from the resonance conditions shown in Fig.
19-7b that the distance between adjacent pressure nodes is the
same is true for the distance between adjacent antinodes. From the

1
2�;

fn � n
v

4L
, n � 1, 3, 5, . . . (closed tube).

�n �
4L

n
, n � 1, 3, 5, . . . .

� � 4
3 L.

3
4�,

1
4�,
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Figure 19-7. (a) The pressure waves of the first four resonant
modes of a tube driven by a speaker and open at the other end.
There is a pressure node N at each end, and antinodes A are lo-
cated between the nodes. The curves suggest the sinusoidal varia-
tion of pressure within the tube. (b) The pressure waves of the first
four resonant modes of a tube that is closed at one end. The closed
end is a pressure antinode. Note the differences in vibrational pat-
terns and wavelengths between the open and closed tubes.

* A beautiful demonstration of the locations of the pressure nodes and an-
tinodes can be obtained with a Rubens flame-tube. See “Rubens Flame-
tube Demonstration,” by George W. Ficken and Francis C. Stephenson,
The Physics Teacher, May 1979, p. 306.



data given, we therefore conclude from the first two resonances
that

and similarly, from the second and third resonances,

The average of these two values, which we take as the best value
from this measurement, is 15.6 cm, corresponding to a wavelength
of 2(15.6 cm) � 31.2 cm � 0.312 m. We therefore deduce the
speed of sound to be

Other than the end correction, what physical factors in this experi-
ment (including the properties of the air) might influence the mea-
sured value?

19-7 VIBRATING SYSTEMS AND
SOURCES OF SOUND*

A vibrating system transmits a wave through the air to the
ears of the listener. This is the basic principle of the produc-
tion of sound by voice or by musical instruments. We have
already studied the propagation of the sound wave, and now
to understand the nature of the sound we must study the vi-
brating system that produces it.

v � � f � (0.312 m)(1080 Hz) � 337 m/s.

1
2� � x 3 � x 2 � 37.7 cm � 22.2 cm � 15.5 cm.

1
2� � x 2 � x 1 � 22.2 cm � 6.5 cm � 15.7 cm,

As we discussed in Section 18-10 in the case of the vi-
brating string and in the previous section in the case of a
column of air, a distributed system has a large (perhaps infi-
nite) number of natural vibrational frequencies. These are
the frequencies at which it can vibrate. Which of the fre-
quencies will be present in the vibration depends on how
the system is set into vibration.

Suppose the system is capable of vibrating at a number
of frequencies f1 , f2 , f3 , . . . . We write these in ascend-
ing order, so that f1 � f2 � f3 � ���. The lowest frequency,
f1 , is called the fundamental frequency, and the correspond-
ing mode of oscillation is called the fundamental mode.
The higher frequencies are called overtones, with f2 being
the first overtone, f3 the second overtone, and so on.

In certain systems, the overtones are all integer multi-
ples of the fundamental:

(19-29)

where n is an integer. In such a case, the overtones are
called harmonics. The first member of a harmonic sequence
is the fundamental, the second harmonic is the first over-
tone, and so on.

Why do some vibrating systems produce pleasant
sounds while others produce harsh or discordant sounds?
When several frequencies are heard simultaneously, a
pleasant sensation results if the frequencies are in the ratio
of small whole numbers, such as 3:2 or 5:4. If a system
produces overtones that are harmonics, its vibrations will
include frequencies that have these ratios, and it would
produce a pleasing sound. If the overtones are not harmon-
ics, it is likely that the sound will be discordant. Much of
the effort in the design of musical instruments is devoted
to the production of harmonic sequences of overtones.
Some instruments, such as those based on vibrating
strings, produce overtones that are automatically harmon-
ics when the vibrations have small amplitude. In other
cases, the shape of the instrument must be carefully de-
signed to make it harmonic; a bell is an example of such an
instrument. The harmonics that an instrument produces
give it its richness and diversity of tone, and they are criti-
cal to the beauty of the sound of the instrument. If instru-
ments produced only fundamentals, they would all sound
exactly alike.

We can classify musical insturments into three cate-
gories: those based on vibrating strings, those based on vi-
brating columns of air, and more complex systems includ-
ing vibrating plates, rods, and membranes.

Vibrating Strings
These instruments include the bowed strings (violins, for
example), plucked strings (guitar, harpsichord), and struck
strings (piano).

If a string fixed at both ends is bowed, struck, or
plucked, transverse vibrations travel along the string; these
disturbances are reflected at the fixed ends, and a standing

fn � nf1 ,
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x1

x2

x3

* For a listing of references on the physics of musical instruments and re-
lated topics, see “Resource Letter MA-2: Musical Acoustics,” by Thomas
D. Rossing, American Journal of Physics, July 1987, p. 589.

Figure 19-8. Sample Problem 19-4. An apparatus for mea-
suring the speed of sound in air. The water level can be adjusted by
raising and lowering the reservoir on the left, which is connected
through a hose to the tube. At right are shown the pressure wave-
forms of the first three resonant modes for a fixed wavelength.



wave pattern is formed. The natural modes of vibration of
the string are excited, and these vibrations give rise to log-
nitudinal waves in the surrounding air, which transmits
them to our ears as a musical sound.

We have seen (Section 18-10) that a string of length L,
fixed at both ends, can resonate at frequencies given by Eq.
18-46:

(19-30)

Here v is the speed in the string of the transverse traveling
waves whose superposition can be thought of as giving rise
to the vibrations; the speed v (� is the same for all
frequencies. (Note that v is not the speed of sound in air;
even though Eq. 19-30 looks exactly like Eq. 19-26, v
stands for different quantities in the two equations.) At any
one of these frequencies the string contains a whole number
n of loops between its ends; it has nodes at each end 
and n � 1 additional nodes equally spaced along its length
(Fig. 19-9).

If the string is initially distorted so that its shape is the
same as any one of the possible harmonics, it vibrates
only at the frequency of that particular harmonic. The ini-
tial conditions usually arise from striking or bowing the
string, however, and in such cases not only the fundamen-
tal but many of the overtones are present in the resulting
vibration. We have a superposition of several natural
modes of oscillation. The actual displacement is the sum
of the several harmonics with various amplitudes. The 
impulses that are sent through the air to the ear and brain
give rise to one net effect, which is characteristic of the
particular stringed instrument. The quality of the sound 
of a note of any particular frequency played by an instru-
ment is determined by the number of overtones present
and their respective intensities. Figure 19-10 shows the
sound spectra and corresponding waveforms for the violin
and piano.

√F/�)

fn � n
v

2L
, n � 1, 2, 3, . . . .

Vibrating Air Columns
An organ pipe is a simple example of a sound originating in
a vibrating air column. If both ends of a pipe are open and a
stream of air is directed against an edge at one end, standing
longitudinal waves can be set up in the tube. The air column
then resonates at its natural frequencies of vibration, given
by Eq. 19-26. As with the bowed string, the fundamental and
the overtones (which are harmonics) are produced at the
same time. If one end of the tube is closed, the fundamental
frequency is reduced by half, relative to its value for an open
tube of the same length, and only the odd harmonics are pre-
sent, which changes the quality of the sound. That is, an
open pipe produces the same fundamental tone as a closed
pipe of half the length, but because the mixture of harmonics
is different in the two pipes, the quality of the tones differs.

Reed instruments, such as the clarinet, produce their
tones differently. Air is forced through a narrow opening,
one side of which is covered by a reed that has elastic prop-
erties. According to Bernoulli’s equation, the high-speed air
passing through the narrow opening causes a local region of
low pressure inside the mouthpiece. The outside pressure
exceeds the inside pressure, which forces the reed inward
so that it covers the opening. As soon as the opening is cov-
ered, the air flow is interrupted, the dynamic low-pressure
region is eliminated, and the reed pops open, allowing the
air flow to start again. This repeated opening and closing of
the air passage causes maximum variations in pressure at
the mouthpiece end of the instrument, which therefore be-
haves like an antinode of pressure. In a clarinet, the other
end of the instrument is open, and therefore the resonances
of the instrument are those given by Eq. 19-28 for a tube
closed at one end and open at the other. Some wind instru-
ments, such as the flute, use a method similar to the organ
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Figure 19-9. The first four resonant modes of a vibrating
string fixed at both ends. Nodes and antinodes of displacement are
denoted by N and A.

Figure 19-10. Waveforms and sound spectra for two
stringed instruments, (a) violin and (b) piano, each playing a note
of fundamental frequency f1 � 440 Hz (concert A). The sound
spectrum below each waveform shows the harmonics that are 
present in the complex tone and their relative amplitudes.
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pipe to produce the tone, such that the mouthpiece behaves
like an open end; their resonant frequencies are given by
Eq. 19-26. Still others (oboe, saxophone), which use a reed
to produce their tone, have a conical (that is, tapered) rather
than a cylindrical bore, which gives them overtones that are
approximately harmonics, odd as well as even. The brass
instruments (trumpet or trombone, for example) are also
called lip reed instruments, because the player’s lip acts like
a reed, but again the bore is slightly tapered, and as a result
the overtones contain all the harmonics. Figure 19-11
shows waveforms of some wind instruments.

Other Vibrating Systems
Vibrating rods, plates, and stretched membranes also give
rise to sound waves. Consider a stretched flexible mem-
brane, such as a drumhead. If it is struck a blow, a two-
dimensional pulse travels outward from the struck point
and is reflected again and again at the boundary of the
membrane. If some point of the membrane is forced to vi-
brate periodically, continuous trains of waves travel out
along the membrane. Just as in the one-dimensional case of
the string, so here too standing waves can be set up in the
two-dimensional membrane. Each of these standing waves
has a certain frequency natural to (or characteristic of) the
membrane. Again the lowest frequency is called the funda-

mental, and the others are overtones. Generally, many over-
tones are present along with the fundamental when the
membrane is vibrating. These vibrations may excite sound
waves of the same frequency.

The nodes of a vibrating membrane are lines rather than
points (as in a vibrating string) or planes (as in a tube).
Since the boundary of the membrane is fixed, it must be a
nodal line. For a circular membrane fixed at its edge, possi-
ble modes of vibration together with their nodal lines are
shown in Fig. 19-12. The natural frequency of each mode is
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Figure 19-11. Waveforms of some wind instruments: (a)
flute, (b) clarinet, and (c) trumpet, and their sound spectra, as in
Fig. 19-10. Note that the clarinet spectrum shows mostly the odd
harmonics, whereas the flute and trumpet have odd as well as even
harmonics.
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Figure 19-12. (a) The lowest six resonant modes of a circu-
lar drumhead clamped at its rim. The lines represent nodes; the
rim is also a nodal line. The � or � signs indicate that, at a given
instant, a particular region is moving up out of the page or down
into the page. In this case the overtones are not integral multiples
of the fundamental and are thus not harmonics. (b) The vibrational
patterns of a kettledrum in the modes numbered 4, 5, and 6, and
one additional mode not illustrated in (a). They are made visible
by sprinkling dark powder on the drumhead and setting it into vi-
bration at the proper frequency using a mechanical vibrator. As
the drumhead vibrates, the powder is shaken and eventually settles
on the nodal lines, where there is no motion.
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given in terms of the fundamental f1 . The frequencies of the
overtones are not harmonics; that is, they are not integral
multiples of f1 . Vibrating rods also have a nonharmonic set
of natural frequencies. Rods and plates have limited use as
musical instruments for this reason. In instruments such as
the xylophone and the marimba, small bars of wood or
metal are set into vibration by striking. The shape of the
bars is carefully modified, making them thinner in the cen-
ter, in such a way that the overtones become approximately
harmonics.

19-8 BEATS

We have previously considered the effect of waves that are
superimposed to give regions of maximum and minimum
(zero) intensity, such as in the case of a standing wave in a
tube. This illustrates a type of interference that we can call
interference in space.

The same principle of superposition leads us to another
type of interference, which we can call interference in time.
In this case we examine the superposition of two waves at a
given point as a function of the time. This superposition,
which in general can result in quite complex waveforms,
takes a particularly simple form when the two waves have
nearly the same frequency. With sound such a condition ex-
ists when, for example, two instruments or two guitar
strings are being tuned to one another.

Consider a point in space through which the waves are
passing. Figure 19-13a shows the pressure produced at that
point by the two waves separately as a function of time. For
simplicity we have assumed that the two waves have equal
amplitude, although this is not necessary. The resultant
pressure at that point as a function of time is the sum of the
individual pressures and is plotted in Fig. 19-13b. We see
that the amplitude of the resultant wave is not constant but

varies with time. In the case of sound the varying amplitude
gives rise to variations in loudness, which are called beats.

Let us represent the variation in pressure with time (for
constant x) produced by one wave as

where we have chosen the phase constant to enable us to
write the wave in this simple form. The pressure variation
at the same point produced by the other wave of equal am-
plitude is represented as

By the superposition principle, the resultant pressure is

(19-31)

Using the trigonometric identity

Eq. 19-31 can be written

(19-32)

So far everything we have done applies to any two waves,
no matter what their frequencies. When the frequencies are
nearly the same, Eq. 19-32 can be simplified by writing the
second factor in terms of the average angular frequency �av

of the two waves,

(19-33)

The first factor, contained in the brackets of Eq. 19-32, gives
a time-varying amplitude to the sinusoidal variation of the
second factor. This amplitude factor varies with an angular
frequency

(19-34)

In terms of �av and �amp , we can write Eq. 19-32 as

(19-35)

If �1 and �2 are nearly equal, the amplitude frequency
�amp is small, and the amplitude fluctuates slowly. Figure
19-13 shows the superposition of the two waves according
to Eq. 19-32. Notice that in the case of nearly equal fre-
quencies, the rapid variation of the resultant wave occurs
with a frequency that is approximately that of either of the
two added waves. The overall amplitude of the resultant
varies slowly with the amplitude frequency �amp , which de-
fines an “envelope” within which the more rapid variation
occurs. This phenomenon is a form of amplitude modula-
tion, which has a counterpart (side bands) in AM radio re-
ceivers.

In the case shown in Fig. 19-13b, the ear would per-
ceive a tone at a frequency fav (� �av/2) which is approxi-

�p(t) � [2�pm cos �ampt] sin �avt.

�amp �
� �1 � � 2 �

2
.

�av �
�1 � � 2

2
.

�p(t) � �2�pm cos � �1 � � 2

2 � t� sin � �1 � � 2

2 � t.

sin A � sin B � 2 cos 
A � B

2
 sin 

A � B

2
,

� �pm(sin �1t � sin �2t).

�p(t) � �p1(t) � �p2(t) 

�p2(t) � �pm sin �2t.

�p1(t) � �pm sin �1t,
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Figure 19-13. (a) Two sinusoidal waveforms of nearly equal
frequencies. (b) The superposition of the two waveforms. Note
that the two waves in part (a) go from being in phase, giving a re-
sultant of large amplitude, to being out of phase, giving a resultant
of zero amplitude. The dashed curves show the sinusoidal varia-
tion of the modulating envelope with angular frequency �amp .
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mately the same as the frequencies f1 (� �1/2) or
f2 (� �2/2) of the two component waves. The tone grows
alternately loud and soft as the amplitude of the resultant
varies with time, having maxima and minima as shown in
Fig. 19-13b.

A beat— that is, a maximum of intensity—occurs
whenever cos �ampt equals � 1 or � 1, since the intensity
depends on the square of the amplitude. Each of these val-
ues occurs once in each cycle of the envelope (see Fig. 19-
13), so the number of beats per second is twice the number
of cycles per second of the envelope. The beat angular fre-
quency �beat is then

(19-36)

Using � � 2 f, we can rewrite this expression as

(19-37)

Hence the number of beats per second equals the difference
of the frequencies of the component waves. Beats between
two tones can be detected by the ear up to a frequency of
about 15 Hz. At higher frequencies individual beats cannot
be distinguished in the sound produced. Musicians often
listen for beats when tuning certain instruments. The tuning
is changed until the beat frequency decreases and the beats
disappear.

Sample Problem 19-5. A violin string that should be
tuned to concert A (440 Hz) is slightly mistuned. When the violin
string is played in its fundamental mode along with a concert A
tuning fork, 3 beats per second are heard. (a) What are the possi-
ble values of the fundamental frequency of the string? (b) Suppose
the string were played in its first overtone simultaneously with a
tuning fork one octave above concert A (880 Hz). How many
beats per second would be heard? (c) When the tension of the
string is increased slightly, the number of beats per second in the
fundamental mode increases. What was the original frequency of
the fundamental?

Solution (a) From Eq. 19-37, we know that the frequency f1 of
the string differs by the beat frequency (3 Hz) from the frequency
f2 of the tuning fork (440 Hz), but from the number of beats per
second alone, we cannot tell whether the string has a higher or
lower frequency. Thus the possible frequencies are

(b) In the first overtone, the frequency of the string is twice its
fundamental frequency, and thus either 886 Hz or 874 Hz. When
played against a 880-Hz tuning fork, the frequency difference in
either case is 6 Hz, and thus 6 beats per second would be heard.
(c) Increasing the tension in the string raises the speed of trans-
verse waves and therefore raises the fundamental frequency (see
Eq. 19-30). Since we are given that this increases the beat fre-
quency, we conclude that the frequency of the fundamental mode
was previously greater than 440 Hz, since increasing the fre-
quency made the difference from 440 Hz even greater. Thus the
string was originally tuned to 443 Hz, and to bring it into proper
tuning the tension must be reduced.

f1 � 440 Hz � 3 Hz � 443 Hz or 437 Hz.

fbeat � � f1 � f2 �.

� beat � 2�amp � � �1 � �2 �.

19-9 THE DOPPLER EFFECT

When a listener is in motion toward a stationary source of
sound, the pitch (frequency) of the sound heard is higher
than when the listener is at rest. If the listener is in motion
away from the stationary source, a lower pitch is heard. We
obtain similar results when the source is in motion toward
or away from a stationary listener. The pitch of the whistle
of a locomotive or the siren of a fire engine is higher when
the source is approaching the hearer than when it has
passed and is receding.

In a paper written in 1842, Christian Johann Doppler
(1803–1853, Austrian) called attention to the fact that the
color of a luminous body must be changed by relative mo-
tion of the body and the observer. This Doppler effect, as it
is called, applies to waves in general. Doppler himself men-
tions the application of his principle to sound waves. An ex-
perimental test was carried out in Holland in 1845 by Buys
Ballot, “using a locomotive drawing an open car with sev-
eral trumpeters.”

Moving Observer, Source at Rest
We now consider the Doppler effect for sound waves, treat-
ing only the special case in which the source and observer
move along the line joining them. Let us adopt a reference
frame at rest in the medium through which the sound trav-
els. Figure 19-14 shows a source of sound S at rest in this
frame and an observer O moving toward the source at a
speed vO. The circles represent wavefronts, spaced one
wavelength apart, traveling through the medium. An ob-
server at rest in the medium would receive vt/� waves in
time t, where v is the speed of sound in the medium and �
is the wavelength. Because of the motion toward the source,
however, the observer receives vOt/� additional waves in
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Figure 19-14. A stationary source of sound S emits spherical
wavefronts, shown one wavelength apart. An observer O, repre-
sented by the ear, moves with speed vO toward the source. The mov-
ing observer encounters more waves per second than an observer at
rest and therefore measures a higher frequency. The observer would
measure a lower frequency for motion away from the source.
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this same time t. The frequency f � that is actually heard is
the number of waves received per unit time, or

That is,

(19-38)

The frequency f � heard by the observer is the frequency f
heard at rest plus the increase f(vO/v) arising from the motion
of the observer. When the observer is in motion away from
the stationary source, there is a decrease in frequency f(vO/v)
corresponding to the waves that do not reach the observer in
each unit of time because of the receding motion. Then

(19-39)

Hence the general relation holding when the source is at
rest with respect to the medium but the observer is moving
through it is

(19-40)

where the plus sign holds for motion toward the source and
the minus sign holds for motion away from the source.
Note that the change in frequency occurs because the ob-
server intercepts more or fewer waves each second as a re-
sult of the motion through the medium.

Moving Source, Observer at Rest
When the source is in motion toward a stationary observer,
the effect is a shortening of the wavelength (see Fig. 19-
15), because the source is following after the approaching
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v � vO

v
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v
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�
�

v � vO

v/ f
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waves, and the crests therefore come closer together. If the
frequency of the source is f and its speed is vS , then during
each vibration it travels a distance vS /f, and each wave-
length is shortened by this amount. Hence the wavelength
of the sound arriving at the observer is not � � v/f but
�� � v/f � vS /f. The frequency of the sound heard by the
observer is increased and is given by

(19-41)

If the source moves away from the observer, the wavelength
emitted is vS/f greater than �, so that the observer hears a
decreased frequency—namely,

(19-42)

Hence the general relation holding when the observer is
at rest with respect to the medium but the source is moving
through it is

(19-43)

where the minus sign holds for motion toward the observer
and the plus sign holds for motion away from the observer.
Note that the change here is the shortening or increasing of
the wavelength transmitted through the medium due to the
motion of the source through the medium.

If both source and observer move through the transmit-
ting medium, you should be able to show that the observer
hears a frequency

(19-44)

where the upper signs (� numerator, � denominator) cor-
respond to the source and observer moving along the line
joining the two in the direction toward the other, and the
lower signs in the direction away from the other. Equation
19-44 incorporates all four different possibilities, as Sample
Problem 19-6 shows. Note that Eq. 19-44 reduces to Eq.
19-40 when vS � 0 and Eq. 19-43 when vO � 0, as it must.

If a source of sound is moved away from an observer
and toward a wall, the observer hears two notes of different
frequency. The note heard directly from the receding source
is lowered in pitch by the motion. The other note is due to
the waves reflected from the wall, and this is raised in pitch
(because the source is moving toward the wall, and the wall
“hears” the higher frequency). The superposition of these
two wave trains produces beats. A similar effect occurs if a
wave from a stationary source is reflected from a moving
object. The beat frequency can be used to deduce the speed
of the object. This is the basic principle of radar speed
monitors, and it is also used to track satellites.

The discussion in this section applies to the Doppler
shift for sound waves and other similar mechanical waves.
Light waves also show the Doppler effect; however, be-
cause there is no medium of propagation for light, the for-
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Figure 19-15. Here the observer O is at rest, with the source
moving toward it at speed vS . Wavefront 1 was emitted when the
source was at S1 , wavefront 7 when the source was at S7 , and so
on. At the instant of this drawing, the source is at S. The observer
measures a shorter wavelength because of the “bunching up” of
the wavefronts along the motion. An observer on the negative x
axis, from whom the source would be moving away, would mea-
sure a longer wavelength.
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mulas developed in this section do not apply. See Chapter
39 for a discussion of the Doppler effect for light waves.

Sample Problem 19-6. The siren of a police car emits
a pure tone at a frequency of 1125 Hz. Find the frequency that you
would perceive in your car under the following circumstances: (a)
your car at rest, police car moving toward you at 29 m/s
(65 mi/h); (b) police car at rest, your car moving toward it at
29 m/s; (c) you and the police car moving toward one another at
14.5 m/s; (d ) you moving at 9 m/s, police car chasing behind you
at 38 m/s.

Solution All four parts of this problem can be solved using Eq. 9-
44. (a) Here vO � 0 (your car is at rest) and vS � 29 m/s. We
choose the upper (minus) sign in the denominator of Eq. 19-44,
because the police car is moving toward you. We thus obtain, us-
ing v � 343 m/s for the speed of sound in still air,

(b) In this case vS � 0 (the police car is at rest) and vO � 29 m/s.
We choose the upper (plus) sign in the numerator of Eq. 19-44,
because you are moving toward the police car, and we find

(c) In this case vS � 14.5 m/s and vO � 14.5 m/s. We choose the
upper signs in both the numerator and denominator of Eq. 19-44,
because you and the police car are moving toward each other. We
thus obtain

(d ) Here vO � 9 m/s and vS � 38 m/s. You are moving away from
the police car, so we choose the lower (minus) sign in the numera-
tor, but the police car is moving toward you, so we choose the up-
per (minus) sign in the denominator. The result is

Note that in all four cases in this sample problem, the relative
speed between you and the police car is the same—namely,
29 m/s—but the perceived frequencies are different in the four
cases. The Doppler shift for sound is determined not only by the
relative speed between source and observer, but also by both of
their speeds relative to the medium that carries the sound.

Effects at High Speed (Optional)
When vO or vS becomes comparable in magnitude to v, the
formulas just given for the Doppler effect usually must be
modified. One modification is required because the linear
relation between restoring force and displacement assumed
up until now may no longer hold in the medium. The speed
of wave propagation is then no longer the normal phase
speed, and the wave shapes change in time. Components of
the motion at right angles to the line joining source and ob-
server also contribute to the Doppler effect at these high

f � � f
v � vO

v � vS

� (1125 Hz) 
343 m/s � 9 m/s

343 m/s � 38 m/s
� 1232 Hz.
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v � vO

v � vS

� (1125 Hz) 
343 m/s � 14.5 m/s

343 m/s � 14.5 m/s
� 1224 Hz.

f � � f
v � vO

v
� (1125 Hz) 

343 m/s � 29 m/s

343 m/s
� 1220 Hz.

f � � f
v

v � vS

� (1125 Hz) 
343 m/s

343 m/s � 29 m/s
� 1229 Hz.

speeds. When vO or vS exceeds v, the Doppler formula does
not apply; for example, if vS � v, the source gets ahead of
the wave in one direction; if vO � v and the observer moves
away from the source, the wave never catches up with the
observer.

There are many instances in which the source moves
through a medium at a speed greater than the phase speed of
the wave in that medium. In such cases the wavefront takes
the shape of a cone with the moving body at its apex. Some
examples are the bow wave from a speedboat on the water
and the “shock wave” from an airplane or projectile moving
through the air at a speed greater than the speed of sound in
that medium (supersonic speeds). Another example is the
so-called Cerenkov radiation, which consists of light waves
emitted by charged particles that move through a medium
with a speed greater than the phase speed of light in that
medium. The blue glow of the water that often surrounds the
core of a nuclear reactor is one type of Cerenkov radiation.

In Fig. 19-16a we show the present positions of the
spherical waves that originated at various positions of a
source during its motion. The radius of each sphere at this
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Figure 19-16. (a) Wavefronts of a source moving at super-
sonic speed. The wavefronts are spherical and their envelope is a
cone. Compare this figure with Fig. 19-15. (b) A photograph of a
projectile fired from a gun at Mach 2. Note the Mach cone.

vst
S

vSvt

S'

(a)

(b)



time is the product of the wave speed v and the time t that
has elapsed since the source was at its center. The envelope
of these waves is a cone whose surface makes an angle �
with the direction of motion of the source. From the figure
we obtain the result

(19-45)

For surface water waves the cone reduces to a pair of inter-
secting lines. In aerodynamics the ratio vS /v is called the
Mach number. An aircraft flying at supersonic speed gener-
ates a Mach cone similar to that shown in Fig. 19-16. When

sin � �
v

vS

.

the edge of that cone intercepts the ground below, we hear a
“sonic boom,” which (contrary to common belief) is not as-
sociated with an aircraft “breaking the sound barrier.” The
sonic boom is merely the total effect of the concentration
on one surface of the aircraft’s radiated sound energy,
which would normally radiate in all directions at subsonic
speeds. As the photograph of Fig. 19-16b shows, it might
be possible to hear two sonic booms from the same aircraft,
one from the leading edge and another from the trailing
edge. (Note also that the Mach cone never intercepts the
projectile itself; thus the aircraft’s passengers do not hear
the sonic boom.) �
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MULTIPLE CHOICE

19-1 Properties of Sound Waves

19-2 Traveling Sound Waves
1. Which is larger for a sound wave in a fluid, the relative den-

sity variations, ��m/�0 , or the relative pressure variations,
�pm/p0 ?

(A) ��m/�0 � �pm/p0 , always.
(B) ��m/�0 � �pm/p0 , always.
(C) ��m/�0 � �pm/p0 , always.
(D) Which is larger varies, depending on the pressure and

the bulk modulus.

19-3 The Speed of Sound
2. A thin steel rod of length 12 km is suspended in a frictionless

tube. A researcher gently taps one end with a hammer. The
researcher on the other end hears the tap.

(A) at the same instant.
(B) almost, but not quite, instantaneously.
(C) approximately 2 seconds later.
(D) approximately 30 seconds later.
(E) approximately 1/2 minute later.

3. Which is larger, the velocity of a sound wave v or the ampli-
tude of the velocity variations um of the oscillating sound par-
ticles?

(A) v is always greater than um .
(B) v and um are equal.
(C) v must be less than um .
(D) The two velocities are unrelated to each other.

19-4 Power and Intensity of Sound Waves
4. Spherical sound waves are emitted uniformly in all directions

from a point source. The variation in sound level SL as a func-
tion of distance r from the source can be written as

(A) SL � � b log ra

(B) SL � a � b (log r)2

(C) SL � a � b log r
(D) SL � a � b/r 2

where a and b are positive constants.

5. If the average power of a sound wave is expressed in terms of
displacement amplitudes sm and frequencies f, then

(A) (B)
(C) (D) Pav � f �2s2

m .Pav � f �1s2
m .

Pav � fs2
m .Pav � f 2s2

m .

19-5 Interference of Sound Waves
6. One way to improve the performance of bass speakers on a

sound system is to attach a curved tube to the back of the
speaker that passes near the front so that the sound waves
from the back of the speaker are allowed to interfere con-
structively with the sound waves from the front (Fig. 19-17).
If the average wavelength of the sound coming from the
speaker is �, then the length of the tube to produce construc-
tive interference should be

(A) �/4. (B) �/2. (C) 3�/4. (D) �.

Figure 19-17. Multiple-choice question 6.

19-6 Standing Longitudinal Waves
7. What is the pattern for resonant frequencies of a tube closed

at both ends?
(A) The same as a tube open at both ends, fn � nv/2L, n �

1, 2, 3, 4, 5, . . .
(B) The same as a tube closed at one end, fn � nv/4L, n �

1, 3, 5, 7, 9, . . .
(C) fn � nv/8L, n � 1, 5, 9, 13, 17, . . .
(D) A tube closed at both ends does not have any resonant

frequencies.

19-7 Vibrating Systems and Sources of Sound
8. The octave thumb key on a clarinet forces the resonance

mode from the fundamental to the first overtone. Pressing the



key opens a small hole on the back of the clarinet. Where
should this hole be located?

(A) Near a pressure node for a typical fundamental
(B) Near a pressure antinode for a typical fundamental
(C) Near a pressure node for a typical first overtone
(D) Near a pressure antinode for a typical first overtone

9. A violin string of length L is bowed so that its sound is a mix-
ture of the fundamental and the first three overtones. How far
from the end of the string should a small pick-up microphone
be placed so that it transmits all of these tones?

(A) L/2 (B) L/3 (C) L/4 (D) L/8

19-8 Beats
10. You are provided with three similar, but slightly different,

tuning forks. When A and B are both struck, a beat frequency
of fAB is heard. When A and C are both struck, a beat fre-
quency of fAC is heard. It was noticed that fAB � fAC .
(a) Which tuning fork has the highest frequency?

(A) A (B) B (C) C
(D) The answer cannot be determined from the informa-

tion given.

(b) Which tuning fork has the middle frequency?

(A) A (B) B (C) C
(D) The answer cannot be determined from the informa-

tion given.

(c) B and C are simultaneously struck. What will be the ob-
served beat frequency?

(A) (B)
(C) Either or will be heard.
(D) Both and will simultaneously

be heard.

19-9 The Doppler Effect
11. A source of sound is moving toward an observer. The source

passes an identical sound source, which is at rest. The ob-
server can hear the sound produced by both sources.
(a) Before the moving source passes the stationary source,

the observer hears

� fAB � fBC �� fAB � fBC �
� fAB � fBC �� fAB � fBC �

� fAB � fBC �� fAB � fBC �

(A) a higher pitch from the moving source.
(B) a higher pitch from the stationary source.
(C) the same pitch from both sources.

(b) At the instant the moving source passes the stationary
source, the observer hears

(A) a higher pitch from the moving source.
(B) a higher pitch from the stationary source.
(C) the same pitch from both sources.

(c) After the moving source passes the stationary source, the
observer hears

(A) a higher pitch from the moving source.
(B) a higher pitch from the stationary source.
(C) the same pitch from both sources.

12. Three musicians experiment with the Doppler effect. Musi-
cian A rides in a car at a speed u directly away from musician
B who is stationary. Musician C rides in a car directly toward
B and travels at the same speed as A (Fig. 19-18). Musician A
plays a note at frequency fA on his trumpet. B hears the note,
adjusts his trumpet, and plays the same note he heard. C hears
the only note played by B.
(a) Assume that all three musicians are always in a straight

line. Compared to the original note as played by musician
A, the final note heard by C will be

(A) the same pitch. (B) higher in pitch.
(C) lower in pitch.

(b) Assume instead that A is moving due north away from B,
while C is moving due west toward B. Compared to the
original note as played by musician A, the final note heard
by C will be

(A) the same pitch. (B) higher in pitch.
(C) lower in pitch.
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Figure 19-18. Multiple-choice question 12.

QUESTIONS

1. Why will sound not travel through a vacuum?

2. List some sources of infrasonic waves and of ultrasonic
waves.

3. Ultrasonic waves can be used to reveal internal structures of
the body. They can, for example, distinguish between liquid
and soft human tissues far better than can x rays. How? Why
do we still use x rays?

4. What experimental evidence is there for assuming that the
speed of sound in air is the same for all wavelengths?

5. Give a qualitative explanation why the speed of sound in lead
is less than that in copper.

6. Transverse waves on a string can be plane polarized. Can
sound waves be polarized?

7. Bells frequently sound less pleasant than pianos or violins.
Why?

8. A bell is rung for a short time in a school. After a while its
sound is inaudible. Trace the sound waves and the energy they
transfer from the time of emission until they become inaudible.

9. The pitch of the wind instruments rises and that of the string
instruments falls as an orchestra warms up. Explain why.

10. Explain how a stringed instrument is tuned.

11. Is resonance a desirable feature of every musical instrument?
Give examples.

12. When you strike one prong of a tuning fork, the other prong also
vibrates, even if the bottom end of the fork is clamped firmly in
a vise. How can this happen? That is, how does the second
prong “get the word” that somebody has struck the first prong?

13. How can a sound wave travel down an organ pipe and be re-
flected at its open end? It would seem that there is nothing
there to reflect it.

14. How can we experimentally locate the positions of nodes and
antinodes on a string, in an air column, and on a vibrating sur-
face?

15. Explain how a note is produced when you blow across the top
of a test tube. What would be the effect of blowing harder? Of
raising the temperature of the air in the test tube?



16. How might you go about reducing the noise level in a ma-
chine shop?

17. Foghorns emit sounds of very low pitch. For what purpose?

18. Are longitudinal waves in air always audible as sound, re-
gardless of frequency or intensity? What frequencies would
give a person the greatest sensitivity, the greatest tolerance,
and the greatest range?

19. What is the common purpose of the valves of a cornet and the
slide of a trombone? The bugle has no valves. How then can
we sound different notes on it? To what notes is the bugler
limited? Why?

20. Explain how bowing a violin string gets it to vibrate.

21. What is the meaning of zero decibels? Could the reference in-
tensity for audible sound be set so as to permit negative sound
levels in decibels? If so, how?

22. Discuss the factors that determine the range of frequencies in
your voice and the quality of your voice.

23. Explain the origin of the sound in ordinary whistling.

24. What physical properties of a sound wave correspond to the
human sensations of pitch, loudness, and tone quality?

25. What is the difference between a violin note and the same
note sung by a human voice that enables us to distinguish be-
tween them?

26. Does your singing really sound better in a shower? If so, what
are the physical reasons?

27. Explain the audible sound produced by drawing a wet finger
around the rim of a wine glass.

28. Would a plucked violin string oscillate for a longer or shorter
time if the violin had no sounding board? Explain.

29. Is a bowed violin string an example of forced damped oscilla-
tions? How would the string sound if it were not damped?

30. A tube can act like an acoustic filter, discriminating against
the passage through it of sounds of frequencies different from
the natural frequencies of the tube. The muffler of an automo-
bile is an example. (a) Explain how such a filter works. (b)
How can we determine the cut-off frequency, below which
sound is not transmitted?

31. Discuss factors that improve the acoustics in music halls.

32. What is the effect of using a megaphone or cupping your hands
in front of your mouth to project your voice over a distance?

33. A lightning flash dissipates an enormous amount of energy
and is essentially instantaneous. How is that energy trans-
formed into the sound waves of thunder? (See “Thunder,” by
Arthur A. Few, Scientific American, July 1975, p. 80.)

34. Sound waves can be used to measure the speed at which
blood flows in arteries and veins. Explain how.

35. Suppose that George blows a whistle and Gloria hears it. She
will hear an increased frequency whether she is running to-
ward George or George is running toward her. Are the in-
creases in frequency the same in each case? Assume the same
speeds of running.

36. Suppose that, in the Doppler effect for sound, the source and
receiver are at rest in some reference frame but the transmit-
ting medium (air) is moving with respect to this frame. Will
there be a change in wavelength, or in frequency, received?

37. You are standing in the middle of the road and a bus is com-
ing toward you at constant speed, with its horn sounding. Be-
cause of the Doppler effect is the pitch of the horn rising,
falling, or constant?

38. How might the Doppler effect be used in an instrument to detect
the fetal heart beat? (Such measurements are routinely made;
see “Ultrasound in Medical Diagnosis,” by Gilbert B. Devey
and Peter N. T. Wells, Scientific American, May 1978, p. 98.)

39. Bats can examine the characteristics of objects—such as size,
shape, distance, direction, and motion—by sensing the way
the high-frequency sounds they emit are reflected off the ob-
jects back to the bat. Discuss qualitatively how each of these
features affects the reflected sound waves. (See “Information
Content of Bat Sonar Echoes,” by J. A. Simmons, D. J. Howell,
and N. Suga, American Scientist, March–April 1975, p. 204.)

40. Assume that you can detect an object by bouncing waves off
it (such as in sonar or radar, for instance) as long as the object
is larger than the wavelength of the waves. Then consider that
bats and porpoises each can emit sound waves of frequency
100 kHz; however, bats can detect objects as small as insects
but porpoises only small fish. Why the difference?

41. The natural C-trumpet is a brass instrument without valves,
which can play only the notes C4 , G4 , C5 , E5 , G5 , B5

� � , C6 , .
. . Is this sequence characteristic of a pipe open on both
ends, or one closed on one and open on the other? To which
type does the trumpet really belong? Explain.

42. Is there a Doppler effect for sound when the observer or the
source moves at right angles to the line joining them? How
then can we determine the Doppler effect when the motion
has a component at right angles to this line?

43. Two ships with steam whistles of the same pitch sound off in
the harbor. Would you expect this to produce an interference
pattern with regions of high and low intensity? If not, why
not?
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EXERCISES

Where needed in the problems, use speed of sound in air �
343 m/s and density of air � 1.21 kg/m3 unless otherwise
specified.

19-1 Properties of Sound Waves

19-2 Traveling Sound Waves
1. A continuous sinusoidal longitudinal wave is sent along a

coiled spring from a vibrating source attached to it. The fre-
quency of the source is 25 Hz, and the distance between suc-
cessive rarefactions in the spring is 24 cm. (a) Find the wave

speed. (b) If the maximum longitudinal displacement of a par-
ticle in the spring is 0.30 cm and the wave moves in the � x
direction, write the equation for the wave. Let the source be at
x � 0 and the displacement s � 0 at the source when t � 0.

2. The pressure in a traveling sound wave is given by the equa-
tion

Find (a) the pressure amplitude, (b) the frequency, (c) the
wavelength, and (d ) the speed of the wave.

�p � (1.48 Pa) sin [(1.07 rad /m)x � (334 rad /s)t].



19-3 The Speed of Sound
3. Diagnostic ultrasound of frequency 4.50 MHz is used to ex-

amine tumors in soft tissue. (a) What is the wavelength in air
of such a sound wave? (b) If the speed of sound in tissue is
1500 m/s, what is the wavelength of this wave in tissue?

4. If the wavelength of sound is large, by a factor of about 10,
relative to the mean free path of the molecules, then sound
waves can propagate through a gas. For air at room tempera-
ture the mean free path is about 0.1 pm. Calculate the fre-
quency above which sound waves could not propagate.

5. Figure 19-19 shows a remarkably detailed image of a transis-
tor in a microelectronic circuit, formed by an acoustic micro-
scope. The sound waves have a frequency of 4.2 GHz. The
speed of such waves in the liquid helium in which the speci-
men is immersed is 240 m/s. (a) What is the wavelength of
these ultrahigh-frequency acoustic waves? (b) The ribbon-like
conductors in the figure are � 2 pm wide. To how many
wavelengths does this correspond?

arrive 3 min before the first S waves; see Fig. 19-20. How far
away did the earthquake occur?
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Figure 19-19. Exercise 5.

Figure 19-20. Exercise 9.

6. (a) A rule for finding your distance from a lightning flash is to
count seconds from the time you see the flash until you hear
the thunder and then divide the count by 5. The result is sup-
posed to give the distance in miles. Explain this rule and de-
termine the percent error in it at 0°C and 1 atm pressure. (b)
Devise a similar rule for obtaining the distance in kilometers.

7. A column of soldiers, marching at 120 paces per minute,
keeps in step with the music of a band at the head of the col-
umn. It is observed that the men at the rear of the column are
striding forward with the left foot when those in the band are
advancing with the right. What is the length of the column ap-
proximately?

8. You are at a large outdoor concert, seated 300 m from the
stage microphone. The concert is also being broadcast live, in
stereo, around the world via satellite. Consider a listener 5000
km away. Who hears the music first and by what time differ-
ence?

9. Earthquakes generate sound waves in the Earth. Unlike in a
gas, there are both transverse (S) and longitudinal (P) sound
waves in a solid. Typically, the speed of S waves is about 
4.5 km/s and that of P waves 8.2 km/s. A seismograph
records P and S waves from an earthquake. The first P waves
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S waves
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19-4 Power and Intensity of Sound Waves
10. Show that the sound wave intensity I can be written in terms

of the frequency f and displacement amplitude sm in the form

11. A source emits spherical waves isotropically (that is, with
equal intensity in all directions). The intensity of the wave
42.5 m from the source is 197 �W/m2. Find the power output
of the source.

12. A sound wave of frequency 313 Hz has an intensity of 
1.13 �W/m2. What is the amplitude of the air vibrations
caused by this sound?

13. A sound wave of intensity 1.60 �W/cm2 passes through a sur-
face of area 4.70 cm2. How much energy passes through the
surface in 1 h?

14. Find the intensity ratio of two sounds whose sound levels dif-
fer by 1.00 dB.

15. A certain sound level is increased by an additional 30 dB.
Show that (a) its intensity increases by a factor of 1000 and
(b) its pressure amplitude increases by a factor of 32.

16. A salesperson claimed that a stereo system would deliver 
110 W of audio power. Testing the system with several speak-
ers set up so as to simulate a point source, the consumer noted
that she could get as close as 1.3 m with the volume full on
before the sound hurt her ears. Should she report the firm to
the Consumer Protection Agency?

17. Find the energy density in a sound wave 4.82 km from a 
5.20-kW emergency siren, assuming the waves to be spherical
and the propagation isotropic with no atmospheric absorption.

18. You are standing at a distance D from an isotropic source of
sound waves. You walk 51.4 m toward the source and observe
that the intensity of these waves has doubled. Calculate the
distance D.

19. Estimate the maximum possible sound level in decibels of
sound waves in air. (Hint: Set the pressure amplitude equal to
1 atm.)

20. Suppose that the average sound level of human speech is 
65 dB. How many persons in a room speaking at the same
time each at 65 dB are needed to produce a sound level of 
80 dB?

21. Suppose that a rustling leaf generates 8.4 dB of sound. Find
the sound level from a tree with 2.71 � 105 rustling leaves.

I � 2 2�vf 2s2
m .



22. In a test, a subsonic jet flies overhead at an altitude of 115 m.
The sound level on the ground as the jet passes overhead is 150
dB. At what altitude should the plane fly so that the ground
noise is no greater than 120 dB, the threshold of pain? Ignore
the finite time required for the sound to reach the ground.

19-5 Interference of Sound Waves
23. A sound wave of 42.0-cm wavelength enters the tube shown

in Fig. 19-21. What must be the smallest radius r such that a
minimum will be heard at the detector?
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Figure 19-21. Exercise 23.

Figure 19-22. Exercise 24.

Figure 19-23. Exercise 25.

Figure 19-24. Exercise 30.

Figure 19-25. Exercise 31.

r

Source Detector

Speaker

Speaker Listener

3.75 m

2.12 m

24. Two stereo loudspeakers are separated by a distance of 2.12
m. Assume that the amplitude of the sound from each speaker
is approximately the same at the position of a listener, who is
3.75 m directly in front of one of the speakers; see Fig. 19-22.
(a) For what frequencies in the audible range (20–20,000 Hz)
will there be a minimum signal? (b) For what frequencies is
the sound a maximum?

25. A spherical sound source is placed at P1 near a reflecting wall
AB and a microphone is located at point P2 , as shown in Fig.
19-23. The frequency of the sound source is variable. Find the
two lowest frequencies for which the sound intensity, as ob-
served at P2 , will be a maximum. There is no phase change on
reflection; the angle of incidence equals the angle of reflection.

A

B

3.05 m

24.4 m

15.2 m

P1

P2

300 Hz, but they are 180° out of phase. At what points along
the line connecting them will the sound intensity be the largest?

19-6 Standing Longitudinal Waves
27. The strings of a cello have a length L. (a) By what length �L

must they be shortened by fingering to change to the pitch by
a frequency ratio r? (b) Find �L, if L � 80.0 cm and

, and 

28. A sound wave in a fluid medium is reflected at a barrier so
that a standing wave is formed. The distance between nodes is
3.84 cm and the speed of propagation is 1520 m/s. Find the
frequency.

29. A well with vertical sides and water at the bottom resonates at
7.20 Hz and at no lower frequency. The air in the well has a
density of 1.21 kg/m3 and a bulk modulus of 1.41 � 105 Pa.
How deep is the well?

30. S in Fig. 19-24 is a small loudspeaker driven by an audio os-
cillator and amplifier, adjustable in frequency from 1000 to
2000 Hz only. D is a piece of cylindrical sheetmetal pipe 
45.7 cm long and open at both ends. (a) At what frequencies
will resonance occur when the frequency emitted by the
speaker is varied from 1000 to 2000 Hz? (b) Sketch the dis-
placement nodes for each resonance. Neglect end effects.

3
2.r � 6

5, 
5
4, 

4
3

31. The width of the terraces in an amphitheater in Los Angeles,
Fig. 19-25, is 36 in. (� 0.914 m). A single hand-clap occur-
ring at the center of the stage will reflect back to the stage as a
tone of what frequency?

S

D

36 in.

32. A tunnel leading straight through a hill greatly amplifies tones
at 135 and 138 Hz. Find the shortest length the tunnel could
have.

19-7 Vibrating Systems and Sources of Sound
33. (a) Find the speed of waves on an 820-mg violin string 

22.0 cm long if the frequency of the fundamental is 920 Hz.
(b) Calculate the tension in the string.

34. If a violin string is tuned to a certain note, by what factor
must the tension in the string be increased if it is to emit a
note of double the original frequency (that is, a note one oc-
tave higher in pitch)?

35. A certain violin string is 30 cm long between its fixed ends
and has a mass of 2.0 g. The string sounds an A note (440 Hz)

26. Two sources of sound are separated by a distance of 5.00 m.
They both emit sound at the same amplitude and frequency,



when played without fingering. Where must one put one’s fin-
ger to play a C (528 Hz)?

36. An open organ pipe has a fundamental frequency of 291 Hz.
The first overtone (n � 3) of a closed organ pipe has the same
frequency as the second harmonic of the open pipe. How long
is each pipe?

19-8 Beats
37. A tuning fork of unknown frequency makes three beats per

second with a standard fork of frequency 384 Hz. The beat
frequency decreases when a small piece of wax is put on a
prong of the first fork. What is the frequency of this fork?

38. The A string of a violin is a little too taut. Four beats per sec-
ond are heard when it is sounded together with a tuning fork
that is vibrating accurately at the pitch of concert A (440 Hz).
What is the period of the violin string vibration?

39. You are given four tuning forks. The fork with the lowest fre-
quency vibrates at 500 Hz. By using two tuning forks at a
time, the following beat frequencies are heard: 1, 2, 3, 5, 7,
and 8 Hz. What are the possible frequencies of the other three
tuning forks?

19-9 The Doppler Effect
40. A source S generates circular waves on the surface of a lake,

the pattern of wave crests being shown in Fig. 19-26. The
speed of the waves is 5.5 m/s and the crest-to-crest separation
is 2.3 m. You are in a small boat heading directly toward S at
a constant speed of 3.3 m/s with respect to the shore. What
frequency of the waves do you observe?

passed, the cyclist hears a frequency of 1590 Hz. How fast is
the ambulance moving?

43. A whistle of frequency 538 Hz moves in a circle of radius
71.2 cm at an angular speed of 14.7 rad/s. What are (a) the
lowest and (b) the highest frequencies heard by a listener a
long distance away at rest with respect to the center of the 
circle?

44. In 1845, Buys Ballot first tested the Doppler effect for sound.
He put a trumpet player on a flatcar drawn by a locomotive
and another player near the tracks. If each player blows a
440-Hz note, and if there are 4.0 beat/s as they approach each
other, what is the speed of the flatcar?

45. Estimate the speed of the projectile illustrated in the photo-
graph in Fig. 19-16b. Assume the speed of sound in the
medium through which the projectile is traveling to be 
380 m/s.

46. A sonar device sends 148-kHz sound waves from a hiding po-
lice car toward a truck approaching at a speed of 44.7 m/s.
Calculate the frequency of the reflected waves detected at the
police car.

47. An acoustic burglar alarm consists of a source emitting waves
of frequency 28.3 kHz. What will be the beat frequency of
waves reflected from an intruder walking at 0.95 m/s directly
away from the alarm?

48. A siren emitting a sound of frequency 1000 Hz moves 
away from you toward a cliff at a speed of 10.0 m/s. (a)
What is the frequency of the sound you hear coming directly
from the siren? (b) What is the frequency of the sound you
hear reflected off the cliff? (c) Find the beat frequency.
Could you hear the beats? Take the speed of sound in air as
330 m/s.

49. A person in a car blows a trumpet sounding at 438 Hz. The
car is moving toward a wall at 19.3 m/s. Calculate (a) the 
frequency of the sound as received at the wall and (b) the fre-
quency of the reflected sound arriving back at the source.

50. In a discussion of Doppler shifts of ultrasonic (high-
frequency) waves used in medical diagnosis, the authors 
remark: “For every millimeter per second that a structure in
the body moves, the frequency of the incident ultrasonic
wave is shifted approximately 1.3 Hz/MHz.” What speed 
of the ultrasonic waves in tissue do you deduce from this
statement?

51. A bat is flitting about in a cave, navigating very effectively by
the use of ultrasonic bleeps (short emissions of high-
frequency sound lasting a millisecond or less and repeated
several times a second). Assume that the sound emission fre-
quency of the bat is 39.2 kHz. During one fast swoop directly
toward a flat wall surface, the bat is moving at 8.58 m/s. Cal-
culate the frequency of the sound the bat hears reflected off
the wall.
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Figure 19-26. Exercise 40.

S

41. The 15.8-kHz whine of the turbines in the jet engines of an
aircraft moving with speed 193 m/s is heard at what fre-
quency by the pilot of a second craft trying to overtake the
first at a speed of 246 m/s?

42. An ambulance emitting a whine at 1602 Hz overtakes and
passes a cyclist pedaling a bike at 2.63 m/s. After being

PROBLEMS

1. The speed of sound in a certain metal is v. One end of a long
pipe of that metal of length L is struck a hard blow. A listener
at the other end hears two sounds, one from the wave that has
traveled along the pipe and the other from the wave that has
traveled through the air. (a) If vair is the speed of sound in air,

what time interval t elapses between the arrival of the two
sounds? (b) A hammer strikes a long aluminum rod at one
end. A listener, whose ear is close to the other end of the rod,
hears the sound of the blow twice, with a 120-ms interval be-
tween. How long is the rod?



2. A stone is dropped into a well. The sound of the splash is
heard 3.00 s later. What is the depth of the well?

3. A certain loudspeaker produces a sound with a frequency of
2.09 kHz and an intensity of 962 �W/m2 at a distance of 
6.11 m. Presume that there are no reflections and that the
loudspeaker emits the same in all directions. (a) Find the in-
tensity at 28.5 m. (b) Find the displacement amplitude at 
6.11 m. (c) Calculate the pressure amplitude at 6.11 m.

4. (a) If two sound waves, one in air and one in water, are equal
in intensity, what is the ratio of the pressure amplitude of the
wave in water to that of the wave in air? (b) If the pressure
amplitudes are equal instead, what is the ratio of the intensi-
ties of the waves? Assume that the water is at 20°C.

5. A line source (for instance, a long freight train on a straight
track) emits a cylindrical expanding wave. Assuming that the
air absorbs no energy, find how (a) the intensity and (b) the
amplitude of the wave depend on the distance from the
source. Ignore reflections and consider points near the center
of the train.

6. In Fig. 19-27 we show an acoustic interferometer, used to
demonstrate the interference of sound waves. S is a source of
sound (a loudspeaker, for instance), and D is a sound detector,
such as the ear or a microphone. Path SBD can be varied in
length, but path SAD is fixed. The interferometer contains air,
and it is found that the sound intensity has a minimum value
of 10 �W/cm2 at one position of B and continuously climbs
to a maximum value of 90 �W/cm2 at a second position 
1.65 cm from the first. Find (a) the frequency of the sound
emitted from the source and (b) the relative amplitudes of the
waves arriving at the detector for each of the two positions of
B. (c) How can it happen that these waves have different am-
plitudes, considering that they originate at the same source?

whispered conversation be understood? (Assume that the
sound level of a whisper is 20 dB at 1.0 m from the source,
considered to be a point, and that the threshold for hearing is
0 dB.)

10. The period of a pulsating variable star may be estimated by
considering the star to be executing radial longitudinal pulsa-
tions in the fundamental standing wave mode; that is, the ra-
dius varies periodically with the time, with a displacement an-
tinode at the surface. (a) Would you expect the center of the
star to be a displacement node or antinode? (b) By analogy
with the open organ pipe, show that the period of pulsation T
is given by

where R is the equilibrium radius of the star and vs is the aver-
age sound speed. (c) Typical white dwarf stars are composed
of material with a bulk modulus of 1.33 � 1022 Pa and a den-
sity of 1.0 � 1010 kg/m3. They have radii equal to 0.009 solar
radius. What is the approximate pulsation period of a white
dwarf? (See “Pulsating Stars,” by John R. Percy, Scientific
American, June 1975, p. 66.)

11. In Fig. 19-28, a rod R is clamped at its center; a disk D at its
end projects into a glass tube that has cork filings spread over
its interior. A plunger P is provided at the other end of the
tube. The rod is set into longitudinal vibration and the plunger
is moved until the filings form a pattern of nodes and anti-
nodes (the filings form well-defined ridges at the pressure an-
tinodes). If we know the frequency f of the longitudinal vibra-
tions in the rod, a measurement of the average distance d
between successive antinodes determines the speed of sound
v in the gas in the tube. Show that

This is Kundt’s method for determining the speed of sound in
various gases.

v � 2fd.

T �
4R

vs

,
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Figure 19-27. Problem 6. Figure 19-28. Problem 11.

S

BA

D

7. A certain loudspeaker (assumed to be a point source) emits
31.6 W of acoustic power. A small microphone of effective
cross-sectional area 75.2 mm2 is located 194 m from the loud-
speaker. Calculate (a) the sound intensity at the microphone,
(b) the power incident on the microphone, and (c) the amount
of energy that impinges on the microphone in 25.0 min.

8. The reverberation time of an auditorium or concert hall is the
time required for the sound intensity (in W/m2) to decrease by
a factor of 106. The reverberation time depends on the fre-
quency of the sound. Suppose that in a particular concert hall,
the reverberation time for a note of a certain frequency is 
2.6 s. If the note is sounded at a sound level of 87 dB, how
long will it take for the sound level to fall to 0 dB (the thresh-
old of human hearing)?

9. A large parabolic reflector having a circular opening of radius
0.50 m is used to focus sound. If the energy is delivered from
the focus to the ear of a listening detective through a tube of
diameter 1.0 cm with 12% efficiency, how far away can a

R
D

d
P

12. A tube 1.18 m long is closed at one end. A stretched wire is
placed near the open end. The wire is 33.2 cm long and has a
mass of 9.57 g. It is fixed at both ends and vibrates in its fun-
damental mode. It sets the air column in the tube into vibra-
tion at its fundamental frequency by resonance. Find (a) the
frequency of oscillation of the air column and (b) the tension
in the wire.

13. A 30.0-cm violin string with linear mass density 0.652 g/m is
placed near a loudspeaker that is fed by an audio oscillator of
variable frequency. It is found that the string is set into oscil-
lation only at the frequencies 880 and 1320 Hz as the
frquency of the oscillator is varied continuously over the
range 500–1500 Hz. What is the tension in the string?

14. You are given five tuning forks, each of which has a different
frequency. By trying every pair of tuning forks, (a) what max-
imum number of different beat frequencies might be ob-
tained? (b) What minimum number of different beat frequen-
cies might be obtained?



COMPUTER PROBLEMS

1. Write a computer program for a Doppler sonar. The program
should request the speed of sound, the frequency of the output
pulse (or “ping”), the frequency of the reflected pulse, and the
time delay between the output ping and the return ping. The
program should then inform the user of the probable distance
to the target and the target’s possible speed(s) toward or away
from the source. Try the program with the following data: the
speed of sound is 340 m/s; the output pulse frequency is 
20 kHz; the frequency of the reflected pulse is 20.612 kHz;
and the time delay between the output and reflected pings is
0.230 s.

2. Generalize the previous program so that the data from two
consecutive pings can be used to determine both the distance
to the target and the velocity of the target. The program will
also need to request the rate at which outgoing pings are sent.
Assume that the outgoing pings are omnidirectional, but the
direction of incoming pings can be resolved. Try the program
with the following data: the speed of sound is 340 m/s; the
output pulse frequency is 20 kHz and the pulses are sent once
per second; a 20.921 kHz reflected pulse coming from 40° E
of N is received 0.288 s after the first pulse is sent; and a sec-
ond 20.921 kHz reflected pulse coming from 36.5° E of N is
received 0.311 s after the second pulse is sent.

15. The speed of light in water is 2.25 � 108 m/s (about three-
fourths the speed in a vacuum). A beam of high-speed elec-
trons from a betatron emits Cerenkov radiation in water, the
wavefront being a cone of angle 58.0°. Find the speed of the
electrons in the water.

16. Two identical tuning forks oscillate at 442 Hz. A person is lo-
cated somewhere on the line between them. Calculate the beat
frequency as measured by this individual if (a) she is standing
still and the tuning forks both move to the right at 31.3 m/s,
and (b) the tuning forks are stationary and the listener moves
to the right at 31.3 m/s.

17. A plane flies at 396 m/s at constant altitude. The sonic boom
reaches an observer on the ground 12.0 s after the plane flies
overhead. Find the altitude of the plane. Assume the speed of
sound to be 330 m/s.

18. Figure 19-29 shows a transmitter and receiver of waves con-
tained in a single instrument. It is used to measure the speed
V of a target object (idealized as a flat plate) that is moving
directly toward the unit, by analyzing the waves reflected
from it. (a) Apply the Doppler equations twice, first with the
target as observer, and then with the target as a source, and
show that the frequency fr of the reflected waves at the re-
ceiver is related to their source frequency fs by

where v is the speed of the waves. (b) In a great many prac-
tical situations, V �� v. In this case, show that the equation
above becomes

fr � fs

fs

�
2V

v
.

fr � fs � v � V

v � V �,

19. Two submarines are on a head-on collision course during ma-
neuvers in the North Atlantic. The first sub is moving at 
20.2 km/h and the second sub at 94.6 km/h. The first subma-
rine sends out a sonar signal (sound wave in water) at 1030
Hz. Sonar waves travel at 5470 km/h. (a) The second sub
picks up the signal. What frequency does the second sonar de-
tector hear? (b) The first sub picks up the reflected signal.
What frequency does the first sonar detector hear? See Fig.
19-30. The ocean is calm; assume no currents.
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Figure 19-29. Problem 18.

Figure 19-30. Problem 19.

Vfr

fs
Target

20.2 km/h 94.6 km/h

20. A submarine moving north with a speed of 75.2 km/h with
respect to the ocean floor emits a sonar signal (sound waves
in water used in ways similar to radar; see Table 19-1) of fre-
quency 989 Hz. If the ocean at that point has a current mov-
ing north at 30.5 km/h relative to the land, what frequency is
observed by a ship drifting with the current north of the sub-
marine? (Hint: All speeds in the Doppler equations must be
taken with respect to the medium.)

21. A 2000-Hz siren and a civil defense official are both at rest
with respect to the Earth. What frequency does the official
hear if the wind is blowing at 12 m/s (a) from source to ob-
server and (b) from observer to source?

22. Two trains on parallel tracks are traveling toward each other
at 34.2 m/s relative to the ground. One train is blowing a
whistle at 525 Hz. (a) What frequency will be heard on the
other train in still air? (b) What frequency will be heard on the
other train if the wind is blowing at 15.3 m/s parallel to the
tracks and toward the whistle? (c) What frequency will be
heard if the wind direction reverses?
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20-1 TROUBLES WITH
CLASSICAL PHYSICS

The kinematics developed by Galileo and the mechanics
developed by Newton, which form the basis of what we call
classical physics, had many triumphs. Particularly notewor-
thy are the understanding of the motion of the planets and
the use of kinetic theory to explain certain observed proper-
ties of gases. However, a number of experimental phenom-
ena cannot be understood with these otherwise successful
classical theories. Let us consider a few of these difficulties.
We will consider examples of experiments specifically de-

signed to reveal the limitations of classical physics and—
as we shall see—to serve as tests of Einstein’s special the-
ory of relativity.

Troubles with Our Ideas about Time
The pion (�� or ��) is a particle that can be created in a
high-energy particle accelerator. It is a very unstable parti-
cle; pions created at rest are observed to decay (to other
particles) with an average lifetime of only 26.0 ns (26.0 �
10�9 s). In one particular experiment, pions were created in
motion at a speed of v � 0.913c (where c is the speed of
light, 3.00 � 108 m/s). In this case they were observed to
travel in the laboratory an average distance of D � 17.4 m
before decaying, from which we conclude that they decay
in a time given by D/v � 63.7 ns, much larger than the life-
time measured for pions at rest (26.0 ns). This effect, called
time dilation, suggests that something about the relative
motion between the pion and the laboratory has stretched
the measured time interval by a factor of about 2.5. Such an
effect cannot be explained by Newtonian physics, in which
time is a universal coordinate having identical values for all
observers.

CHAPTER 20CHAPTER 20
THE SPECIAL THEORY

OF RELATIVITY*

The special theory of relativity has an undeserved rep-

utation as a difficult subject. It is not mathematically complicated; most of its details can be understood us-

ing techniques well known to readers of this text. Perhaps the most challenging aspect of special relativity

is its insistence that we replace some of our ideas about space and time, which we have acquired through

years of “common-sense” experiences, with new ideas.

The essential ideas of special relativity were formally presented in a paper written by Albert Einstein

and published in 1905.† In this chapter we present the basic postulates of Einstein’s theory and their conse-

quences, introduce the mathematical techniques that allow measurements made in one frame of reference to

be transformed into another, and study some of the consequences for both kinematics and dynamics.

* Some instructors may wish to delay covering relativity until after the
treatment of electromagnetic waves in Chapter 38. Relativistic effects in
wave motion are discussed in Chapter 39. An abbreviated coverage of this
chapter can be done by postponing Sections 20-4 through 20-7.
† In that year he also published his papers on Brownian motion and on the
photoelectric effect. It was for this latter paper (and not specifically for his
theory of relativity) that he was awarded the 1921 Nobel prize in physics.
Einstein also proposed a general theory of relativity in 1917. The general
theory deals with the effect of gravity on space and time, some conse-
quences of which were discussed in Section 14-9. In this chapter we con-
sider only the special theory, in which gravity plays no role.



Troubles with Our Ideas about Length
Suppose an observer in the above laboratory placed one
marker at the location of the pion’s formation and another at
the location of its decay. The distance between the markers
is measured to be 17.4 m. Now consider the situation ac-
cording to a different observer who is traveling along with
the pion at a speed of u � 0.913c. This observer, to whom
the pion appears to be at rest, measures its lifetime to be
26.0 ns, characteristic of pions at rest. To this observer, the
distance between the markers showing the formation and
decay of the pion is (0.913c)(26.0 � 10�9 s) � 7.1 m. Thus
two observers who are in relative motion measure different
values for the same length interval. This is likewise incon-
sistent with Newtonian physics, in which spatial coordinates
are absolute and give identical readings for all observers.

Troubles with Our Ideas about Speed
Figure 20-1 shows a game between A and B, as seen by an
observer O. All three observers are at rest in this reference
frame. A throws a ball at superluminal (faster than light)
speed toward B, who catches it. The light signal carrying
the view of A throwing the ball travels to observer O, as
does the light signal carrying the view of B catching the
ball. Both light signals travel at speed c, which is less than
the speed of the ball thrown by A. At the location of ob-
server O, as shown in Fig. 20-1, the light signal from B ar-
rives before the light signal from A. Therefore, according to
O, B catches the ball before A throws it! Newtonian physics
permits us to accelerate projectiles to unlimited speeds and
therefore allows such apparent violations of cause and ef-
fect to be observed.

Troubles with Our Ideas about Energy
The positron (e�) is the antiparticle of the electron (e�).
The particles have the same mass but opposite electric
charges, the electron having a negative charge and the
positron a positive charge. Positrons are emitted in a com-
mon type of radioactive decay process. When these
positrons encounter electrons in ordinary matter, we ob-
serve the process known as electron–positron annihilation,
in which both particles disappear and in their place we find
only electromagnetic radiation (gamma rays, which are
very similar in character to ordinary light but of much
shorter wavelength). Symbolically, we can represent this
process as

e� � e� : radiation.

Figure 20-2a shows a system consisting of an electron and
a positron, which are initially moving toward one another at
very low speed. The particles are in a container, which is
completely within our system. In Fig. 20-2b, the electron
and positron have annihilated one another, and in their
place we find radiation. In Fig. 20-2c, the radiation has
been absorbed by the walls of the container, in the process
increasing its internal energy.

Can we apply the law of conservation of energy, as we
discussed in Chapter 13, to this system? Clearly no energy
enters or leaves the system boundary; no external work is
done on this system, and there is no heat transfer to or from
the system. In this case, we expect that the total energy inside
the system boundary should remain constant. Yet there is en-
ergy in the radiation of Fig. 20-2b and in the internal energy
of the walls of the container in Fig. 20-2c that has no obvious
counterpart in Fig. 20-2a. It appears that the law of conserva-
tion of energy is violated in this process. If we wish to pre-
serve conservation of energy as a fundamental law of physics,
we need to account for this apparent violation of the law.

Troubles with Our Ideas about Light
Einstein proposed his special theory of relativity in 1905,
based on a thought experiment that he had devised. As a
16-year-old student, Einstein had learned the theory of elec-
tromagnetism and had thought about a paradox: If you were
to move at the speed of light parallel to a light beam travel-
ing in empty space, you would observe “static” electric and
magnetic field patterns. (In a similar way, we showed in
Fig. 18-8 a “static” disturbance on a string, which would be
seen by an observer moving along the string at the same
speed as waves on the string.) However, Einstein knew that
such static electric and magnetic field patterns in empty
space violated the theory of electromagnetism.

Einstein was faced with two choices to resolve this
paradox: either electromagnetic theory was wrong or else
the classical kinematics that permits an observer to travel
along with a light beam was wrong. With the intuition that
was perhaps his greatest attribute, Einstein put his faith in
electromagnetic theory and sought an alternative to the
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Light signal showing
A throwing ball

Light signal showing
A throwing ball Light signal showing

B catching ball

A B O

A B O

(a)

(b)

Figure 20-1. (a) A throws a ball to B. The ball moves faster
than light and so is ahead of the light signal that shows A throwing
the ball. (b) The light signal showing B catching the ball will
reach the observer O before the light signal showing A throwing
the ball. Such logical inconsistencies argue against the possiblity
of accelerating particles to speeds faster than light.



kinematics of Galileo and Newton. Later in this chapter we
show how this new kinematics, which forms the basis of
special relativity, prevents any observer from catching a
light beam. We also show how it solves the other problems
with time, length, speed, and energy discussed previously.

The critical test of any theory is of course how well it
agrees with experiment. Einstein’s special theory of relativ-
ity has been subjected to exhaustive tests over the past 95
years and has passed every one. Where classical physics
and relativity theory predict different results, experiment
has always been found to agree with relativity theory.

20-2 THE POSTULATES OF
SPECIAL RELATIVITY

A scientific theory usually begins with general statements
called postulates, which attempt to provide a basis for the
theory. From these postulates we can obtain a set of mathe-
matical laws in the form of equations that relate physical
variables. Finally, we test the predictions of the equations in
the laboratory. The theory stands until contradicted by ex-
periment, after which the postulates may be modified or re-
placed, and the cycle is repeated.

For about two centuries, the mechanics of Galileo and
Newton withstood all experimental tests. In this case the
postulates concern the absolute nature of space and time.
Based on his thought experiment about catching a light
beam, Einstein realized the need to replace the Galilean
laws of relative motion. In his 1905 paper, entitled “On the
Electrodynamics of Moving Bodies,” Einstein offered two
postulates that form the basis of his special theory of rela-
tivity. We can rephrase his postulates as follows:

The principle of relativity: The laws of physics are the
same in all inertial reference frames.

The principle of the constancy of the speed of light: The
speed of light in free space has the same value c in all
inertial reference frames.

The first postulate declares that the laws of physics are
absolute, universal, and the same for all inertial observers.
Laws that hold for one inertial observer cannot be violated
for any inertial observer.

The second postulate is much more difficult to accept,
because it violates our “common sense,” which is firmly
grounded in the Galilean kinematics that we have learned
from everyday experiences. Consider three observers A, B,
and C, each of whom is at rest in a different inertial refer-
ence frame. A flash of light is emitted by observer A, who
observes the light to travel at speed c. The frame of ob-
server B is moving away from A at a speed of c/4; Galilean
kinematics predicts that B measures the value c � c/4 �
3c/4 for the speed of the light emitted by A. Observer C is
in a frame that is moving toward A with speed c/4; accord-
ing to Galileo, observer C measures a speed of c � c/4 �
5c/4 for the speed of the light emitted by A. Einstein’s sec-
ond postulate, on the other hand, asserts that all three ob-
servers measure the same speed c for the light pulse!

This is of course not the way ordinary objects behave. A
projectile fired from a moving car has a velocity relative to
the ground determined by the vector sum of the velocity of
the projectile relative to the car and the velocity of the car
relative to the ground. However, the velocities of light
waves and particles moving at speeds close to c do not be-
have in this way. We discuss the relativistic law for velocity
addition in Section 20-6 and show that it reduces to the
“common-sense” Galilean law at low speeds.

Einstein put forth these postulates at a time when experi-
mental tests were difficult or impossible. During the follow-
ing decades, the development of high-energy particle accel-
erators made possible the study of the motions of particles at
speeds close to c. In 1964, for example, an experiment was
performed at CERN, the European high-energy particle
physics laboratory near Geneva, Switzerland. The proton ac-
celerator at CERN was used to produce a beam of particles
called neutral pions (�0), which decay rapidly (with an aver-
age lifetime of about 10�16 s) to two gamma rays:

�0 : � � �.

Gamma rays are electromagnetic radiations that travel at
the speed of light. The experimenters measured directly the
speed of the gamma rays emitted by the decaying pions,
which were moving at a speed of 0.99975c. According to
Galileo, gamma rays emitted in the direction of motion of
the pions should have a speed of c � 0.99975c � 1.99975c
in the laboratory frame of reference. According to Einstein,
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Figure 20-2. (a) An electron and a positron slowly approach one another inside a container in our system. (b) After annihila-
tion, radiation appears. (c) The radiant energy is absorbed by the walls of the container, increasing its internal energy by an
amount �Eint .

System boundary

Radiation
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e+ e–
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they should have a speed of c. The measured speed was
2.9977 � 108 m/s, equal to c to within 1 part in 104, thus
providing direct verification of the second postulate.

The two postulates taken together have another conse-
quence: they imply that it is impossible to accelerate a par-
ticle to a speed greater than c, no matter how much kinetic
energy we give it. This is also a prediction that can be tested
in the laboratory, and one that brings out another difference
between the postulates of relativity and those of classical
physics. Classical physics places no upper limit on the
speed that an object may attain; relativity does impose such
a limiting speed, which, by the first postulate, must be the
same for all frames of reference.

In another experiment done in 1964, electrons were ac-
celerated by a large voltage difference (up to 15 million
volts), and the speed of the electrons was directly deter-
mined. Figure 20-3 shows the measured speeds at a func-
tion of the kinetic energy acquired by the electrons. No
matter how much the accelerating voltage is increased, the
speed never quite reaches or exceeds c. Once again, experi-
ments at high speeds are inconsistent with predictions
based on the kinematics of Galileo and Newton but instead
confirm the postulates of special relativity.

20-3 CONSEQUENCES OF
EINSTEIN’S POSTULATES

In Section 20-1 we discussed difficulties in interpreting cer-
tain measurements of time, length, and velocity based on
classical physics. Let us see how Einstein’s postulates can
resolve those difficulties.

The Relativity of Time
We consider two observers: S is at rest on the ground, and
S	 is in a train moving on a long, straight track at constant
speed u relative to S. The observers carry identical timing
devices, illustrated in Fig. 20-4, consisting of a flashing
lightbulb F attached to a detector D and separated by a dis-
tance L0 from a mirror M. The bulb emits a flash of light
that travels to the mirror. When the reflected light returns to
D, the clock ticks and another flash is triggered. The time
interval �t0 between ticks is simply the distance 2L0 trav-
eled by the light divided by the speed of light c:

(20-1)

The interval �t0 is observed by either S or S	 when the
clock is at rest with respect to that observer.

We now consider the situation when one observer looks
at a clock carried by the other. Figure 20-5 shows a repre-
sentation of the sequence of events that S observes* on the
clock carried by S	 on the moving train. According to S, the
flash is emitted at A, reflected at B, and detected at C. In
this interval �t, according to S the clock moves forward a
horizontal distance of u �t from the location where the
flash was emitted.

According to S, the light beam travels a distance 2L,
where as shown in Fig. 20-5. The
time interval measured by S for the light to travel this dis-
tance at a speed c (the same speed measured by S	!) is

(20-2)

Substituting for L0 from Eq. 20-1 and solving Eq. 20-2 for
�t gives

(20-3)�t �
�t 0

√1 � u 2/c 2
.

�t �
2L

c
�

2√L2
0 � (u �t/2)2

c
.

L � √L 2
0 � (u �t /2)2,

�t 0 � 2L 0 /c.
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Figure 20-3. The points represent measurements of the
speed of electrons accelerated through a large voltage difference
to a known kinetic energy. The measurements show that, no mat-
ter how great the kinetic energy, the speed of the electrons does
not exceed c. (See “Speed and Kinetic Energy of Relativistic Elec-
trons,” by William Bertozzi, American Journal of Physics, May
1964, p. 551.)

M

L0

F D

Figure 20-4. The clock ticks at intervals �t0 determined by
the time necessary for a light flash to travel the distance 2L0 from
the flashing bulb F to the mirror M and back to the detector D.
(The lateral distance between F and D is assumed to be negligible
in comparison with L0 .)

* We assume that S has a row of synchronized clocks, which S can use to
make time measurements at points A, B, and C. Establishment of a syn-
chronized array of clocks is discussed in Section 20-5.



The factor in the denominator of Eq. 20-3 is always less
than or equal to 1, and thus �t 
 �t0 . That is, the observer
relative to whom the clock is in motion (observer S ) mea-
sures a greater interval between ticks. This effect is called
time dilation. The time interval �t0 measured by an ob-
server (S	 in this case) relative to whom the clock is at rest
is called the proper time. The proper time interval between
events is the smallest interval between them that any ob-
serve can measure; all observers in motion relative to the
clock measure longer intervals.

Equation 20-3 enables us to understand the difficulty
with the pion decay experiments discussed in Section 20-1.
A pion at rest decays in a time interval of 26.0 ns; this in-
terval is a proper time interval and is designated as �t0 .
(The pion is in effect a clock, and the interval from forma-
tion to decay of the pion can be regarded as a tick of the
clock.) An observer in the laboratory, relative to whom the
pion is in motion at a speed of u � 0.913c, would be ex-
pected to measure a time interval of

in agreement with the measured value.
Equation 20-3, which is deduced from Einstein’s postu-

lates, gives the relationship between time intervals accord-
ing to special relativity for observers in relative motion.
Note that the factor in the denominator differs appreciably
from 1 only at speeds that approach the speed of light. Even
at a speed of 0.1c, Eq. 20-3 gives �t � 1.005�t0 . At ordi-
nary speeds, we can take �t � �t0 to a very high precision.
This is the classical result (which is obtained directly from
Eq. 20-3 in the limit u �� c) and is in accord with our
“common-sense” experience.

�t �
�t 0

√1 � u 2/c 2
�

26.0 ns

√1 � (0.913)2
� 63.7 ns,

Equation 20-3 is valid for any direction of the relative
motion of S and S	. It is also valid for any type of clock, not
just the special one we used in its derivation. It has been
verified experimentally not only with decaying elementary
particles (such as the pion) moving at high speed, but also
with precise atomic clocks moving relative to one another
at ordinary ( jet airliner) speeds. Even biological clocks
such as human aging are expected to be affected by time di-
lation. An interesting aspect of this effect, called the twin
paradox, is discussed later in this chapter.

The Relativity of Length
We now consider the effect of Einstein’s postulates on the
measurement of length intervals. Suppose that S	 turns the
clock on the train sideways, so that the light now travels
along the direction of motion of the train. Figure 20-6
shows the sequence of events as observed by S for the mov-
ing clock. According to S the length of the clock is L; as we
shall see, this length is different from the length L0 mea-
sured by S	, relative to whom the clock is at rest.

A flash of light is emitted at position A in Fig. 20-6 and
reaches the mirror (position B) a time �t1 later. The total
distance traveled by the light in this interval is c �t1 , which
can also be written as the length L of the clock plus the ad-
ditional distance u �t1 that the mirror moves forward in this
interval due to the motion of the train. That is,

(20-4)

During the return trip from the mirror to the detector (posi-
tion C in Fig. 20-6), which takes an interval �t2 according
to S, the light travels a distance c �t2 , which must equal the
length L less the distance u �t2 that the train moves for-
ward in this interval, or

(20-5)

After solving Eqs. 20-4 and 20-5 for �t1 and �t2 , we add
to find the total time interval �t, which gives

(20-6)

From Eq. 20-3, setting �t0 � 2L0/c,

(20-7)�t �
�t 0

√1 � u 2/c 2
�

2L 0

c

1

√1 � u 2/c 2
.

�
2L

c

1

1 � u 2/c 2 .

�t � �t 1 � �t 2 �
L

c � u
�

L

c � u

c �t 2 � L � u �t 2 .

c �t 1 � L � u �t 1 .
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Figure 20-5. In the frame of reference of S, the clock carried
by S	 on the train moves with speed u. The dashed line, of length
2L, shows the path of the light beam according to S.
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L + u∆t1 L – u∆t2
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Figure 20-6. Here the clock carried
by S	on the train emits its light flash in
the direction of motion of the train. The
figure at C has been displaced to the
right for clarity.



Setting Eqs. 20-6 and 20-7 equal to one another and solv-
ing, we obtain

(20-8)

Equation 20-8 summarizes the effect known as length con-
traction. The length L0 measured by an observer (such as
S	) who is at rest with respect to the object being measured
is called the rest length (also known as the proper length, in
analogy with the proper time). All observers in motion rela-
tive to S	 measure a shorter length, but only for dimensions
along the direction of motion; length measurements trans-
verse to the direction of motion are unaffected. In the situa-
tion shown in Fig. 20-5, the length L0 is unaffected by the
relative motion.

Equation 20-8 can help us resolve the difficulties with
the classical concept of length discussed in Section 20-1.
The two markers placed in the laboratory at the locations of
the formation and decay of the pion are separated by a dis-
tance of 17.4 m. Since the markers are at rest in the labora-
tory, the distance between them is a rest length. To an ob-
server traveling with the pion, the entire laboratory is in
motion at u � 0.913c, and the distance between the mark-
ers is measured, according to Eq. 20-8, to have a contracted
length

consistent with the discussion of Section 20-1.
Under ordinary circumstances, u �� c and the effects

of length contraction are far too small to be observed. For
example, a rocket of length 100 m launched from Earth
with the high speed sufficient to escape the Earth’s gravity
(u � 11.2 km/s) would be measured to contract, according
to an observer on the Earth, by an amount roughly equiva-
lent to only 2 atomic diameters!

Length contraction suggests that objects in motion are
measured to have a shorter length than they do at rest. No
actual shrinkage is implied, merely a difference in mea-
sured results, just as two observers in relative motion mea-
sure a different frequency for the same source of sound (the
Doppler effect).

The Relativistic Addition of Velocities
Let us now modify our timing device, as shown in Fig. 20-7.
The flashing bulb F is moved to the mirror end and is re-
placed by a device P that emits particles at a speed v0 , as
measured by an observer at rest with respect to the device.

L � (17.4 m)√1 � (0.913)2 � 7.1 m,

L � L 0√1 � u 2/c 2.

The bulb is triggered to flash when it is struck by a particle,
and a light beam makes the return trip to the detector D.
Thus the time interval �t0 , measured by an observer (such
as S	) who is at rest with respect to the device, consists of
two parts: one due to the particle traveling the distance L0

at speed v0 and another due to the light beam traveling the
same distance at speed c:

(20-9)

The sequence of events observed by S as the timing de-
vice is carried by S	 on the train is identical with that of
Fig. 20-6. The emitted particle, which travels at speed v ac-
cording to S, reaches F after an interval �t1 , during which
time it travels a distance v �t1 , which is equal to the (con-
tracted) length L plus the additional distance u �t1 moved
by the train in that interval:

(20-10)

In the interval �t2 , the light beam travels a distance c �t2

equal to the length L less the distance u �t2 moved forward
by the train in that interval:

(20-11)

Solving Eqs. 20-10 and 20-11 for �t1 and �t2 , we can then
find the total time interval �t � �t1 � �t2 between ticks
according to S, and we substitute that result along with Eq.
20-9 into Eq. 20-3, which gives (after using Eq. 20-8 to re-
late L0 and L)

(20-12)

Equation 20-12 gives one form of the velocity addition law
consistent with Einstein’s postulates; here we are concerned
only with adding velocities that are along the direction of
relative motion (the direction of Later in this chapter we
derive more general results.

According to Galileo and Newton, a projectile fired for-
ward at speed v0 in a train that is moving at speed u should
have a speed v0 � u relative to an observer on the ground.
This clearly permits speeds in excess of c to be realized.
The difference between the classical result and the relativis-
tic result is the denominator of Eq. 20-12, which can cer-
tainly be replaced by 1 in ordinary circumstances when the
speeds are much smaller than c. This important factor, as
we see in Sample Problem 20-2, prevents the relative speed
from ever exceeding c.

If the projectile is a light beam (v0 � c according to S	),
then Eq. 20-12 immediately gives v � c for all observers,
no matter what their speed relative to S	 (that is, indepen-
dent of u). Thus Eq. 20-12 is consistent with Einstein’s sec-
ond postulate.

Sample Problem 20-1. Muons are elementary particles
with a (proper) lifetime of 2.2 �s. They are produced with very
high speeds in the upper atmosphere when cosmic rays (high-
energy particles from space) collide with air molecules. Take the

uB).

v �
v0 � u

1 � v0u /c 2 .

c �t 2 � L � u �t 2 .

v �t 1 � L � u �t 1 .

�t 0 � L 0 /v0 � L 0 /c.
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Figure 20-7. In this timing device, a particle is emitted by P
at a speed v0 . When the particle reaches F, it triggers the emission
of a flash of light that travels to the detector D.

v0
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height L0 of the atmosphere (its rest length) to be 100 km in the
reference frame of the Earth, and find the minimum speed that
will enable the muons to survive the journey to the surface of the
Earth. Solve this problem in two ways: (a) in the Earth’s frame of
reference and (b) in the muon’s frame of reference.

Solution (a) In the Earth’s frame of reference (Fig. 20-8a), the de-
cay of the moving muon is slowed by the time dilation effect. If the
muon is moving at a speed that is very close to c, the time neces-
sary for it to travel from the top of the atmosphere to the Earth is

The muon must survive for at least 333 �s in the Earth’s frame of
reference. We now find the speed that dilates the lifetime from its
proper value �t0 (� 2.2 �s) to this value, according to the time
dilation formula (Eq. 20-3):

Solving, we find

(b) In the muon’s frame of reference, the atmosphere is rushing by
at high speed. In this frame of reference the entire atmosphere
must rush by in a time equal to the (proper) lifetime of the muon,
and thus the height of the atmosphere can be no greater than

This is of course the measured contracted length in the muon’s
frame of reference (see Fig. 20-8b). The relationship between the
rest length L0 (� 100 km), measured in the Earth’s frame of refer-
ence, and the contracted length, measured in the muon’s frame of
reference, is given by Eq. 20-8, and so

Solving for the speed u, we obtain the same result given in part
(a).

Note that a time dilation in one frame of reference can be ob-
served as a length contraction in another. This interrelationship of
time and space is a fundamental part of special relativity.

660 m � (100 km)√1 � u 2/c 2.

L � c �t 0 � (3.00 � 108 m/s)(2.2 � 10�6 s) � 660 m.

u � 0.999978c.

333 �s �
2.2 �s

√1 � u 2/c 2
.

�t �
L 0

c
�

100 km

3.00 � 108 m/s
� 333 �s. Sample Problem 20-2. A spaceship is moving away

from the Earth at a speed of 0.80c when it fires a missile parallel
to the direction of motion of the ship. The missile moves at a
speed of 0.60c relative to the ship (Fig. 20-9). What would be the
speed of the missile as measured by an observer on the Earth?
Compare with the predictions of Galilean kinematics.

Solution This problem is similar to that of the observer and the
train. Here S	 is on the ship and S is on Earth, and S	 moves with a
velocity of u � 0.80c relative to S. The missile moves at velocity
v0 � 0.60c relative to S	, and we seek its velocity relative to S. Us-
ing Eq. 20-12, we obtain

According to classical kinematics (the numerator of Eq. 20-12), an
observer on the Earth would see the missile moving at 0.60c �
0.80c � 1.40c, thereby exceeding the maximum relative speed of
c permitted by relativity. You can see how Eq. 20-12 brings
about this speed limit. Even if v0 were 0.9999    c and u were
0.9999    c, the relative velocity v measured by S would remain
less than c.

20-4 THE LORENTZ
TRANSFORMATION

Einstein’s posulates provide a first step in the resolution of
the difficulties we presented in Section 20-1, but a more
formal mathematical basis is needed to give the theory its
full power to calculate the expected outcomes of a wider
variety of physical processes. For example, we might wish
to compute how the results of measurements of an energy
or a magnetic field strength differ for observers in relative
motion.

We require a set of relationships called transformation
equations that relate observations of a single event by two
different observers. The transformation equations have
three ingredients: (1) an observer S at rest in one inertial
frame, (2) another observer S	 at rest in a different inertial
frame that is in motion at constant velocity with respect to
S, and (3) a single event that is observed by both S and S	.
The event occurs, according to each observer, at a particular
set of coordinates in three-dimensional space and at a par-
ticular time. Knowing the relative velocity of S and S	, we

�
1.40c

1.48
� 0.95c. 

v �
v0 � u

1 � v0u/c 2 �
0.60c � 0.80c

1 � (0.60c)(0.80c)/c 2
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L0 = 100 km

L = 660 m

∆t = 333 µs

∆t0 = 2.2 µs

Figure 20-8. Sample Problem 20-1. (a) In the reference
frame of the Earth, a muon takes 333 �s to travel a distance of
100 km through the atmosphere. (b) In the reference frame of the
muon, the atmosphere is only 660 m high, and the journey takes
2.2 �s.

Figure 20-9. Sample Problem 20-2. A spaceship moves
away from Earth at a speed of 0.80c. An observer S	 on the space-
ship fires a missile and measures its speed to be 0.60c relative to
the ship.

v0 = 0.60c

u = 0.80c

S'S



wish to calculate the coordinates x	, y	, z	, t	 of an event as
observed by S	 from the coordinates of x, y, z, t of the same
event according to S. We simplify this problem somewhat,
without losing generality, by always choosing the x and x	
axes to be along the direction of (see Fig. 20-10).

This problem can be solved using the classical kinemat-
ics of Galileo, and the resulting Galilean transformation
equations are

(20-13)

The first of these equations is consistent with our “com-
mon-sense” experience. For instance, suppose S is at rest on
the ground and measures the location x of a fencepost. S	,
who is in a car moving at speed u relative to S, does indeed
find the fencepost at the location x	 � x � ut (Fig. 20-11).
The fourth equation, t	 � t, was simply taken for granted in
classical physics (as exemplified by Newton’s universal
time coordinate).

The relativistic relationships we seek have come to be
known as the Lorentz transformation equations. They are
named for the Dutch physicist H. A. Lorentz, who proposed
them (before Einstein) for quite a different reason and who
was not fully aware of their implications about the nature of

t	 � t. 
z	 � z, 
y	 � y, 
x	 � x � ut,

uB

space and time. The equations can be derived directly from
Einstein’s postulates, if we invoke certain reasonable as-
sumptions about the symmetry and the homogeneity of
space and time. As an example of this latter property, con-
sider an observer S who measures the length of a rod held
by observer S	 in a different inertial frame. The result of the
measurement carried out by S should not depend on where
S	 is located in the reference frame or on the time of day at
which S makes the measurement.

The Lorentz transformation equations, derived on these
assumptions, are*

(20-14)

Note that an object located initially at the origin according
to S (that is, x � 0 at t � 0) is also initially located at the
origin according to S	 (that is, x	 � 0 and t	 � 0).

In these equations, we have used the Lorentz factor �,
defined as

(20-15)

It is also convenient in relativity equations to introduce the
speed parameter �, defined as the ratio between the relative
speed u of the two coordinate systems and the speed of
light:

(20-16)

Some sample values of � and � are given in Table 20-1, and
the relationship between � and � is shown in Fig. 20-12.
The range of � is from 1 (at low speed, where u �� c or
� �� 1) to � (at high speed, where u : c or � : 1).

Note that the Lorentz transformation equations reduce
to those of the Galilean transformation (Eqs. 20-13) when
u �� c. One convenient way to show this is to let c : �,
so that u/c : 0. In this case, as you should prove, the rela-
tivistic Eqs. 20-14 reduce directly to the classical Eqs. 20-
13. All classical results derived in previous chapters agree

� � u/c.

� �
1

√1 � u 2/c 2
.

t	 �
t � ux/c 2

√1 � u 2/c 2
� � (t � ux/c 2).

z	 � z, 

y	 � y, 

x	 �
x � ut

√1 � u 2/c 2
� � (x � ut), 
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* See Basic Concepts in Relativity, by Robert Resnick and David Halliday
(Macmillan, 1992), for a derivation of these equations.

Figure 20-10. Two observers, whose frames of reference are
represented by S and S	, observe the same event. S	 moves relative
to S with velocity along the common xx	 direction. S measures
the coordinates x, y, z, t of the event, while S	 measures the coor-
dinates x	, y	, z	, t	 of the same event.
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Time tTime 0 Fencepost

S'S'
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x
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Figure 20-11. According to S, the fencepost is at the coordi-
nate x. According to S	, who is at coordinate ut relative to S at
time t, the fencepost is at the coordinate x	 � x � ut. Note that
the origins of S and S	 coincide at t � 0.

� � � �

0.00 1.000 0.90 2.29
0.10 1.005 0.99 7.09
0.30 1.048 0.999 22.4
0.60 1.25 0.9999 70.7

Table 20-1 Sample Values of the Speed Parameter
and the Lorentz Factor



with experiment when u �� c. Only at high speeds must
we take relativistic effects into account.

Equations 20-14 permit us to find the space and time
coordinates in S	 if we know those in S. Suppose, however,
that we wish to know the coordinates in S, given those in
S	. From the point of view of S	 in Fig. 20-10, S appears to
move in the negative x (or x	) direction. We can obtain the
inverse Lorentz transformation by merely switching primed
and unprimed coordinates in Eqs. 20-14 and substituting
� u for u. This gives

(20-17)

We can use a different method of inverting the Lorentz
transformation (see Exercise 14) by solving Eqs. 20-14 al-
gebraically for x and t (treating the first and last equations
as a system of two equations in two unknowns). When we
do, we obtain exactly the inverse transformation given by
Eqs. 20-17, which were obtained directly from a symmetry
argument.

Table 20-2 summarizes the equations of the Lorentz
transformation when the relative velocity between the coor-
dinate systems is in the common xx	 direction. The equa-
tions are shown in four forms: the Lorentz transformation
(Eqs. 20-14), the inverse Lorentz transformation (Eqs. 20-
17), and both corresponding interval transformations,
which are useful when we wish to transform not a coordi-

t � � (t	 � ux	/c 2).

z � z	, 

y � y	, 

x � � (x	 � ut	), 

nate but a space or time interval, such as �x	 � x	2 � x	1
(the distance between two events, as measured by S	) or
�t	 � t	2 � t	1 (the time between two events, as measured
by S	).

Sample Problem 20-3. In inertial frame S, a red light
and a blue light are separated by a distance �x � 2.45 km, with
the red light at the larger value of x. The blue light flashes, and
5.35 �s later the red light flashes. Frame S	 is moving in the direc-
tion of increasing x with a speed of u � 0.855c. What is the dis-
tance between the two flashes and the time between them as mea-
sured in S	?

Solution The Lorentz parameter is

We are given the intervals in S as �x � 2450 m and �t � 5.35 �
10�6 s. From Table 20-2, we have the interval transformations

and

In S	, the red flash is also located at the more distant coordinate,
but the distance is 2.08 km rather than 2.45 km. Also, in S	 the red
flash comes before the blue flash (in contrast to what is observed
in S); the time between flashes is 3.15 �s according to S	.

20-5 MEASURING THE SPACE–
TIME COORDINATES OF AN EVENT

So far, we have said little about how observers S and S	 go
about measuring the coordinates x, y, z, t and x	, y	, z	, t	 of
an event, as in the case of the light flashes in Sample Prob-
lem 20-3. The procedure we now describe forms a concep-
tual foundation on which actual laboratory procedures can
be based.

We assume that S has a large team of assistants avail-
able to help in the setting up of a coordinate system. Each
assistant is given a clock and a measuring rod of a certain

� �3.147 � 10�6 s � �3.15 �s.
� 1.928[5.35 � 10�6 s � (0.855)(2450 m)/(3.00 � 108 m/s)]

�t	 � � (�t � u � x/c 2)

� 2078 m � 2.08 km 
� 1.928[2450 m � (0.855)(3.00 � 108 m/s)(5.35 � 10�6 s)]

�x	 � � (�x � u �t) 

� �
1

√1 � u 2/c 2
�

1

√1 � (0.855)2
� 1.928.
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Figure 20-12. The Lorentz factor � as a function of the
speed parameter �.

Lorentz Inverse Interval Inverse Interval
Transformation Transformation Transformation Transformation

x	 � �(x � ut) x � �(x	 � ut	) �x	 � �(�x � u �t) �x � �(�x	 � u �t	)
y	 � y y � y	 �y	 � �y �y � �y	
z	 � z z � z	 �z	 � �z �z � �z	
t	 � �(t � ux/c2) t � �(t	 � ux	/c2) �t	 � �(�t � u �x/c2) �t � �(�t	 � u �x	/c2)

a Apply these equations only in the case of relative motion in the xx	 direction. The Lorentz factor is � � 1/√1 � u 2/c 2.

Table 20-2 The Lorentz Transformation Equationsa



length. For example, three assistants have measuring rods
1 m in length. They are instructed to lay out their rods, each
along one of the three coordinate axes, and to wait at the
position determined by the end of the rod until they see a
flash of light at the origin, at which time they are to start
their clocks at the preset reading of 3.33 � 10�9 s (3.33 ns,
the time necessary for light to travel the distance of 1 m
from the origin to the assistant’s location). Three other as-
sistants, who are similarly each assigned one of the coordi-
nate axes, are given rods of length 2 m and are instructed to
start their clocks, when they see the flash of light, at the
preset time of 6.67 ns (the time for light to travel 2 m).
Each assistant is sent to a post with a rod of some length L
and a clock preset at t � L /c.

When all the assistants are at their posts, S sets off a
flash of light at the origin and simultaneously starts the
clock at the origin, which is preset to zero. As the light sig-
nal reaches the other clocks, each is started in turn at the
preset reading. Thus the clock on the x axis at x � 1 m is
started at the preset reading of 3.33 ns when the clock at the
origin reads 3.33 ns; the clock on the x axis at x � 2 m
starts at the preset reading of 6.67 ns when the clock at the
origin and the clock at x � 1 m both read 6.67 ns; and so on
for all the clocks in the coordinate system. All clocks in the
entire system are thus perfectly synchronized. The resulting
system of rods and clocks is represented in Fig. 20-13.

Suppose that S wishes to chart the progress of a particle
as it moves through the coordinate system. All that S and
the assistants must do is watch the particle as it travels and,
as it passes each point, write down the coordinate and the
reading on the clock at that coordinate.

Of course, this calibration holds only for observer S.
Observer S	 and all other inertial observers must carry out a
similar procedure to define a coordinate system and syn-
chronize its clocks. With such a scheme the measuring rods
and clocks of each observer (which of course are at rest in
the frame of that observer) are unique to that inertial frame
and are independent of the rods and clocks of observers in
other inertial frames.

This procedure suggests that space and time are not in-
dependent coordinates, but that the description of an event
must include its coordinates in both space and time. (That
is, we cannot use a clock at one location to record the pas-
sage of a particle through another location.) For this reason,
special relativity usually is formulated in terms of com-
bined space– time coordinates x, y, z, t. Space and time are
treated as equivalent coordinates in special relativity.

20-6 THE TRANSFORMATION OF
VELOCITIES

In this section we use the equations of the Lorentz transfor-
mation to relate the velocity of a particle measured by an
observer in the S frame to the velocity of the same particle
measured by an observer in the S	 frame, who is in turn mov-
ing with velocity relative to S. In this discussion, it is im-
portant to keep in mind the meanings of these three velocities.

Suppose observer S finds the particle to move from co-
ordinates x1 , y1 , z1 , t1 to x2 , y2 , z2 , t2 . Observer S	, on the
other hand, records the observations of the initial and final
coordinates of the same particle as x	1 , y	1 , z	1 , t	1 and x	2 , y	2 ,
z	2 , t	2 .

Let us calculate v	x (� �x	/�t	), the x	 component of the
velocity measured by S	. From Table 20-2, we obtain the
transformation equations for the intervals �x	 and �t	. Di-
viding these two equations, we obtain

or, replacing �x/�t by vx ,

(20-18)

In similar fashion, we obtain the transformation equations
for the y and z components of the velocities:

(20-19)

Note that v	y � vy , even though �y � �y	, because �t �
�t	. Similar considerations hold for v	z . This is another ex-
ample of the difference between the way the Galilean and
Lorentz transformations deal with the time coordinate. Be
sure to note that the denominators of all three equations in-
clude the factor vx .

v	y �
vy

� (1 � uvx /c 2)
and v	z �

vz

� (1 � uvx /c 2)
.

v	x �
vx � u

1 � uvx /c 2 .

v	x �
�x	

�t	
�

� (�x � u �t)

� (�t � u �x/c 2)
�

�x/�t � u

1 � u(�x/�t)/c 2 ,

uB

vB	
vB
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Figure 20-13. A framework of measuring rods and clocks
that might be used by an observer in a particular reference frame
to determine the space– time coordinates of an event.



Equations 20-18 and 20-19 give the Lorentz velocity
transformation. They are analogous to the equations of the
Lorentz coordinate transformation: they relate observations
in one coordinate frame to observations in another. Table
20-3 summarizes these equations, along with the corre-
sponding inverse velocity transformation. Note that the in-
verse transformation equation for vx is identical with Eq.
20-12, which we derived in quite a different way. In Eq. 20-
12, the speed v0 is the same as the speed v	x measured by S	.

Let us examine Eqs. 20-18 and 20-19 in the nonrela-
tivistic limit. Do they reduce to the classical Galilean trans-
formation when u �� c (or equivalently, when c : �)? In
this case Eqs. 20-18 and 20-19 reduce to

v	x � vx � u, v	y � vy , and v	z � vz , (20-20)

which are indeed the Galilean results, as given by Eq. 4-32
or by differentiating Eqs. 20-13, the Galilean coordinate
transformation equations.

We now show directly that the Lorentz velocity trans-
formation gives the result demanded by Einstein’s second
postulate (the constancy of the speed of light): a speed of c
measured by one observer must also be measured to be c by
any other observer. Suppose that the common event being
observed by S and S	 is the passage of a light beam along
the x direction. Observer S measures vx � c and vy � vz �
0. What velocity does observer S	 measure? Using Eqs. 20-
18 and 20-19, we find the velocity components measured
by S	 to be

Note that this result follows independent of the relative
speed u between S and S	. A speed of c measured in one in-
ertial reference frame leads to a speed of c measured in all
frames. Thus the speed of light is indeed the same for all
observers. The same conclusion holds for any direction of
travel of the light beam; see Exercise 15.

Sample Problem 20-4. A particle is accelerated from
rest in the laboratory until its velocity is 0.60c. As viewed from a
frame that is moving with the particle at a speed of 0.60c relative
to the laboratory, the particle is then given an additional increment

v	y � v	z � 0. 

v	x �
vx � u

1 � uvx /c 2 �
c � u

1 � uc/c 2 �
c � u

(c � u)/c
� c,

of velocity amounting to 0.60c. Find the final velocity of the parti-
cle as measured in the laboratory frame.

Solution Once again, the problem becomes a direct application of
the Lorentz velocity transformation once we have clearly specified
the reference frames S and S	 and the system being observed.
Clearly the particle is the system being observed, and if we seek
its velocity measured in the laboratory frame it is natural to asso-
ciate the laboratory with the S frame. The S	 frame is then the in-
ertial reference frame occupied by the particle after the first accel-
eration and before the second (see Fig. 20-14). Relative to this
frame, the velocity of the particle after the second acceleration is
v	x � 0.60c. The velocity of the S	 frame with respect to the S
frame is u � 0.60c. We know v	x and u, and we seek vx , which is
given by the inverse velocity transformation from Table 20-3:

The speed is less than c, in contradiction to the prediction of the
Galilean transformation, which gives vx � 1.20c.

Suppose we now let the S	 frame be that of the particle after
the second acceleration, so that u � 0.88c relative to the original S
frame (the laboratory). Let there now be a third acceleration, so
that, relative to the new S	 frame, the particle again moves with
velocity v	x � 0.60c. By repeating the above procedure, you
should show that an observer in the laboratory (S) frame will mea-
sure a speed of v	x � 0.97c in this case.

No matter how many times we accelerate the particle in a ref-
erence frame moving with the particle, its velocity measured in
the original laboratory frame (or in any other frame) will never ex-
ceed c.

20-7 CONSEQUENCES OF THE
LORENTZ TRANSFORMATION

We have already shown that some unexpected conse-
quences follow from applying Einstein’s postulates to phys-
ical situations. Now we use the more mathematical basis of
the Lorentz transformation to show that these same conse-
quences and others can be obtained.

vx �
v	x � u

1 � uv	x /c 2 �
0.60c � 0.60c

1 � (0.60c)(0.60c)/c 2 �
1.20c

1.36
� 0.88c.
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Velocity Inverse Velocity
Transformation Transformation

vz �
v	z

� (1 � uv	x /c2)
v	z �

vz

� (1 � uvx /c2)

vy �
v	y

� (1 � uv	x /c2)
v	y �

vy

� (1 � uvx /c2)

vx �
v	x � u

1 � uv	x /c2v 	x �
vx � u

1 � uvx /c 2

Table 20-3 The Lorentz Velocity Transformation

u = 0.6c

v'x = 0.6c

Laboratory

y y'

S S'
x x'

Figure 20-14. Sample Problem 20-4. S	, the frame of refer-
ence of the particle after the first acceleration, moves with speed
u � 0.60c relative to the laboratory (frame S). Relative to S	, the
particle moves at speed v	x � 0.60c after its second acceleration.



The Relativity of Time
In Section 20-3 we showed that the time dilation effect fol-
lows directly from applying Einstein’s postulates to mea-
surements of time intervals by two observers in motion rel-
ative to one another. Figure 20-15 shows a different view of
the time dilation effect. Clock C	 is at rest in the frame of
S	, who moves at speed u relative to S. S	 measures the time
interval �t	 � t	2 � t	1 in which the hand of the clock
moves between two marks, passing the first mark at time t	1
and the second at time t	2 .

The hand of clock C	 passing the two marks can be re-
garded as two events, which occur at the same location x	0
according to S	 (because clock C	 is at rest in that frame).
However, S (whose reference frame contains a stationary
set of synchronized clocks such as that described in Section
20-5) observes the hand of clock C	 to pass the first mark at
the location x1 (where the local stationary clock reads time
t1) and to pass the second mark at location x2 (where a dif-
ferent stationary clock reads the time t2). We can find the
relationship between the time intervals �t and �t	 directly
from the inverse Lorentz transformation. From Table 20-2,
we have

(20-21)

This general expression gives the time interval �t measured
by S corresponding to the time interval �t	 measured by S	
for events that are separated by a distance �x	. According
to S	, relative to whom clock C	 is at rest, the two events
(the hand passing the two marks) take place at the same lo-
cation x	0 , so �x	 � 0. Because S	 is at rest relative to clock
C	, the time interval �t	 measured by S	 is a proper time 
interval, which we represent as �t0 . Substituting
�x	 � 0 and �t	 � �t0 into Eq. 20-21, we obtain

which is identical to Eq. 20-3, the time dilation equation.
The time dilation effect is completely symmetric. If a

clock C at rest in S is observed by S	, then S	 concludes that

�t � � �t 0 �
�t 0

√1 � u 2/c 2
,

�t � � (�t	 � u �x	/c 2).

clock C is running slow. Each observer believes that the
other’s clock is running slower than the ones at rest in the
reference frame of the observer. Time dilation is often sum-
marized by the phrase, “moving clocks run slow.” It is use-
ful to remember this phrase, but do so with caution. The
phrase indicates that a clock moving relative to a frame
containing an array of synchronized clocks will be found to
run slow when timed by those clocks. That is, only in the
sense of comparing a single moving clock with two sepa-
rated synchronized stationary clocks can we declare that
“moving clocks run slow.”

Consider three other consequences of the Lorentz trans-
formation that are related to measurements of time:

1. The relativity of simultaneity. Suppose S	 has two
clocks at rest, located at x	1 and x	2 , and separated by the in-
terval �x	 � x	2 � x	1. A flash of light emitted from a point
midway between the clocks reaches the two clocks simulta-
neously, according to S	 (see Fig. 20-16a). That is, a mea-
surement by S	 of the interval between the arrival of the
light signals at the two clocks gives �t	 � 0. Now consider
the situation from the point of view of S, relative to whom
the frame of S	 (including the clocks) moves with speed u
(Fig. 20-16b). Clearly the light signal reaches clock 1 be-
fore it reaches clock 2, and thus the arrival of the light sig-
nals at the locations of the two clocks is not simultaneous
to S. We therefore reach the following conclusion:

If two observers are in relative motion, in general they
do not agree on whether two events at different loca-
tions are simultaneous. If one observer finds the two
events to be simultaneous, the other does not.

This conclusion also follows directly from Eq. 20-21: if
�t	 � 0 and �x	 � 0, then �t � 0. Note that this occurs
only when the two events occur at different locations ac-
cording to S	. If the two events occur at the same location
and are simultaneous according to S	, they are simultaneous
to S as well.

2. The Doppler shift. In Section 19-9 we considered the
Doppler effect for sound waves, in which the motion of a
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Figure 20-15. Clock C	 is fixed at
position x	0 in reference frame S	. Observer
S, relative to whom clock C	 is in motion at
velocity compares the reading of C	
with two different stationary clocks from
the array of synchronized clocks (num-
bered 1 and 2) established in the frame of
S. As shown, the interval t2 � t1 measured
by S is greater than the interval t	2 � t	1 .
Observer S therefore declares that, by com-
parison with the clocks in S, the moving
clock is running slow.

uB,



source or an observer of waves relative to the medium car-
rying the waves causes a change in the frequency measured
by the observer.

In the case of light waves, “motion relative to the
medium” is not a valid concept. Special relativity gives a
Doppler shift for light that depends only on the relative
speed between the source and the observer; in contrast to
the case of sound waves, in which we used different formu-
las to account for source motion and observer motion, in
the case of light waves one formula, involving only the rel-
ative motion, is sufficient. The relativistic Doppler formula
is thus simpler to apply than the classical one.

Another aspect of the Doppler effect in special relativity
has no classical counterpart. This is the transverse Doppler
effect, which, in contrast to the cases considered in Section
19-9, occurs when the source or the observer moves per-
pendicular to the line connecting them. The transverse
Doppler effect is actually another result of time dilation,
and the precise measurements of the transverse Doppler ef-
fect provide some of our most sensitive experimental tests
of time dilation. We consider the Doppler effect for light in
more detail in Chapter 39.

3. The twin paradox. Time dilation applies not only to
elementary particles but to all naturally occurring time in-
tervals including pulse rates and human lifetimes. This fact
has been used to propose an apparent puzzle that has be-
come known as the twin paradox.*

Suppose two twins, Fred and Ethel, are on a platform
coasting in space. Ethel embarks on a journey in a high-
speed spaceship to a distant star while Fred remains on the
platform. During this journey, Fred is able to monitor
Ethel’s heart beat and average respiration rate, and he finds
them to be slower by the time dilation effect; thus Ethel’s
entire aging process has been slowed. Fred therefore ex-

pects that, upon Ethel’s return to the platform after the jour-
ney to the star, she will be younger than he.

The paradox seemingly occurs when we analyze the sit-
uation from the frame of reference of Ethel, thereby regard-
ing Fred and the platform as the ones making the journey.
According to this analysis, Fred is the traveling twin and
should be the younger at the end of the journey. Here is the
paradox: When they get together at the end of the journey,
it cannot be true that Ethel is younger than Fred and also
that Fred is younger than Ethel.

The resolution of the paradox comes when we realize
that Fred and Ethel are not really in symmetric situations.
For the two twins to get back together again, one of them
must decelerate and reverse directions, resulting in an eas-
ily measurable acceleration of one of them. Put another
way, Ethel must change from one inertial reference frame
(the one moving away from Fred) to another (one moving
toward Fred). Fred, on the other hand, experiences no ac-
celeration and remains in the same inertial reference frame
for the entire duration of the journey. It is indeed Ethel
who is the traveler and who will be younger upon her 
return.

Although we have not yet been able to do an experiment
of this sort with actual twins, it has been done with atomic
clocks.† Two identical clocks were carefully calibrated; one
was then flown on a commerical airliner around the world
and compared with its stay-at-home twin upon its return.
The speed during such a trip was of course far less than c,
but atomic clocks are capable of sufficient precision that the
small resulting asymmetry in the “aging” of the two clocks,
amounting to about 10�7 s, could easily and precisely be
determined. It was found that the clock in the airliner,
which was the one subject to an acceleration and therefore
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Figure 20-16. (a) In the frame of reference of
S	, a flash of light at a point midway between two
clocks reaches the clocks at the same instant. (b) In
the frame of reference of S, the flash of light reaches
clock 1 before it reaches clock 2.

* For more details about the twin paradox, see Basic Concepts in Relativ-
ity by Robert Resnick and David Halliday (Macmillan, 1992), p. 156.

† See “Around-the-World Atomic Clocks: Observed Relativistic Time
Gains,” by J. C. Hafele and Richard E. Keating, Science, July 14, 1972,
p. 166.



the true traveler, was indeed “younger” (that is, running
slower) after the journey.

The reading of the clock in the airliner must also be cor-
rected for the time it spends at a different gravitational po-
tential, an effect of general relativity. Corrections for spe-
cial and general relativity are thus of important practical
concern when such precise clocks are transported from one
location to another.

The Relativity of Length
Length contraction, which we discussed in Section 20-3,
also follows directly from the equations of the Lorentz
transformation. Let us first realize that to measure the
length of an object we must make a simultaneous determi-
nation of the coordinates of the ends of the object (see Fig.
20-17). It does no good to measure the coordinate of one
end of a moving object at one time and the coordinate of
the other end at a different time.

Suppose (see Fig. 20-18) that a measuring rod of rest
length L0 is carried by S	. Observer S wishes to measure its
length. According to S	, in whose frame of reference the
rod is at rest, the ends of the rod are at coordinates x	2 and
x	1, such that �x	 � x	2 � x	1 � L0 , the rest length of the
rod. Observer S, using the calibrated and synchronized co-
ordinates established according to the procedure described
in Section 20-5, makes a simultaneous determination of the
coordinates x2 and x1 of the ends of the rod. The interval
�x � x2 � x1 gives the length L of the rod according to S.
From the interval equation in Table 20-2, we have

(20-22)�x	 � � (�x � u �t).

Putting �t � 0 (because S made a simultaneous determina-
tion of x2 and x1), we solve for �x (� L) and obtain

which is identical to Eq. 20-8.
We have deduced time dilation and length contraction

both from the postulates (Section 20-3) and from the
Lorentz transformation (this section). These are not inde-
pendent derivations, however, because the Lorentz transfor-
mation itself is obtained from the postulates. Ultimately, all
of special relativity follows directly from Einstein’s postu-
lates.

Like time dilation, length contraction is an effect that
holds for all observers in relative motion. Questions such as
“Does a moving measuring rod really shrink?” have mean-
ing only in the sense that they refer to measurements by ob-
servers in relative motion. The essence of relativity is that
results of measurements of length and time intervals are
subject to the state of motion of the observer relative to the
events being measured and refer only to measurements by a
particular observer in a particular frame of reference. If dif-
ferent observers were to bring the rod to rest in their indi-
vidual inertial frames, each would measure the same value
for the length of the rod. In this respect, special relativity is
a theory of measurement that simply says “motion affects
measurement.”

Sample Problem 20-5. An observer S is standing on a
platform of length D0 � 65 m on a space station. A rocket passes
at a relative speed of 0.80c moving parallel to the edge of the plat-
form. The observer S notes that the front and back of the rocket si-
multaneously line up with the ends of the platform at a particular
instant (Fig. 20-19a). (a) According to S, what is the time neces-
sary for the rocket to pass a particular point on the platform? (b)
What is the rest length L0 of the rocket? (c) According to an ob-
server S	 on the rocket, what is the length D of the platform? (d)
According to S	, how long does it take for observer S to pass the
entire length of the rocket? (e) According to S, the ends of the
rocket simultaneously line up with the ends of the platform. Are
these events simultaneous to S	?

L � �x �
�x	

�
� L 0√1 � u 2/c 2,
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Figure 20-17. (a) To measure the length of a moving fish,
you must determine simultaneously the positions of its head and
tail. (b) If the determination is not simultaneous, the measurement
does not give the length.

Figure 20-18. The ends of a measuring rod are determined
to be at coordinates x	1 and x	2 according to S	, relative to whom
the rod is at rest. To determine the length of the rod, S must make
a simultaneous determination of the coordinates x1 and x2 of its
endpoints.
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Solution (a) According to S, the length L of the rocket matches
the length D0 of the platform. The time for the rocket to pass a
particular point is measured by S to be

This is a proper time interval, because S is measuring the time in-
terval between two events that occur at the same point in the
frame of reference of S (the front of the rocket passes a point, and
then the back of the rocket passes the same point).
(b) S measures the contracted length L of the rocket. We can find
its rest length L0 using Eq. 20-8:

(c) According to S the platform is at rest, so 65 m is its rest length
D0 . According to S	, the contracted length of the platform is there-
fore

(d ) For S to pass the entire length of the rocket, S	 concludes that
S must move a distance equal to its rest length, or 108 m. The time
needed to do this is

Note that this is not a proper time interval for S	, who determines
this time interval using one clock at the front of the rocket to mea-
sure the time at which S passes the front of the rocket, and another
clock on the rear of the rocket to measure the time at which S
passes the rear of the rocket. The two events therefore occur at dif-
ferent points in S	 and so cannot be separated by a proper time in
S	. The corresponding time interval measured by S for the same

�t	 �
108 m

0.80c
� 0.45 �s.

D � D0√1 � u 2/c 2 � (65 m)√1 � (0.80)2 � 39 m.

L 0 �
L

√1 � u 2/c 2
�

65 m

√1 � (0.80)2
� 108 m.

�t 0 �
L

0.80c
�

65 m

2.40 � 108 m/s
� 0.27 �s.

two events, which we calculated in part (a), is a proper time inter-
val for S, because the two events do occur at the same point in S.
The time intervals measured by S and S	 should be related by the
time dilation formula:

in agreement with the value calculated above from the proper
length of the rocket in S	.
(e) According to S	, the rocket has a rest length of L0 � 108 m and
the platform has a contracted length of D � 39 m. There is thus no
way that S	 could observe the two ends of both to align simultane-
ously. The sequence of events according to S	 is illustrated in Figs.
20-19b and 20-19c. The time interval �t	 in S	 between the two
events that are simultaneous in S can be calculated from the inter-
val equation for �t	 in Table 20-2 with �t � 0, which gives

We can check this result by noting that, according to S	, the time
interval between the situations shown in Figs. 20-19b and 20-19c
must be that necessary for the platform to move a distance of
108 m � 39 m � 69 m, which takes a time

in agreement with the value calculated from the interval transfor-
mation. This last result illustrates the relativity of simultaneity:
two events that are simultaneous to S (the lining up of the two
ends of the rocket with the two ends of the platform) cannot be si-
multaneous to S	.

20-8 RELATIVISTIC MOMENTUM

So far we have investigated the effect of Einstein’s two pos-
tulates on the kinematical variables time, displacement, and
velocity as viewed from two different inertial frames. In
this section and the next, we broaden our efforts to include
the dynamical variables momentum and energy. Here we
discuss the relativistic view of linear momentum.

Consider the collision shown in Fig. 20-20a, viewed
from the S frame of reference. Two particles, each of mass
m, move with equal and opposite velocities v and � v along
the x axis. They collide at the origin, and the distance be-
tween their lines of approach has been adjusted so that after
the collision the particles move along the y axis with equal
and opposite final velocities (Fig. 20-20b). We assume the
collision to be perfectly elastic, so that no kinetic energy is
lost. The final velocities must then be v and � v.

Using the classical formula the components
of the total momentum of the two-particle system in the S
frame are

Pyf � mv � m(�v) � 0.
Final:  Pxf � 0, 

Pyi � 0. 
Initial: Pxi � mv � m(�v) � 0,

P
B

(pB � mvB),

�t	 �
69 m

0.80c
� 0.29 �s,

�t	 � ��u �x/c 2 �
� (0.80c)(�65 m)

c 2 √1 � (0.80)2
� 0.29 �s.

�t	 � � �t �
0.27 �s

√1 � (0.80)2
� 0.45 �s,
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Figure 20-19. Sample Problem 20-5. (a) From the reference
frame of S at rest on the platform, the passing rocket lines up si-
multaneously with the front and back of the platform. (b, c) From
the reference frame of the rocket, the passing platform lines up
first with the front of the rocket and later with the rear. Note the
differing effects of length contraction in the two reference frames.



Thus, Pxi � Pxf and Pyi � Pyf ; the initial (vector) momen-
tum is equal to the final momentum, and momentum is con-
served in the S frame.

Let us now view the same collision from the S	 frame,
which moves relative to the S frame with speed u � � v
(Fig. 20-20c). Note that in the S	 frame, particle 2 is at rest
before the collision. We use the Lorentz velocity transfor-
mation, Eqs. 20-18 and 20-19, to find the transformed x	
and y	 components of the initial and final velocities, as they
would be observed by S	. These values, which you should
calculate, are shown in Figs. 20-20c and 20-20d.

We now use those velocities to find the components of
the total momentum of the system in the S	 frame:

We see that P	xi is not equal to P	xf , and S	 will conclude that
momentum is not conserved.

It is clear from the above calculation that the law of
conservation of linear momentum, which we have found
useful in a variety of applications, does not satisfy Ein-
stein’s first postulate (the law must be the same in all iner-
tial frames) if we calculate momentum as p � mv. There-
fore, if we are to retain the conservation of momentum as a

P	yf � mv√1 � v 2/c 2 � m(�v√1 � v 2/c 2) � 0.

P	xf � mv � mv � 2mv,

P	yi � 0, 

P	xi � m � 2v

1 � v 2/c 2 � � m(0) �
2mv

1 � v 2/c 2 , 

general law consistent with Einsteins’ first postulate, we
must find a new definition of momentum. This new defini-
tion of momentum must have two properties. (1) It must
yield a law of conservation of momentum that satisfies the
principle of relativity; that is, if momentum is conserved
according to an observer in one inertial frame, then it is
conserved according to observers in all inertial frames. (2)
At low speeds, the new definition must reduce to 
which we know works perfectly well in the nonrelativistic
case.

The relativistic formula for the momentum of a particle
of mass m moving with velocity is

(20-23)

In terms of components, we can write Eq. 20-23 as

(20-24)

The speed v that appears in the denominator of these ex-
pressions is always the speed of the particle as measured in
a particular inertial frame. It is not the speed of an inertial
frame. The velocity in the numerator can be any of the
components of the velocity vector.

Let us see how this new definition restores conservation
of momentum in the collision we considered. In the S
frame, the velocities before and after are equal and oppo-
site, and thus Eq. 20-23 again gives zero for the initial and
final momenta. In the S	 frame, we can use the magnitudes
of the velocities as given in Figs. 20-20c and 20-20d to ob-
tain, as you should verify

(20-25)

Thus the initial and final momenta are equal in the S	
frame. Momentum is conserved in both the S and S	 frames.
In fact, the definition of momentum given in Eq. 20-23
gives conservation of momentum in all inertial frames, as
required by the principle of relativity.

Note also that, in the limit of low speeds, the denomina-
tor of Eq. 20-23 is nearly equal to 1; at low speeds Eq. 20-
23 reduces to the familiar classical formula Equa-
tion 20-23 thus also satisfies this necessary criterion of
relativistic formulas.

Of course, the ultimate test is agreement with experi-
ment. Figure 20-21 shows a collection of data, based on in-
dependent determinations of the momentum and velocity of
electrons. The data are plotted as p/mv, which should have
the constant value 1 according to classical physics. The re-
sults agree with the relativistic equation and not with the
classical one. Note that the classical and relativistic predic-
tions agree for low speeds, and in fact the difference between
the two is not at all apparent until the speed exceeds 0.1c,
which accounts for our failure to observe the relativistic cor-
rections in experiments with ordinary laboratory objects.

pB � mvB.

P	yi � P	yf � 0. 

P	xi � P	xf �
2mv

1 � v 2/c 2 ,

px �
mvx

√1 � v 2/c 2
and py �

mvy

√1 � v2/c2
.

pB �
mvB

√1 � v 2/c 2
.

vB

pB � mvB,
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Figure 20-20. A collision between two particles of the same
mass is shown (a) before the collision in the reference frame of S,
(b) after the collision in the reference frame of S, (c) before the
collision in the reference frame of S	, and (d) after the collision in
the reference frame of S	.



Sample Problem 20-6. What is the momentum of a
proton moving at a speed of v � 0.86c?

Solution Using Eq. 20-23, we obtain

The units of kg  m/s are generally not convenient in solving prob-
lems of this type. Instead, we evaluate the quantity pc:

where we have used the conversion factor 1 MeV � 1.60 �
10�13 J. The momentum is obtained from this result by dividing
by the symbol c (not its numerical value), which gives

The units of MeV/c for momentum are often used in relativistic
calculations because, as we show in the next section, the quantity
pc often appears in these calculations.

20-9 RELATIVISTIC ENERGY

In analogy with our discussion of momentum in the previ-
ous section, special relativity gives us a different approach
to kinetic energy. Let us first indicate the difficulty by re-
considering the collision shown in Fig. 20-20. If we use the
classical expression the collision does not conserve
kinetic energy in the S	 frame. (We chose the final veloci-
ties in the S frame so that kinetic energy would be con-
served.) Using the velocities shown in Figs. 20-20c and 20-

1
2mv 2,

p � 1580 MeV/c.

� 1580 MeV,
� 2.53 � 10�10 J 

pc � (8.44 � 10�19 kg m/s)(3.00 � 108 m/s)

� 8.44 � 10�19 kg m/s. 

�
(1.67 � 10�27 kg)(0.86)(3.00 � 108 m/s)

√1 � (0.86)2

p �
mv

√1 � v 2/c 2

20d, you can show (see Exercise 38) that, with 
the total initial and final kinetic energies are

(20-26)

Thus K	i is not equal to K	f , and the collision, which conserves
kinetic energy according to S (Ki � Kf) and is therefore elas-
tic, does not conserve kinetic energy according to S	 and is
therefore inelastic. This situation violates the relativity postu-
late; the type of collision (elastic versus inelastic) should de-
pend on the properties of the colliding objects and not on the
particular reference frame from which we happen to be view-
ing the collision. As was the case with momentum, we require
a new definition of kinetic energy if we are to preserve the
law of conservation of energy and the relativity postulate.

The classical expression for kinetic energy also violates
the second relativity postulate by allowing speeds in excess of
the speed of light. There is no limit (in either classical or rela-
tivistic dynamics) to the energy we can give to a particle. Yet,
if we allow the kinetic energy to increase without limit, the
classical expression implies that the velocity must
correspondingly increase without limit, thereby violating the
second postulate. We must therefore find a way to redefine ki-
netic energy, so that the kinetic energy of a particle can be in-
creased without limit while its speed remains less than c.

The relativistic expression for the kinetic energy of a
particle can be derived using essentially the same procedure
we used to derive the classical expression, starting with the
particle form of the work–energy theorem (see Problem
16). The result of this calculation is

(20-27)

Equation 20-27 looks very different from the classical ex-
pression but we can show (see Exercise 35) that
Eq. 20-27 does reduce to the classical expression in the
limit of low speeds (v �� c). You can also see from Eq. 20-
27 that the relativistic expression for kinetic energy allows
a particle to have unlimited energy even though its speed
remains less than the speed of light. Figure 20-3 showed a
comparison of the classical and relativistic forms of the de-
pendence of kinetic energy on speed; clearly the relativistic
form is in much better agreement with the data than the
classical form, and the relativistic expression allows K to
become very large while v remains less than c. Similar re-
sults are obtained indirectly today at every large accelerator
facility in the world. Particles are accelerated to speeds very
close to c, and the design parameters of the accelerators
must be based on relativistic dynamics. Thus every modern
accelerator is in effect a laboratory for testing special rela-
tivity. Needless to say, the success of these accelerators is a
dramatic confirmation of special relativity.

Using Eq. 20-27 for the kinetic energy, you can show
that kinetic energy is conserved in the S	 frame of the colli-
sion of Fig. 20-20 (see Exercise 39).

K � 1
2mv 2,

K �
mc 2

√1 � v 2/c 2
� mc 2.

K � 1
2mv 2

K	f � mv 2(2 � v 2/c 2).

K	i �
2mv 2

(1 � v 2/c 2)2 , 

K � 1
2mv 2,
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Figure 20-21. The ratio p/mv is plotted for electrons of
various speeds. According to classical physics, p � mv, and 
thus the classical equations predict p/mv � 1. The data clearly
agree with the relativistic result and not with the classical result.
At low speeds, the classical and relativistic predictions are indis-
tinguishable.



Sample Problem 20-7. In the Stanford Linear Col-
lider* electrons are accelerated to a kinetic energy of 50 GeV.
Find the speed of such an electron as (a) a fraction of c and (b) a
difference from c. For the electron, mc2 � 0.511 MeV �
0.511 � 10�3 GeV.

Solution (a) First we solve Eq. 20-27 for v, obtaining

(20-28)

and thus

Calculators cannot be trusted to 12 significant digits. Here is a way
to avoid this difficulty. We can write Eq. 20-28 as v � c(1 � x)1/2,
where x � � 1/(1 � K/mc2)2. Because K �� mc2, we have x �� 1,
and we can use the binomial expansion to write or

(20-29)

which gives

This leads to the value of v given above.
(b) From the above result, we have

.

Energy and Mass in Special Relativity
We can also express Eq. 20-27 as

(20-30)

where the total relativistic energy E is defined as

(20-31)

and the rest energy E0 is defined as

(20-32)

The rest energy is in effect the total relativistic energy of a
particle measured in a frame of reference in which the par-
ticle is at rest.†

The rest energy can be regarded as the internal energy of
a particle or a system of particles at rest. According to Eq.
20-32, whenever we add energy �E to a material object that
remains at rest, we increase its mass by an amount �m �
�E/c2. If we compress a spring and increase its potential en-

E 0 � mc 2.

E �
mc 2

√1 � v 2/c 2
,

K � E � E 0 ,

c � v � 5.2 � 10�11c � 0.016 m/s � 1.6 cm/s

v � c(1 � 5.2 � 10�11).

v � c �1 �
1

2(1 � K/mc 2)2 � ,

v � c(1 � 1
2 x),

� 0.999 999 999 948c. 

v � c √1 �
1

(1 � 50 GeV/0.511 � 10�3 GeV)2

v � c √1 �
1

(1 � K/mc 2)2 ,

ergy by an amount �U, then its mass increases by �U/c2. If
we raise the temperature of an object, increasing its internal
energy by �Eint in the process, we increase its mass by
�Eint /c2. These mass changes are very small and normally
beyond our ability to measure in the case of ordinary objects
(because c2 is a very large number), but in the case of de-
cays and reactions of nuclei and subnuclear particles, the
relative mass change can be large enough to be measurable.

The inclusion of rest energy as another form of energy
allows us to interpret the situation of Fig. 20-2 from the
viewpoint of conservation of energy. In Fig. 20-2a, the total
energy within the system boundary is Ei � 2mec2, where
me is the mass of an electron or a positron (we neglect the
small kinetic energies of the particles). In Fig. 20-2b, we
have radiation whose total energy ER is equal to Ei , and the
increase in internal energy in Fig. 20-2c is again equal to
Ei . Thus total energy is conserved, and the process in effect
represents the transformation of one form of energy (rest
energy) into another (energy of the radiation or internal en-
ergy of the walls of the container).

Equation 20-32 suggests that we must include rest energy
among the kinds of energy that can characterize a system.
The sum of all possible kinds of energy, that is, the total rel-
ativistic energy, must be conserved in any interaction. There
is no requirement that, for example, rest energy and kinetic
energy be conserved separately and, indeed, they are not.

Consider the radioactive decay process in which a heavy
nucleus splits into two smaller fragments, a process called
spontaneous fission. To conserve momentum, the two frag-
ments must fly away from each other. If the initial nucleus
is originally at rest, it is clear that kinetic energy is not con-
served in this process. Measurement shows that the total
rest energy of the two fragments is smaller than the rest en-
ergy of the original nucleus; thus rest energy is not con-
served either. However, the sum of rest energy plus kinetic
energy is conserved, the decrease in rest energy accounting
precisely for the increase in kinetic energy.

We can apply Eq. 20-32 to other isolated systems con-
sisting of particles and radiation. Let us consider a star such
as the Sun as our system. The Sun radiates an energy of
4 � 1026 J every second. As we did in the case of
electron–positron annihilation, we regard this radiant en-
ergy as a decrease in the rest energy of the system, and the
corresponding change in the mass is

in every second. This decrease in mass is quite significant
by ordinary standards but quite small compared with the to-
tal mass of the Sun (2 � 1030 kg). In one year, the Sun’s
mass decreases by a fraction of only 6 � 10�14.

Sample Problem 20-8. Two 35-g putty balls are
thrown toward each other, each with a speed of 1.7 m/s. The balls
strike each other head-on and stick together. By how much does

�m �
�E 0

c 2 �
�4 � 1026 J

(3 � 108 m/s)2 � �4 � 109 kg
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* See “The Stanford Linear Collider,” by John R. Rees, Scientific Ameri-
can, October 1989, p. 58.
† Often m in Eq. 20-32 is called the rest mass m0 and is distinguished from
the “relativistic mass,” which is defined as We choose not
to use relativistic mass, because it can be a misleading concept. Whenever
we refer to mass, we always mean rest mass.

m 0 /√1 � v 2/c 2.



the mass of the combined ball differ from the sum of the masses
of the two original balls?

Solution We treat the two putty balls as an isolated system. No
external work is done on this isolated system, so we can write
conservation of energy as �K � �E0 � 0. With �K � Kf � Ki ,
where Kf � 0 and Ki is the total kinetic energy of the two balls
before the collision, we have

or

This increase in rest energy might be in the form of internal en-
ergy, perhaps resulting in an increase in the temperature of the
combined system. The corresponding increase in mass is

Such a tiny increase in mass is hopelessly beyond our ability to
measure.

Sample Problem 20-9. In a 1989 experiment at the
Stanford Linear Collider, Z0 particles were produced when a beam
of electrons collided head-on with a beam of positrons of the same
kinetic energy. Find the kinetic energy of the two beams needed 
to produce the Z0, which has a rest energy of 91.2 GeV
(1 GeV � 109 eV).

Solution As in the collision between the putty balls considered in
Sample Problem 20-8, let us assume that the system consisting of the
initial e� and e� is isolated, and that no energy is exchanged with the
surroundings in the process of forming the Z0 particle. The change in
rest energy between the initial state (an electron and a positron of
rest energy 0.511 MeV each) and the final state (the Z0) is

the total rest energy of the electron and positron (1.022 MeV �
0.001022 GeV) being quite neglible here. From conservation of
energy in this isolated system, we have �K � �E0 � 0, so

If we assume that the Z0 is produced at rest, then Kf � 0
and the energies of the positron and electron must each be 
(91.2 GeV) � 45.6 GeV. In contrast with the previous sample

problem, the relative change in rest energy (or in mass) within the
system is substantial in this case, the final mass being about
100,000 times the initial mass.

Conservation of Total Relativistic Energy
The total relativistic energy is given by Eq. 20-30 as

(20-33)

In interactions of particles at relativistic speeds, we can re-
place our previous principle of conservation of energy with
one based on the total relativistic energy:

In an isolated system of particles, the total relativistic
energy remains constant.

E � K � E 0 .

1
2

�K � ��E 0 � �91.2 GeV � K f � K i .

�E 0 � 91.2 GeV � 2(0.511 MeV) � 91.2 GeV,

�m �
�E 0

c 2 �
0.101 J

(3.00 � 108 m/s)2 � 1.1 � 10�18 kg.

�E 0 � K i � 2( 1
2mv 2) � (0.035 kg)(1.7 m/s)2 � 0.101 J.

�K � �E 0 � (0 � K i) � �E 0 � 0,

Manipulation of Eqs. 20-23 and 20-31 gives a useful rela-
tionship among the total energy, momentum, and rest energy:

(20-34)

Figure 20-22 shows a useful mnemonic device for remem-
bering this relationship, which has the form of the Pythag-
orean theorem for the sides of a right triangle.

Because the rest energies of the initial and final particles
were equal in the collision shown in Fig. 20-20, conserva-
tion of total relativistic energy is equivalent to conservation
of kinetic energy for that collision. In general, collisions of
particles at high energies can result in the production of
new particles, and thus the final rest energy may not be
equal to the initial rest energy (see Sample Problem 20-11).
Such collisions must be analyzed using conservation of to-
tal relativistic energy E; kinetic energy is not conserved
when the rest energy changes in a collision.

Sample Problem 20-10. A certain accelerator pro-
duces a beam of neutral kaons (mKc2 � 498 MeV) with kinetic
energy 325 MeV. Consider a kaon that decays in flight into two
pions (m�c2 � 140 MeV). Find the kinetic energy of each pion in
the special case in which the pions travel parallel or antiparallel to
the direction of the kaon beam.

Solution The energy of the particles that remain after the decay
can be found by applying principles of conservation of total rela-
tivistic energy and momentum. The initial total relativistic energy
is, from Eq. 20-33,

The initial momentum can be found from Eq. 20-34:

The total energy of the final system consisting of the two pions is

(20-35)

which, by conservation of total relativistic energy, we have
equated to the initial total energy of 823 MeV. Thus we have one
equation in the two unknowns p1 and p2 .

� 823 MeV,

E � E 1 � E 2 � √(p1c)2 � (m� c 2)2 � √(p2c)2 � (m� c 2)2

� 655 MeV. 

pKc � √E 2
K � (mKc 2)2 � √(823 MeV)2 � (498 MeV)2

E K � K � mKc 2 � 325 MeV � 498 MeV � 823 MeV.

E � √(pc)2 � (mc 2)2.
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Figure 20-22. A useful mnemonic device for recalling the
relationships between E0 , p, K, and E. Note that to put all vari-
ables in energy units, the quantity pc must be used.

mc2
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pc

E0 = mc2



To find a second equation in the two unknowns we apply con-
servation of momentum. The final momentum of the two-pion sys-
tem along the beam direction is p1 � p2 , and setting this equal to
the initial momentum pK gives

(20-36)

We now have two equations (Eqs. 20-35 and 20-36) in the two un-
knowns p1 and p2 . Solving Eq. 20-36 for p2c and substituting this
result into Eq. 20-35, we obtain (after some algebraic manipula-
tion) a quadratic equation for p1c, which can be solved by stan-
dard algebraic techniques to give

Since the labels 1 and 2 of the two pions are arbitrary, the solution
gives one pion traveling parallel to the beam with momentum
p1 � 668 MeV/c, while the other pion travels in the opposite di-
rection with momentum p2 � � 13 MeV/c. The corresponding ki-
netic energies are found using Eqs. 20-30 and 20-34, which give

This problem can also be solved in a different way by making
a Lorentz transformation to a reference frame in which the kaons
are at rest. The two pions are emitted in this frame in opposite di-
rections (because the total momentum must be zero), and so they
share the decay energy equally. Transforming back to the lab
frame then gives the solution for the momenta and energies (see
Exercise 43). The next sample problem demonstrates another ap-
plication of this technique.

Sample Problem 20-11. The discovery of the antipro-
ton (a particle with the same rest energy as a proton, 938 MeV,
but with the opposite electric charge) took place in 1956 at Berke-
ley through the following reaction:

in which accelerated protons were incident on a target of protons
at rest in the laboratory. The minimum incident kinetic energy
needed to produce the reaction is called the threshold kinetic en-
ergy, for which the final particles move together as if they were a
single unit. Find the threshold kinetic energy to produce antipro-
tons in this reaction.

Solution This problem is conceptually the reverse case of the pre-
vious sample problem. Here particles are coming together to form
a composite. We demonstrate an alternate method by solving in
the center-of-mass reference frame, in which the two protons
come together with equal and opposite momenta to form a new
particle at rest (Fig. 20-23).

The final total relativistic energy in the center-of-mass frame
S	 is the rest energy of the products, which are produced at rest in
this frame, so

The initial energy is simply the sum of the total energies of the
two original reacting protons:

E	i � E	1 � E	2 .

E	f � 4mpc 2.

p � p : p � p � p � p,

p

K 2 � √(�13 MeV)2 � (140 MeV)2 � 140 MeV � 0.6 MeV.

K 1 � √(668 MeV)2 � (140 MeV)2 � 140 MeV � 543 MeV,

K � √( pc)2 � (m�c 2)2 � m�c 2

p1c � 668 MeV or �13 MeV.

p1c � p2c � pKc � 655 MeV.

Conservation of energy requires E	i � E	f , and since the energies
E	1 and E	2 are equal in the S	 frame, we have

The corresponding magnitude of the velocity of either reacting
proton in the S	 frame is found by solving Eq. 20-31 for v/c,
which gives

We now make a Lorentz transformation back to the laboratory us-
ing this as the transformation speed, which brings one of the pro-
tons to rest and gives the other a velocity v that can be found from
the inverse velocity transformation expression for vx from Table
20-3. Using and and dropping the x sub-
script, we have

This is the speed of the incident proton in the laboratory frame. Its
total energy can be found from Eq. 20-31:

and the threshold kinetic energy is

The Bevatron accelerator at Berkeley was designed with this ex-
periment in mind, so that it could produce a beam of protons
whose energy exceeded 5.6 GeV. The discovery of the antiproton
in this reaction was honored with the award of the 1959 Nobel
prize to the experimenters, Emilio Segrè and Owen Chamberlain.

� 5628 MeV � 5.628 GeV. 
K � E � mpc 2 � 6mpc 2 � 6(938 MeV)

E �
mc 2

√1 � v 2/c2
�

mpc 2

√1 � (4√3/7)2
� 7mpc2,

v �
v	 � u

1 � uv	/c 2 �
2c√3/4

1 � (√3/4)2
�

4√3

7
c.

u � c√3/4,v	 � c√3/4

v	1
c

� √1 � � mpc 2

E	1
�

2

� √1 � � 1

2 �
2

� √ 3

4
.

E	1 � E	2 � 2mpc 2.
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Figure 20-23. Sample Problem 20-11. The production of an
antiproton, viewed from (a, b) the center-of-mass frame and (c, d )
the laboratory frame. Compare with Fig. 20-20.
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20-10 THE COMMON SENSE OF
SPECIAL RELATIVITY

We have reached a point where we can look back at our
presentation of special relativity and think about its com-
mon sense. We must first of all note that relativity affects
every aspect of physics; we have concentrated in this chap-
ter on mechanics, and later in this text we consider the ef-
fect of relativity on electromagnetism. Indeed, we must
carefully reexamine every subfield of physics from the per-
spective of special relativity, verifying that each is consis-
tent with the two postulates. We must also note that relativ-
ity has passed every experimental test without the slightest
discrepancy. It is a theory that is of great aesthetic value,
providing us with a view more satisfying than that of classi-
cal physics about the validity of different perspectives and
symmetries. It is also a theory of great practical value, pro-
viding engineers with the proper guidance to construct
large particle accelerators and providing those concerned
about maintaining standards with the proper procedures for
correcting the readings of atomic clocks when they are
transported from one location to another.

The first postulate of relativity is really an outgrowth of
Newton’s first law, the law of inertia, which defined the
concept of inertial frames and gave us the first notion that
inertial observers would draw identical conclusions from
observing an experiment in which no net force acts. It is not
too great a leap to extend that view to assert that inertial ob-
servers should also draw identical conclusions from observ-
ing an experiment in which there is a net force. Finally,
why should we single out the laws of mechanics for this
equivalence? By extending it to an equivalence for inertial
observers of all the laws of physics, we arrive at the first
postulate.

The second postulate is also a reasonable one. It seems
unrealistic to be able to transmit a signal at an infinite speed,
thereby providing instantaneous communication throughout
the universe. Moreover, experiments on the relativity of time
show that such instant communication between distant
points is not consistent with observation. If there is a limit-
ing speed, then surely (by the first postulate) it must be the
same for all observers, regardless of their state of motion.

For some, the first exposure to the relativity of simul-
taneity, the apparent shrinking of moving rods, and the

slowing down of time may be disturbing. However, a bit of
thought will persuade you that the classical alternatives are
even more disturbing. For example, a classical rigid rod of
definite length is not a concept that is consistent with rela-
tivity; a signal (say, a quick movement) at one end cannot
be transmitted instantly to the other end. We must give up
the idea of all observers being able to use the same measur-
ing rod. We replace this idea with one that gives each ob-
server a measuring rod and permits that observer to use that
rod to make measurements within a particular frame of ref-
erence. No observer’s measuring instruments or results are
preferred over any other’s. Finally, relativity gives us a
wonderful symmetry between these observers; it does not
assert the reality of slowing clocks, but rather that, from
their two differing perspectives, two observers in relative
motion each observe that the other’s clock is slow. There is
no necessity to grant preferred status to either of them, or to
any other inertial observer.

According to classical physics, space and time are ab-
solute. This leads to the result that the laws of physics must
be different for different observers. Relativity, on the other
hand, tells us that the laws of physics must be the same for
all observers, and as a consequence space and time become
relative concepts. Clearly, relativity is “more absolute” than
classical physics. The arbitrary and complex physical world
of classical physics, in which each observer must use a dif-
ferent set of physical laws, becomes the more uniform and
simple physical world of relativity.

Relativity broadens our view of the universe by placing
us among the many inertial observers of that universe. It
brings together concepts that, according to classical
physics, were treated separately: for instance, space and
time into space– time, or mass and energy into rest energy.
It points the way toward a single unifying theory that in-
cludes all possible interactions between particles: electricity
and magnetism into electromagnetism; electromagnetism
and the so-called weak forces (those responsible for certain
radioactive decay processes) into the electroweak interac-
tion; the electroweak and the strong nuclear interactions
into one of the proposed Grand Unified Theories (GUTs);
and finally GUTs and gravity into the hypothetical Theory
of Everything. Einstein, who knew about only the first of
these unifications, would surely be very pleased at these de-
velopments.
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MULTIPLE CHOICE

20-1 Troubles with Classical Physics

20-2 The Postulates of Special Relativity

20-3 Consequences of Einstein’s Postulates

1. A pilot on a space ship moving at 0.86c away from the Earth
sends a laser beam signal to Earth.

(a) The pilot measures the speed v of the laser beam signal to
be

(A) v � c. (B) v � c. (C) v � c.

(b) The people on Earth measure the speed v of the laser
beam signal to be

(A) v � c. (B) v � c. (C) v � c.



2. A 20-m-long spaceship (as measured by a pilot on the space-
ship) travels at constant speed past a 40-m-long space dock
(as measured by a worker on the dock). The worker measures
the length of the ship as it passes and finds it to be 18 m
long.
(a) How fast is the ship moving past the dock?

(A) v � c/100 (B) v � c/10 (C) v � c/2
(D) v � c (E) v � c

(b) The pilot measures the length of the dock as

(A) 36 m. (B) 38 m. (C) 42 m. (D) 44 m.

(c) The pilot observes a clock on the dock for one minute
(according to a clock on the ship). The clock on the dock,
however, will show an elapsed time of

(A) 49 s. (B) 54 s. (C) 60 s. (D) 67 s.

(d) The dock worker observes a clock on the ship for one
minute (according to a clock on the dock). The clock on
the ship, however, will show an elapsed time of

(A) 54 s. (B) 60 s. (C) 67 s. (D) 78 s.

(e) The pilot launches a missile with a speed of 0.9c relative
to the ship. The speed of the missile relative to the dock is

(A) greater than (B) equal to (C) less than

the speed of light, as measured by the dock worker.

20-4 The Lorentz Transformation

20-5 Measuring the Space–Time Coordinates of an
Event

20-6 The Transformation of Velocities
3. A spaceship is moving at 0.90c away from the Earth. The

speed of the Earth, as measured by the space ship, is
(A) 0. (B) 0.45c. (C) 0.90c. (D) 1.9c.

4. A spaceship moving at 0.60c away from the Earth fires two
missiles, one directly forward and one directly backward.
Both missiles are fired with a speed of 0.80c relative to the
ship.
(a) The missile fired away from the Earth has a speed v1 rela-

tive to the Earth, where

(A) v1 � 0.6c. (B) 0.6c � v1 � 0.8c.
(C) 0.8c � v1 � c. (D) v1 � 1.4c.
(E) v1 � 1.4c.

(b) The missile fired toward the Earth has a speed v2 relative
to the Earth, where

(A) v2 � 0.2c. (B) v2 � 0.2c.
(C) 0.2c � v2 � 0.6c. (D) 0.6c � v2 � 0.8c.
(E) 0.8c � v2 � c.

(c) The speed of the missile fired away from the Earth as
measured by the other missile is v3 , where

(A) v3 � 0.6c. (B) 0.6c � v3 � 0.8c.
(C) 0.8c � v3 � c. (D) v3 � 1.6c.
(E) v3 � 1.6c.

20-7 Consequences of the Lorentz Transformation
5. Two events A and B are simultaneous and occur at the same

location in frame S. In any other frame S	
(A) the events will occur at the same location, but could

occur at different times.
(B) the events will occur at different locations, but will still

be simultaneous.
(C) the events will be both simultaneous and at the same

location.

(D) the events will be neither simultaneous nor at the same
location.

6. Two events A and B are simultaneous but occur at different
locations in frame S. In a different frame S	

(A) the events could be simultaneous and occur at the same
location.

(B) the events could either be simultaneous or occur at the
same location, but not both.

(C) the events could be simultaneous but cannot occur at
the same location.

(D) the events cannot be simultaneous but could occur at
the same location.

(E) the events cannot be simultaneous and cannot occur at
the same location.

7. Two events A and B are not simultaneous but occur at the
same location in frame S. In a different frame S	

(A) the events could be simultaneous and occur at the same
location.

(B) the events could either be simultaneous or occur at the
same location, but not both.

(C) the events could be simultaneous but cannot occur at
the same location.

(D) the events cannot be simultaneous but could occur at
the same location.

(E) the events cannot be simultaneous and cannot occur at
the same location.

20-8 Relativistic Momentum
8. A particle of mass m and momentum of magnitude 2mc

strikes a particle of mass m, which is at rest. The two particles
stick together after collision.
(a) The speed of the moving particle before the collision is

(A) less than c/2. (B) between c/2 and c.
(C) between c and 2c. (D) 2c.

(b) The magnitude of the total momentum after the collision
is

(A) less than 2mc. (B) equal to 2mc.
(C) between 2mc and 3mc. (D) greater than 3mc.

(c) The speed of the two particles after collision is

(A) less than c/2. (B) equal to c/2.
(C) between c/2 and c. (D) greater than c.

20-9 Relativistic Energy
9. Which of the following decays is prohibited by energy con-

servation? (See Appendix F.)
(A) �0 : e� � e�

(B) �� : e� � �0

(C) p : n � e� �
(D) �� : �� � �� � ��

10. (a) The speed of an electron that has a kinetic energy of
K �� mec2 is v1 , where

(A) v1 �� c. (B) v1 � c.
(C) v1 � c. (D) v1 �� c.

(b) What would be the speed of an electron that has a kinetic
energy of 4K?

(A) Between v1 and c (B) Less than 2v1

(C) Equal to 2v1 (D) Greater than 2v1

(E) Both (A) and (C) are correct.

11. An energetic proton emitted from the Sun has a total energy
in excess of 100 GeV. As measured from the Earth, how

ve
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much time elapses from when the proton leaves the Sun to
when it strikes the Earth?

(A) � 6 s (B) � 1 min
(C) � 9 min (D) � 20 min

(E) The question cannot be answered without more knowl-
edge of the proton’s energy.

20-10 The Common Sense of Special Relativity
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QUESTIONS

1. The speed of light in a vacuum is a true constant of nature, in-
dependent of the wavelength of the light or the choice of an
(inertial) reference frame. Is there any sense, then, in which
Einstein’s second postulate can be viewed as contained within
the scope of his first postulate?

2. Discuss the problem that young Einstein grappled with; that
is, what would be the appearance of an electromagnetic wave
to a person running along with it at speed c?

3. Is the concept of an incompressible fluid valid in relativity?
What about perfectly rigid bodies?

4. A quasar (quasi-stellar object) travels away from the Earth at
half the speed of light. What is the speed, with respect to the
Earth, of the light we detect coming from it?

5. Quasars are the most intrinsically luminous objects in the uni-
verse. Many of them fluctuate in brightness, often on a time
scale of a day or so. How can the rapidity of these brightness
changes be used to estimate an upper limit to the size of these
objects? (Hint: Separated points cannot change in a coordi-
nated way unless information is sent from one to the other.)

6. The sweep rate of the tail of a comet can exceed the speed of
light. Explain this phenomenon and show that there is no con-
tradiction with relativity.

7. Consider a spherical light wavefront spreading out from a
point source. As seen by an observer at the source, what is the
difference in velocity of portions of the wavefront traveling in
opposite directions? What is the relative velocity of one of
these portions of the wavefront with respect to the other?

8. Borrowing two phrases from Herman Bondi, we can catch the
spirit of Einstein’s two postulates by labeling them: (1) the
principle of “the irrelevance of velocity” and (2) the principle
of “the uniqueness of light.” In what senses are velocity irrel-
evant and light unique in these two statements?

9. A beam from a laser falls at right angles on a plane mirror
and reflects from it. What is the speed of the reflected beam if
the mirror is (a) fixed in the laboratory and (b) moving di-
rectly toward the laser with speed v?

10. Give an example from classical physics in which the motion
of a clock affects its rate— that is, the way it runs. (The mag-
nitude of the effect may depend on the detailed nature of the
clock.)

11. Although in relativity (where motion is relative and not ab-
solute) we find that “moving clocks run slow,” this effect has
nothing to do with the motion altering the way a clock works.
With what does it have to do?

12. We have seen that if several observers watch two events, la-
beled A and B, one of them may say that event A occurred
first but another may claim that it was event B that did so.
What would you say to a friend who asked you which event
really did occur first?

13. Let event A be the departure of an airplane from San Fran-
cisco and event B be its arrival in New York. Is it possible to
find two observers who disagree about the time order of these
events? Explain.

14. Two observers, one at rest in S and one at rest in S	, each
carry a meter stick oriented parallel to their relative motion.
Each observer finds upon measurement that the other ob-
server’s meter stick is the shorter of the two sticks. Does this
seem like a paradox to you? Explain. (Hint: Compare with
the following situation. Harry waves goodbye to Walter who
is in the rear of a station wagon driving away from Harry.
Harry says that Walter gets smaller. Walter says that Harry
gets smaller. Are they measuring the same thing?)

15. How does the concept of simultaneity enter into the measure-
ment of the length of an object?

16. In relativity the time and space coordinates are intertwined and
treated on a more or less equivalent basis. Are time and space
fundamentally of the same nature, or is there some essential
difference between them that is preserved even in relativity?

17. In the “twin paradox,” explain (in terms of heartbeats, physical
and mental activities, and so on) why the younger returning twin
has not lived any longer than her own proper time even though
her stay-at-home brother may say that she has. Hence explain
the remark: “You age according to your own proper time.”

18. If zero-mass particles have a speed c in one reference frame,
can they be found at rest in any other frame? Can such parti-
cles have any speed other than c?

19. A particle with zero mass (a neutrino, possibly) can transport
momentum. However, by Eq. 20-23, the
momentum is directly proportional to the mass and therefore
should be zero if the mass is zero. Explain.

20. How many relativistic expressions can you think of in which
the Lorentz factor � enters as a simple multiplier?

21. Is the mass of a stable, composite particle (a gold nucleus, for
example) greater than, equal to, or less than the sum of the
masses of its constituents? Explain.

22. Sometimes the masses of elementary particles are given in
units of MeV/c2. For example, the mass of an electron is
0.511 MeV/c2. Is this really a unit of mass? Explain.

23. “The relation E0 � mc2 is essential to the operation of a
power plant based on nuclear fission but has only a negligible
relevance for a fossil-fuel plant.” Is this a true statement? Ex-
plain why or why not.

24. A hydroelectric plant generates electricity because water falls
under gravity through a turbine, thereby turning the shaft of a
generator. According to the mass–energy concept, must the
appearance of energy (the electricity) be identified with a
mass decrease somewhere? If so, where?

25. Some say that relativity complicates things. Give examples to
the contrary, wherein relativity simplifies matters.

p � mv/√1 � v 2/c 2,



EXERCISES

20-1 Troubles with Classical Physics

20-2 The Postulates of Special Relativity

20-3 Consequences of Einstein’s Postulates
1. Quite apart from effects due to the Earth’s rotational and or-

bital motions, a laboratory frame is not strictly an inertial
frame because a particle placed at rest there will not, in gen-
eral, remain at rest; it will fall under gravity. Often, however,
events happen so quickly that we can ignore free fall and treat
the frame as inertial. Consider, for example, a 1.0-MeV elec-
tron (for which v � 0.941c) projected horizontally into a lab-
oratory test chamber and moving through a distance of 20 cm.
(a) How long would it take, and (b) how far would the elec-
tron fall during this interval? What can you conclude about
the suitability of the laboratory as an inertial frame in this
case?

2. A 100-MeV electron, for which v � 0.999987c, moves along
the axis of an evacuated tube that has a length of 2.86 m as
measured by a laboratory observer S with respect to whom
the tube is at rest. An observer S	 moving with the electron,
however, would see this tube moving past with speed v. What
length would this observer measure for the tube?

3. A rod lies parallel to the x axis of reference frame S, moving
along this axis at a speed of 0.632c. Its rest length is 1.68 m.
What will be its measured length in frame S?

4. The mean lifetime of muons stopped in a lead block in the
laboratory is measured to be 2.20 �s. The mean lifetime of
high-speed muons in a burst of cosmic rays observed from the
Earth is measured to be 16.0 �s. Find the speed of these cos-
mic ray muons.

5. An unstable high-energy particle enters a detector and leaves
a track 1.05 mm long before it decays. Its speed relative to the
detector was 0.992c. What is its proper lifetime? That is, how
long would it have lasted before decay had it been at rest with
respect to the detector?

6. A particle moves along the x	 axis of frame S	 with a speed of
0.43c. Frame S	 moves with a speed of 0.587c with respect to
frame S. What is the measured speed of the particle in frame
S?

7. A spaceship of rest length 130 m drifts past a timing station at
a speed of 0.740c. (a) What is the length of the spaceship as
measured by the timing station? (b) What time interval be-
tween the passage of the front and back end of the ship will
the station monitor record?

8. A pion is created in the higher reaches of the Earth’s atmo-
sphere when an incoming high-energy cosmic-ray particle
collides with an atomic nucleus. A pion so formed descends
toward Earth with a speed of 0.99c. In a reference frame in
which they are at rest, pions have a lifetime of 26 ns. As mea-
sured in a frame fixed with respect to the Earth, how far will
such a typical pion move through the atmosphere before it de-
cays?

9. To circle the Earth in low orbit a satellite must have a speed
of about 7.91 km/s. Suppose that two such satellites orbit the
Earth in opposite directions. (a) What is their relative speed
as they pass? Evaluate using the classical Galilean velocity

transformation equation. (b) What fractional error was made
because the (correct) relativistic transformation equation was
not used?

20-4 The Lorentz Transformation
10. What must be the value of the speed parameter � if the

Lorentz factor � is to be (a) 1.01? (b) 10.0? (c) 100? (d )
1000?

11. Find the speed parameter of a particle that takes 2 years
longer than light to travel a distance of 6.0 ly.

12. Observer S assigns to an event the coordinates x � 100 km,
t � 200 �s. Find the coordinates of this event in frame S	,
which moves in the direction of increasing x with speed
0.950c. Assume that x � x	 at t � t	 � 0.

13. Observer S reports that an event occurred on the x axis at x �
3.20 � 108 m at a time t � 2.50 s. (a) Observer S	 is moving
in the direction of increasing x at a speed of 0.380c. What co-
ordinates would S	 report for the event? (b) What coordinates
would S� report if S� were moving in the direction of decreas-
ing x at this same speed?

14. Derive Eqs. 20-17 for the inverse Lorentz transformation by
algebraically inverting the equations for the Lorentz transfor-
mation, Eqs. 20-14.

20-6 The Transformation of Velocities
15. Suppose that observer S fires a light beam in the y direction

(vx � 0, vy � c). Observer S	 is moving at speed u in the x di-
rection. (a) Find the components v	x and v	y of the velocity of
the light beam according to S	, and (b) show that S	 measures
a speed of c for the light beam.

16. One cosmic-ray proton approaches the Earth along its axis
with a velocity of 0.787c toward the north pole and another,
with velocity 0.612c, toward the south pole. See Fig. 20-24.
Find the relative speed of approach of one particle with re-
spect to the other. (Hint: It is useful to consider the Earth and
one of the particles as the two inertial reference frames.)
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Figure 20-24. Exercise 16.

0.787c

0.612c

NP

SP

17. Galaxy A is reported to be receding from us with a speed of
0.347c. Galaxy B, located in precisely the opposite direction,
is also found to be receding from us at this same speed. What



recessional speed would an observer on galaxy A find (a) for
our galaxy and (b) for galaxy B?

18. It is concluded from measurements of the red shift of the
emitted light that quasar Q1 is moving away from us at a
speed of 0.788c. Quasar Q2 , which lies in the same direction
in space but is closer to us, is moving away from us at speed
0.413c. What velocity for Q2 would be measured by an ob-
server on Q1 ?

19. In Fig. 20-25, A and B are trains on perpendicular tracks,
shown radiating from station S. The velocities are in the sta-
tion frame (S frame). (a) Find vAB, the velocity of train B with
respect to train A. (b) Find vBA, the velocity of train A with re-
spect to train B. (c) Comment on the fact that these two rela-
tive velocities do not point in opposite directions.

How much time will have elapsed by Earth clocks (a) when
the traveler reaches Vega and (b) when the Earth observers re-
ceive word from him that he has arrived? (c) How much older
will the Earth observers calculate the traveler to be when he
reaches Vega than he was when he started the trip?

26. You wish to make a round trip from Earth in a spaceship,
traveling at constant speed in a straight line for 6 months and
then returning at the same constant speed. You wish further,
on your return, to find the Earth as it will be 1000 years in the
future. (a) How fast must you travel? (b) Does it matter
whether or not you travel in a straight line on your journey?
If, for example, you traveled in a circle for 1 year, would you
still find that 1000 years had elapsed by Earth clocks when
you returned?

20-8 Relativistic Momentum
27. Show that 1 kg  m/s � 1.875 � 1021 MeV/c.

28. A particle has a momentum equal to mc. Calculate its speed.

29. Calculate the speed parameter � of a particle with a momen-
tum of 12.5 MeV/c if the particle is (a) an electron and (b) a
proton.

20-9 Relativistic Energy
30. Find the speed parameter � and the Lorentz factor � for an

electron whose kinetic energy is (a) 1.0 keV, (b) 1.0 MeV,
and (c) 1.0 GeV.

31. Find the speed parameter � and the Lorentz factor � for a par-
ticle whose kinetic energy is 10 MeV if the particle is (a) an
electron, (b) a proton, and (c) an alpha particle.

32. A particle has a speed of 0.990c in a laboratory reference
frame. What are its kinetic energy, its total energy, and its mo-
mentum if the particle is (a) a proton or (b) an electron?

33. Quasars are thought to be the nuclei of active galaxies in the
early stages of their formation. A typical quasar radiates en-
ergy at the rate of 1.20 � 1041 W. At what rate is the mass of
this quasar being reduced to supply this energy? Express your
answer in solar mass units per year, where one solar mass unit
(smu) is the mass of our Sun.

34. Calculate the speed of a particle (a) whose kinetic energy is
equal to twice its rest energy and (b) whose total energy is
equal to twice its rest energy.

35. (a) Using the binomial expansion (see Appendix I), show that
Eq. 20-27 reduces to the classical expression when
v �� c. (b) By evaluating the second term in the expansion,
find the value of v/c for which the error in using the classical
expression is at most 1%.

36. A 1000-kg automobile is moving at 20 m/s. Calculate the ki-
netic energy using both the nonrelativistic equation and the
relativistic equation. What is the relative difference between
these results?

37. Find the momentum of a particle of mass m in order that its
total energy be three times its rest energy.

38. Use the velocities given in Fig. 20-20 in the S	 frame and
show that, according to S	, the kinetic energies before and
after the collision, computed classically, are given by Eqs.
20-26.

39. Reconsider the collision shown in Fig. 20-20. Using Eq. 20-
27 for the relativistic kinetic energy, calculate the initial and
final kinetic energies in frame S	 and thereby show that ki-
netic energy is conserved in this frame as in frame S.

K � 1
2 mv 2
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Figure 20-25. Exercise 19.
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20-7 Consequences of the Lorentz Transformation
20. An electron is moving at a speed such that it could circum-

navigate the Earth at the equator in 1 s. (a) What is its speed,
in terms of the speed of light? (b) What is its kinetic energy
K? (c) What percent error do you make if you use the classi-
cal formula to calculate K?

21. The rest radius of the Earth is 6370 km and its orbital speed
about the Sun is 29.8 km/s. By how much would the Earth’s
diameter appear to be shortened to an observer stationed so as
to be able to watch the Earth move past at this speed?

22. An airplane whose rest length is 42.4 m is moving with re-
spect to the Earth at a constant speed of 522 m/s. (a) By what
fraction of its rest length will it appear to be shortened to an
observer on Earth? (b) How long would it take by Earth
clocks for the airplane’s clock to fall behind by 1 �s? (As-
sume that only special relativity applies.)

23. A spaceship whose rest length is 358 m has a speed of 0.728c
with respect to a certain reference frame. A micrometeorite,
with a speed of 0.817c in this frame, passes the spaceship on
an antiparallel track. How long does it take this micromete-
orite to pass the spaceship?

24. A clock moves along the x axis at a speed of 0.622c and reads
zero as it passes the origin. (a) Calculate the Lorentz factor.
(b) What time does the clock read as it passes x � 183 m?

25. A space traveler takes off from Earth and moves at speed
0.988c toward the star Vega, which is 26.0 light-years distant.



40. Consider the following, all moving in free space: a 2.0-eV
photon, a 0.40-MeV electron, and a 10-MeV proton. (a)
Which is moving the fastest? (b) The slowest? (c) Which has
the greatest momentum? (d ) The least? (Note: A photon is a
light particle of zero mass.)

41. How much work must be done to increase the speed of an
electron from (a) 0.18c to 0.19c and (b) 0.98c to 0.99c? Note
that the speed increase (� 0.01c) is the same in each case.

42. Two identical particles, each of mass 1.30 mg, moving with
equal but opposite velocities of 0.580c in the laboratory refer-
ence frame, collide and stick together. Find the mass of the
resulting particle.

43. (a) Consider the decay of the kaon described in Sample Prob-
lem 20-10, but use a frame of reference (the center-of-mass
frame) in which the kaons are initially at rest. Show that the
two pions emitted in the decay travel in opposite directions

with equal speeds of 0.827c. (b) What is the velocity of the
original kaons as observed in the laboratory frame? (c) As-
sume that the two pions are emitted in the center-of-mass
frame with velocities of v	x � � 0.827c and v	x � � 0.827c.
By calculating the corresponding velocities in the laboratory
frame, show that the kinetic energies in the laboratory frame
are identical with those found in the solution to Sample Prob-
lem 20-10.

44. An alpha particle with kinetic energy 7.70 MeV strikes a 14N
nucleus at rest. An 17O nucleus and a proton are produced, the
proton emitted at 90° to the direction of the incident alpha
particle and carrying kinetic energy 4.44 MeV. The rest ener-
gies of the various particles are: alpha particle, 3730.4 MeV;
14N, 13,051 MeV; proton, 939.29 MeV; 17O, 15,843 MeV.
(a) Find the kinetic energy of the 17O nucleus. (b) At what an-
gle with respect to the direction of the incident alpha particle
does the 17O nucleus move?
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PROBLEMS

1. The length of a spaceship is measured to be exactly half its
rest length. (a) What is the speed of the spaceship relative to
the observer’s frame? (b) By what factor do the spaceship’s
clocks run slow, compared to clocks in the observer’s frame?

2. Frame S	 moves relative to frame S at 0.620c in the direction
of increasing x. In frame S	 a particle is measured to have a
velocity of 0.470c in the direction of increasing x	. (a) What
is the velocity of the particle with respect to frame S? (b)
What would be the velocity of the particle with respect to S if
it moved (at 0.470c) in the direction of decreasing x	 in the S	
frame? In each case, compare your answers with the predic-
tions of the classical velocity transformation equation.

3. An experimenter arranges to trigger two flashbulbs simultane-
ously, a blue flash located at the origin of his reference frame
and a red flash at x � 30.4 km. A second observer, moving at
a speed 0.247c in the direction of increasing x, also views the
flashes. (a) What time interval between them does she find?
(b) Which flash does she say occurs first?

4. Inertial frame S	 moves at a speed of 0.60c with respect to
frame S in the direction of increasing x. In frame S, event 1
occurs at the origin at t � 0 and event 2 occurs on the x axis
at x � 3.0 km and at t � 4.0 ps. What times of occurrence
does observer S	 record for these same events? Explain the re-
versal of the time order.

5. Show that

independent of � and u.

6. A radioactive nucleus moves with a constant speed of 0.240c
along the x axis of a reference frame S fixed with respect to
the laboratory. It decays by emitting an electron whose speed,
measured in a reference frame S	 moving with the nucleus, is
0.780c. Consider first the cases in which the emitted electron
travels (a) along the common xx	 axis and (b) along the y	
axis and find, for each case, its velocity (magnitude and direc-
tion) as measured in frame S. (c) Suppose, however, that the

� (�x	)2 � (�y	)2 � (�z	)2 � c 2(�t	)2,
(�x)2 � (�y)2 � (�z)2 � c 2(�t)2

emitted electron, viewed now from frame S, travels along the
y axis of that frame with a speed of 0.780c. What is its veloc-
ity (magnitude and direction) as measured in frame S	?

7. A spaceship, at rest in a certain reference frame S, is given a
speed increment of 0.500c. It is then given a further 0.500c
increment in this new frame, and this process is continued un-
til its speed with respect to its original frame S exceeds
0.999c. How many increments does it require?

8. An observer S sees a flash of red light 1210 m away and a flash
of blue light 730 m closer and on the same straight line. S mea-
sures the time interval between the occurrence of the flashes to
be 4.96 �s, the red flash occurring first. (a) Find the relative ve-
locity, magnitude, and direction of a second observer S	 who
would record these flashes as occurring at the same place. (b)
From the point of view of S	, which flash occurs first and what
is the measured time interval between the flashes?

9. Consider the previous problem. Suppose now that observer S
sees the two flashes in the same positions as in that problem
but occurring closer together in time. How close together in
time can they be and still have it possible to find a frame S	 in
which they occur at the same place?

10. (a) Can a person, in principle, travel from Earth to the galac-
tic center (which is about 23,000 ly distant) in a normal life-
time? Explain, using both time-dilation and length-contrac-
tion arguments. (b) What constant speed would be needed to
make the trip in 30 y (proper time)?

11. Observers S and S	 stand at the origins of their respective
frames, which are moving relative to each other with a speed
0.600c. Each has a standard clock, which, as usual, they set to
zero when the two origins coincide. Observer S keeps the S	
clock visually in sight. (a) What time will the S	 clock record
when the S clock records 5.00 �s? (b) What time will ob-
server S actually read on the S	 clock when the S clock reads
5.00�s?

12. Show that two events A and B separated by a distance �r and
simultaneous in frame S will be separated by a larger distance
in any other frame S	.



13. (a) If the kinetic energy K and the momentum p of a particle
can be measured, it should be possible to find its mass m and
thus identify the particle. Show that

(b) What does this expression reduce to as v/c : 0, in which
v is the speed of the particle? (c) Find the mass of a particle
whose kinetic energy is 55.0 MeV and whose momentum is
121 MeV/c; express your answer in terms of the mass m of
the electron.

14. In a high-energy collision of a primary cosmic-ray particle
near the top of the Earth’s atmosphere, 120 km above sea
level, a pion is created with a total energy of 135 GeV, travel-
ing vertically downward. In its proper frame this pion decays
35.0 ns after its creation. At what altitude above sea level does
the decay occur? The rest energy of a pion is 139.6 MeV.

15. A particle of mass m traveling at a relativistic speed makes a
completely inelastic collision with an identical particle that is
initially at rest. Find (a) the speed of the resulting single parti-
cle and (b) its mass. Express your answers in terms of the
Lorentz factor � of the incident particle.

16. (a) Suppose we have a particle accelerated from rest by the
action of a force F. Assuming that Newton’s second law for a
particle, F � dp/dt, is valid in relativity, show that the final
kinetic energy K can be written, using the work–energy theo-
rem, as (b) Using Eq. 20-23 for the relativistic
momentum, show that carrying out the integration in (a) leads
to Eq. 20-27 for the relativistic kinetic energy.

17. (a) In experimental high-energy physics, energetic particles
are made to circulate in opposite directions in so-called stor-
age rings and permitted to collide head-on. In this arrange-
ment each particle has the same kinetic energy K in the labo-
ratory. The collisions may be viewed as totally inelastic, in
that the rest energy of the two colliding particles, plus all

K � � v dp.

m �
(pc)2 � K 2

2Kc 2 .

available kinetic energy, can be used to generate new particles
and to endow them with kinetic energy. Show that the avail-
able energy in this arrangement can be written in the form 

where m is the mass of the colliding particles. (b) How much
energy is made available when 100-GeV protons are used in
this fashion? (c) What proton energy would be required to
make 100 GeV available? (Note: Compare your answers with
those in Problem 18, which describes another less energy-
effective bombarding arrangement.)

18. (a) A proton, mass m, accelerated in a proton synchrotron to a
kinetic energy K, strikes a second (target) proton at rest in the
laboratory. The collision is entirely inelastic in that the rest en-
ergy of the two protons, plus all the kinetic energy consistent
with the law of conservation of momentum, is available to
generate new particles and to endow them with kinetic energy.
Show that the energy available for this purpose is given by

(b) How much energy is made available when 100-GeV pro-
tons are used in this fashion? (c) What proton energy would
be required to make 100 GeV available? (Note: Compare
with Problem 17.)

19. A particle of mass M originally at rest is struck by a particle
of mass m moving with speed vi . After the collision the two
particles move in opposite directions with the same speed vf .
Assuming a relativistic, elastic collision, find the ratio of the
masses M/m in terms of � � vi /c. Show that this reduces to
the nonrelativistic value of 3 as vi : 0. (Note: Although this
problem can be solved by hand, it is also a good problem for
a computer-aided algebra system such as Maple or Mathe-
matica.)

E new � 2mc2 √1 � � K

2mc 2 � .

E new � 2mc2 �1 �
K

mc 2 � ,
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COMPUTER PROBLEM

1. A spaceship travels to the nearest star (other than the Sun)
with a constant acceleration of g as measured by the occu-
pants. The ship spends the first half of the trip accelerating at
g and the second half decelerating at g. How long does a one-
way trip take as measured by the space travelers? How long
does a one-way trip take as measured by people on Earth?
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TEMPERATURE

With this chapter we begin our study of thermal

physics, the branch of physics that deals with the changes in the properties of systems that occur when work

is done on (or by) them and heat energy is added to (or taken from) them. For systems such as confined

gases the properties involved are their pressure, volume, temperature, energy, and—as we will come to

learn—entropy, a property that we will introduce in Chapter 24.

This chapter deals with temperature, a concept that deeply underlies all of the laws of thermodynamics.

We have used this concept in earlier chapters; now we must define it precisely, as we have done for all

other physical concepts that we have encountered. We also introduce the concept of an ideal gas, which will

serve as a convenient system to use in analyzing and illustrating the laws of thermodynamics.

21-1 TEMPERATURE AND
THERMAL EQUILIBRIUM

We all have an ingrained sense of temperature and, indeed,
we have used this concept freely in earlier chapters. In this
chapter we wish to define temperature in a rigorous way.
Just as we went beyond our sense of “push” and “pull” in
defining force, we need to go beyond our sense of “hot”
and “cold” in defining temperature. Before we can deal di-
rectly with temperature, however, we must first establish
the concept of thermal equilibrium, which is concerned
with the question of whether or not the temperatures of two
systems are equal.

Figure 21-1a shows two systems A and B, which,
among many possibilities, might be blocks of metal or con-
fined gases. They are isolated from one another and from
their environment, by which we mean that neither energy
nor matter can enter or leave either system. For example,
the systems may be surrounded by walls made of thick
slabs of Styrofoam, presumed to be both rigid and imper-
meable. Such walls are said to be adiabatic, which you can
think of as meaning thermally insulating. Changes in the
measured properties of either system have no effect on the
properties of the other system.

As Fig. 21-1b shows, we can replace the adiabatic wall
that separates the two systems with one that permits the
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Figure 21-1. (a) Systems A and B are separated by an adia-
batic wall. The systems have different temperatures TA and TB . (b)
Systems A and B are separated by a diathermic wall, which per-
mits energy to be exchanged between the systems. The systems
will eventually come to thermal equilibrium, upon which they
have the same temperature T.



flow of energy in a form that we have referred to in Chapter
13 as heat. A thin but rigid sheet of copper might be an ex-
ample. Such a wall is called diathermic, which you can
think of as thermally conducting.

When the two systems are placed in contact through a
diathermic wall, the passage of heat energy through the
wall— if it occurs—causes the properties of the two sys-
tems to change. If the systems are confined gases, for ex-
ample, their pressures might change. The changes are rela-
tively rapid at first but become slower as time goes on, until
finally all measured properties of each system approach
constant values. When this occurs, we say that the two sys-
tems are in thermal equilibrium with each other. Thus a test
of whether or not two systems are in thermal equilibrium is
to place them in thermal contact; if their properties do not
change, they are in thermal equilibrium; if their properties
do change they are not.

It might be inconvenient, or even impossible, to put two
systems in thermal contact with each other through a
diathermic wall. (The systems might be too bulky to move
easily, or they might be very far apart.) We therefore gener-
alize the concept of thermal equilibrium so that systems
need not be brought into thermal contact with each other.

One way to test such separated systems is to use a third
system C. By placing C in contact with A and then with B,
we could discover whether A and B are in thermal equilib-
rium without ever bringing A and B into direct contact. This
is summarized as a postulate called the zeroth law of ther-
modynamics, which is often stated as follows:

If systems A and B are each in thermal equilibrium with
a third system C, then A and B are in thermal equilib-
rium with each other.

This law may seem simple but it is not at all obvious. There
are other situations in which a system C may have equiva-
lent interactions with two systems A and B, but A and B do
not have a similar interaction with each other. For example,
if A and B are unmagnetized iron nails and C is a magnet,
then A and C attract each other as do B and C. However, A
and B do not.

The zeroth law came to light in the 1930s, long after the
first and second laws of thermodynamics had been pro-
posed, accepted, and named. As we discuss later, the zeroth
law underlies the concept of temperature, which is funda-
mental to the first and second laws. The law that establishes
the concept of temperature should have a lower number,
hence zero.

Temperature
When two systems are in thermal equilibrium, we say that
they have the same temperature. For example, suppose the
systems are two gases that initially have different tempera-
tures, pressures, and volumes. After we place them in con-
tact and wait a sufficiently long time for them to reach ther-
mal equilibrium, their pressures will in general not be

equal, nor will their volumes; their temperatures, however,
will always be equal in thermal equilibrium. It is only
through this argument based on thermal equilibrium that
the notion of temperature can be introduced into physics.

Although temperature in its everyday use is familiar to
all of us, it is necessary to give it a precise meaning if it is
to be of value as a scientific measure. Our subjective notion
of temperature is not at all reliable. A familiar experience is
to touch a metal railing outdoors on a very cold day and
then touch a nearby wooden object. The railing well feel
colder although in fact both are at the same temperature.
What you are testing when you touch a cold object is not
only its temperature but also its ability to transfer energy
(as heat) away from your (presumably warmer) hand. In
such cases your hand is giving a subjective and incorrect
measure of temperature. You can also test your subjectivity
convincingly by soaking your left hand in cold water and
your right hand in warm water. If you then quickly put both
hands in water of intermediate temperature, your left hand
will sense that the water is warmer than it actually is and
your right hand will sense that it is colder.

In practical use of the zeroth law, we identify system C,
to which the statement of the law refers, as a thermometer.
If the thermometer comes separately into thermal equilib-
rium with systems A and B (which might be widely sepa-
rated buckets of water) and indicates the same reading, then
we may conclude that A and B are in thermal equilibrium
and thus indeed have the same temperature. Note that, to
test whether two systems have the same temperature, we do
not have to establish a temperature scale. If our thermome-
ter (system C) is of the mercury-in-glass type, for example,
we do not need to have it marked off in degrees. Simply put
the thermometer in contact with system A, mark the mer-
cury level, and then put it in contact with system B, noting
whether the mercury reaches the same level.

A statement of the zeroth law in terms of temperature is
the following:

There exists a scalar quantity called temperature, which
is a property of all thermodynamic systems in equilib-
rium. Two systems are in thermal equilibrium if and
only if their temperatures are equal.

The zeroth law thus defines the concept of temperature
and permits us to build and use thermometers.

21-2 TEMPERATURE SCALES

As Table 1-1 shows, temperature (symbol T ) is one of the
seven base units of the International System of Units (SI).
As such we must define it carefully and devise procedures
for measuring it that can be reproduced in laboratories
around the world. Later in this section we will discuss ther-
mometers based on the familiar Fahrenheit and Celsius
scales. These, however, are scales of practical convenience
and temperatures measured on them have no deep physical
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meaning. The scale that is universally adopted as funda-
mental in physics is the Kelvin scale. It is based on the
recognition that although there is no apparent limit to how
high the temperature of a system can be, there is a limit to
how low it can be. This absolute zero of temperature is de-
fined as zero on the Kelvin scale, which measures tempera-
tures in degrees above this absolute lower limit. Where
temperature appears in any equation of fundamental impor-
tance in physics, it is certain to refer to this Kelvin (or ab-
solute) scale.

To establish the size of the degree on the Kelvin scale
we need to identify a specific calibrating system to which,
by international agreement, we assign a specific tempera-
ture. We choose for this purpose an arrangement in which
ice, liquid water, and water vapor coexist in thermal equi-
librium. This point, which is very close to the freezing
point of water at atmospheric pressure, is called the triple
point of water. (The triple point was chosen, rather than the
freezing point, because it is more consistently repro-
ducible.) Figure 21-2 shows a triple-point cell of the type
used at the National Institute of Standards and Technology
(NIST). A thermometer to be calibrated is inserted into the
well of the triple-point cell.

The Kelvin temperature at the triple point has been set
by international agreement in 1954 to be

(21-1)

where K (� kelvin) is the base unit of temperature on the
Kelvin scale. The kelvin, which is the name we give to the
degree on the Kelvin scale, is thus defined as 1/273.16 of
the temperature of the triple point of water. In place of Eq.
21-1, the international community could equally well have

Ttr � 273.16 K (exactly),

chosen Ttr � 100 K, or any other number, but they did not.
The choice they actually made was designed so that the size
of the degree on the Kelvin scale (1 kelvin) would equal the
size of the degree on the already well-established Celsius
scale.

Note that we do not use the degree symbol in reporting a
temperature on the Kelvin scale. We might say, for example,
that the melting point of lead is 600.7 K, or 600.7 kelvin.

It remains to describe how the Kelvin temperature of a
system is actually measured; we shall do so in Section 21-3.

The Celsius and the Fahrenheit
Temperature Scales
In nearly all the countries of the world the Celsius scale
(formerly called the centigrade scale) is used for all popular
and commercial—and some scientific—measurements.
Historically, this scale was based on two calibration points:
the normal freezing point of water, defined to be 0°C, and
the normal boiling point of water, defined to be 100°C.
These two points were used to calibrate thermometers and
other temperatures were then deduced by interpolation or
extrapolation. Note that the degree symbol (°) is used to ex-
press temperatures on the Celsius scale.

Today we no longer use these two fixed points to define
the Celsius scale; instead, we define a temperature (TC) on
the Celsius scale in terms of the corresponding Kelvin tem-
perature T, by

(21-2)

The freezing and boiling points of water (at a pressure of 
1 atm) are now measured on the Kelvin scale and then con-
verted to Celsius using Eq. 21-2. The experimental values
are, respectively, 0.00°C and 99.975°C, in agreement (for
all practical purposes) with the historical basis for defining
the Celsius scale. Note also that Eq. 21-2 indicates that the
Celsius temperature of the triple point of water is 0.01°C.
As we pointed out earlier, this is close to the temperature of
the freezing point of water. Also note that, according to Eq.
21-2, the absolute zero of temperature is �273.15°C.

The Fahrenheit scale was also based historically on two
fixed points that, after several earlier choices, came to be:
(1) the normal freezing point of water, which was defined
to be 32°F, and (2) the normal boiling point of water, which
was defined to be 212°F. The relationship between the
Fahrenheit and the Celsius scales is now taken to be

(21-3)

As for the Celsius scale, the degree symbol is used in re-
porting temperatures on the Fahrenheit scale, for example,
98.6°F (normal oral human body temperature).

Transferring between the Celsius and the Fahrenheit
scales is easily done by remembering a few corresponding
points, such as those shown in Fig. 21-3, which compares
the Kelvin, Celsius, and Fahrenheit scales. It is also neces-
sary to make use of the equality between an interval of 9

TF � 9
5 TC � 32.

TC � T � 273.15.
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Figure 21-2. The National Institute of Standards and Tech-
nology triple-point cell. The U-shaped inner cell contains pure
water and is sealed after all the air has been removed. It is im-
mersed in a water– ice bath. The system is at the triple point when
ice, water, and water vapor are all present, and in equilibrium, in-
side the cell. The thermometer to be calibrated is inserted into the
central well.



degrees on the Fahrenheit scale and an interval of 5 degrees
on the Celsius scale, which we express as

9 F° � 5 C°. (21-4)

Note that these intervals are expressed as F° and C°, not as
°F or °C. Thus we might write or say: “The temperature here
is 90°F. It would be more pleasant if it were 15 F° cooler.”

21-3 MEASURING
TEMPERATURES

Here we address the problem of measuring the tempera-
tures of a system on the Kelvin scale. Once we have made
this measurement, we can easily find the temperature of the
system on the Celsius and the Fahrenheit scales, using Eqs.
21-2 and 21-3. To measure a temperature we need a ther-
mometer. What form shall it take?

In principle, any property of a substance that varies with
temperature can form the basis for a thermometer. Exam-
ples might be the volume of a liquid (as in the common
mercury-in-glass thermometer), the pressure of a gas kept
at constant volume, the electrical resistance of a wire, the
length of a strip of metal, or the color of a lamp filament,
all of which vary with temperature and all of which are in
common use as thermometers. The choice of one of these
properties leads to a device-sensitive or “private” tempera-
ture scale that is defined only for that property and that
does not necessarily agree with other choices we might
make. Of course all thermometers will agree, by definition
of Eq. 21-1, at the triple point of water. The question is,

will they agree at other temperatures, either higher or
lower? The answer is that they will not, as Sample Problem
21-1 shows. Even so, a “private” thermometer, when prop-
erly calibrated against accepted standards, can be useful as
a secondary standard for measuring temperature. Indeed,
nearly all temperature measurements are made using such
secondary standard thermometers.

Let us assume that our thermometer is based on a sys-
tem in which we measure the value of an as yet unspecified
thermometric property X. The temperature is some function
of X. We choose the simplest possible relationship—
namely, a linear one

T* � aX (21-5)

in which a is a constant. We designate the temperature
given by Eq. 21-5 by T* rather than T because the tempera-
ture so measured will be a device-sensitive temperature, not
a true Kelvin temperature. We can find the value of a by
measuring X at the triple point of water, obtaining the value
Xtr . We then have, for the temperature as a function of X,

(21-6)

It remains only to select a suitable temperature-dependent
property X and to see whether we can establish a procedure
that will yield the true Kelvin temperature rather than T*.

Sample Problem 21-1. The resistance of a certain coil
of platinum wire increases by a factor of 1.392 between the triple
point of water and the boiling point of water at atmospheric pres-
sure (that is, the normal boiling point). What temperature for the
normal boiling point of water is measured by this thermometer?

Solution The generalized thermometric property X that appears in
the defining relation of Eq. 21-6 is, in this case, the resistance R.
We are not given Rtr but we are told that R � 1.392 Rtr . Thus,
with R substituted for X, Eq. 21-6 becomes

This value gives the “platinum resistance temperature” of boiling
water. Other thermometers will give different values. For example,
the normal boiling point of water as measured by a thermometer
(a thermocouple) based on the electric voltage generated by two
joined dissimilar wires (copper and constantan) is 412.5 K. The
actual Kelvin temperature of the normal boiling point of water
(see Fig. 21-3) is 373.125 K. Although such “private scale” ther-
mometers, when properly calibrated, are indispensable for practi-
cal use, we cannot rely on them to give consistent measures of
temperature on the Kelvin scale.

The Constant-Volume Gas Thermometer
The thermometric property that proves most suitable for
measuring temperatures on the Kelvin scale is the pressure
p exerted by a fixed volume of gas. The device for realizing

T*(R) � Ttr
R

R tr
� (273.16 K)(1.329) � 380.2 K.

T*(X ) � (273.16 K) 
X

X tr
.
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Figure 21-3. The Kelvin, Celsius, and Fahrenheit temperature
scales compared. Note that the latter two scales coincide at � 40°.



this procedure in practice is called a constant-volume gas
thermometer. Figure 21-4 shows a sketch of its essential
features. A gas-filled bulb can be alternately immersed in a
bath of the liquid whose temperature is to be measured or
in a triple-point bath. The volume of the gas in the bulb,
which we take to be nitrogen, is maintained constant by
raising or lowering the mercury-filled reservoir, so that the
level of mercury in the left arm of the manometer always
coincides with a fixed marker.

The procedure for measuring a temperature is as fol-
lows:

Step 1: (a) Immerse the nitrogen-filled bulb in a triple-
point bath and read the pressure ptr of the contained gas on
the manometer. Let us say that, in a particular case, ptr �
800 torr. (b) Immerse the bulb in the bath whose tempera-
ture is to be measured and read the new pressure p. Calcu-
late T* from Eq. 21-6, in which X is replaced with p and Xtr

with ptr . The result, which we regard as provisional, is plot-
ted as a point at 800 torr in Fig. 21-5.

Step 2: Return the thermometer bulb to the triple-point
bath and remove some of the gas, thus decreasing its den-
sity. Now ptr has a smaller value— say, 400 torr. Then we
return the bulb to the bath whose temperature we are trying
to find, measure a new value of p, and calculate a new pro-
visional temperature T*, also plotted in Fig. 21-5.

We continue this procedure, reducing the amount of gas
in the bulb step by step and, at each new lower value of ptr

calculating T*. If we plot the values of T* against ptr , we
can extrapolate the resulting curve to the intersection with
the axis at ptr � 0. The data points for nitrogen gas and the
resultant straight-line extrapolation are shown in Fig. 21-5.

If we repeat this step-wise extrapolation procedure for
gases other than nitrogen, we obtain results also shown in
Fig. 21-5. We see that, as the triple-point pressure ptr (and
thus the gas density) is reduced, the temperature readings of
constant-volume gas thermometers approach the same
value T, no matter what gas is used. We can regard T as the
temperature of the system and we define an ideal gas tem-
perature scale:

(21-7)

In this context, we define an “ideal gas” to be a gas that
would read the same temperature T at all pressures, with no
need for extrapolation. We will say more about the ideal gas
in Section 21-5.

If temperature is to be a truly fundamental physical
quantity it is absolutely necessary that its definition be in-
dependent of the properties of specific materials. It would
not do, for example, to have such a basic quantity as tem-
perature depend on the thermal expansivity of mercury, the
electrical resistivity of platinum, or any other such “hand-
book” property. We choose the gas thermometer as our
standard precisely because no such properties are involved
in its operation. You can use any gas and you always get the
same answer.

The lowest temperature that can be measured with a gas
thermometer is about 1 K. To obtain this temperature we
must use low-pressure helium, which remains a gas at
lower temperatures than any other gas.

T � (273.16 K) lim
ptr : 0

p

ptr
(constant V ).
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Figure 21-4. A constant-volume gas thermometer. The bulb
can be immersed in a triple-point cell and then in the bath of a liq-
uid whose temperature we are trying to measure. The difference
between the pressure of the gas in the bulb and the atmospheric
pressure is found from the height h of the mercury column in the
manometer. The simplicity of this sketch greatly conceals the
complexity of an actual gas thermometer such as may be found,
for example, in national standardizing laboratories in many coun-
tries.
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Figure 21-5. As the pressure of the nitrogen gas in a con-
stant-volume gas thermometer is reduced from 800 torr to 400 and
then to 200, the temperature deduced for the system approaches a
limit corresponding to a pressure of zero. Other gases approach
the same limit. The full range of the vertical scale is about 1 K for
typical conditions.



It can be shown that temperatures measured with the
constant-volume gas thermometer are true Kelvin tempera-
tures in the range in which the gas thermometer can be
used. We must use special methods to measure Kelvin tem-
peratures outside of this range. Table 21-1 lists the Kelvin
temperatures of some systems and processes.

The International Temperature Scale
Precise measurement of a temperature with a gas ther-
mometer is a difficult task, requiring many months of
painstaking laboratory work and, when completed, has
been said to be an international event. In practice therefore,
the gas thermometer is used only to establish certain fixed

points that can then be used to calibrate other more conve-
nient secondary thermometers.

The International Temperature Scale has been adopted
for the calibration of thermometers for scientific or indus-
trial use. This scale consists of a set of procedures for pro-
viding in practice the best possible approximations to the
Kelvin scale. The adopted scale consists of a set of fixed
points, along with specific devices to be used for interpolat-
ing between these fixed points and extrapolating beyond the
highest fixed point. The International Committee of
Weights and Measures reviews and refines the scale about
every 20 years. Table 21-2 shows the fixed points of the
1990 version of the International Temperature Scale.

21-4 THERMAL EXPANSION

You can often loosen a tight metal jar lid by holding it un-
der a stream of hot water. As its temperature rises, the metal
lid expands slightly relative to the glass of the jar. Thermal
expansion is not always desirable, as Fig. 21-6 suggests.
Roadways of bridges usually include expansion slots to al-
low for changes in length of the roadway as the temperature
changes.

Pipes at refineries often include an expansion loop, so
that the pipe will not buckle as the temperature rises. Mate-
rials used for dental fillings have expansion properties simi-
lar to those of tooth enamel. In aircraft manufacture, rivets
and other fasteners are often designed so that they are to be
cooled in dry ice before insertion and then allowed to ex-
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System Temperature (K)

Plasma in fusion test reactor 108

Center of Sun 107

Surface of Sun 6 � 103

Melting point of tungsten 3.6 � 103

Freezing point of water 2.7 � 102

Normal boiling point of N2 77
Normal boiling point of 4He 4.2
Mean temperature of universe 2.7
3He– 4He dilution refrigerator 5 � 10�3

Adiabatic demagnetization of paramagnetic salt 10�3

Bose–Einstein condensation experiments 2 � 10�8

Table 21-1 Temperatures of Selected Systems

Substance State Temperature (K)

Helium Boiling point 3–5c

Hydrogen Triple point 13.8033
Hydrogen Boiling pointb 17.025–17.045c

Hydrogen Boiling point 20.26–20.28c

Neon Triple point 24.5561
Oxygen Triple point 54.3584
Argon Triple point 83.8058
Mercury Triple point 234.3156
Water Triple point 273.16
Gallium Melting point 302.9146
Indium Freezing point 429.7485
Tin Freezing point 505.078
Zinc Freezing point 692.677
Aluminum Freezing point 933.473
Silver Freezing point 1234.93
Gold Freezing point 1337.33
Copper Freezing point 1357.77

a See “The International Temperature Scale of 1990 (ITS-90),” by H. 
Preston-Thomas, Metrologia, 27 (1990), p. 3.
b This boiling point is for a pressure of atm. All other boiling points,
melting points, or freezing points are for a pressure of 1 atm.
c The temperature of the boiling point varies somewhat with the pressure
of the gas above the liquid. The temperature scale gives the relationship
between T and p that can be used to calculate T for a given p.

1
3

Table 21-2 Primary Fixed Points on the 1990
International Temperature Scalea

Figure 21-6. Railroad tracks distorted because of thermal
expansion on a very hot day. Railroad tracks today come in 1500-
ft lengths and, to prevent buckling, are laid at or near the maxi-
mum annual temperature of the locality.



pand to a tight fit. Thermometers and thermostats may be
based on the differences in expansion between the compo-
nents of a bimetallic strip; see Fig. 21-7. In a thermometer
of a familiar type, the bimetallic strip is coiled into a helix
that winds and unwinds as the temperature changes; see
Fig. 21-8. The familiar liquid-in-glass thermometers are
based on the fact that liquids such as mercury or alcohol ex-
pand to a different (greater) extent than do their glass con-
tainers.

We can understand this expansion by considering a sim-
ple model of the structure of a crystalline solid. The atoms
are held together in a regular array by electrical forces,
which are like those that would be exerted by a set of
springs connecting the atoms. We can thus visualize the
solid body as a microscopic bedspring (Fig. 21-9). These
“springs” are quite stiff and not at all ideal (see Problem 1

of Chapter 17), and there are about 1023 of them per cubic
centimeter. At any temperature the atoms of the solid are
vibrating. The amplitude of vibration is about 10�9 cm,
about one-tenth of an atomic diameter, and the frequency is
about 1013 Hz. When the temperature is increased, the
atoms vibrate at larger amplitude, and the average distance
between atoms increases. (See the discussion of the micro-
scopic basis of thermal expansion at the end of this sec-
tion.) This leads to an expansion of the whole solid body.

The change in any linear dimension of the solid, such as
its length, width, or thickness, is called a linear expansion.
If the length of this linear dimension is L, the change in
temperature �T causes a change in length �L. We find
from experiment that, if �T is small enough, this change in
length �L is proportional to the temperature change �T
and to the original length L. Hence we can write

(21-8)

where �, called the coefficient of linear expansion, has dif-
ferent values for different materials. Rewriting this formula,
we obtain

(21-9)

so that � has the meaning of a fractional change in length
per degree temperature change.

Strictly speaking, the value of � depends on the actual
temperature and the reference temperature chosen to deter-
mine L (see Problem 5). However, its variation is usually
negligible compared to the accuracy with which measure-
ments need to be made. It is often sufficient to choose an
average value that can be treated as a constant over a cer-
tain temperature range. In Table 21-3 we list the experimen-
tal values for the average coefficient of linear expansion of
several common solids. For all the substances listed, the

� �
�L /L

�T
,

�L � �L �T,
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Figure 21-7. A bimetallic strip, consisting of a strip of brass
and a strip of steel welded together, at temperature T0 . At temper-
atures higher than T0 , the strip bends as shown; at lower tempera-
tures it bends the other way. Many thermostats operate on this
principle, using the motion of the end of the strip to make or break
an electrical contact.

Figure 21-8. A thermometer based on a bimetallic strip. The
strip is formed into a helix, which coils or uncoils as the tempera-
ture is changed.

Figure 21-9. A solid behaves in many ways as if it were a
collection of atoms joined by elastic forces (here represented by
springs).
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change in size consists of an expansion as the temperature
rises, because � is positive. The order of magnitude of the
expansion is about 1 millimeter per meter length per 100
Celsius degrees. (Note the use of C°, not °C, to express
temperature changes here. Note also, that since 1 K is the
same as 1 C°, we can use either Kelvin or Celsius tempera-
ture differences in Eq. 21-9.)

Sample Problem 21-2. A steel metric scale is to be
ruled so that the millimeter intervals are accurate to within about 
5 � 10�5 mm at a certain temperature. What is the maximum
temperature variation allowable during the ruling?

Solution From Eq. 21-8, we have

where we have used the value of � for steel from Table 21-3. The
temperature during the ruling must be kept constant to within
about 5 C°, and the scale must be used within that same interval
of temperature at which it was ruled.

Note that if the alloy invar were used instead of steel, we
could achieve the same precision over a temperature interval of
about 75 C°; or, equivalently, if we could maintain the same tem-
perature variation (5 C°), we could achieve an accuracy due to
temperature changes of about 3 � 10�6 mm.

For many solids, called isotropic, the percent change in
length for a given temperature change is the same for all
lines in the solid. The expansion is quite analogous to a
photographic enlargement, except that a solid is three-
dimensional. Thus, if you have a flat plate with a hole
punched in it, �L /L (� � �T ) for a given �T is the same
for the length, thickness, face diagonal, body diagonal, and
hole diameter. Every line, whether straight or curved,
lengthens in the ratio � per degree temperature rise. If you
scratch your name on the plate, the line representing your
name has the same fractional change in length as any other
line. The analogy to a photographic enlargement is shown
in Fig. 21-10.

�T �
�L

�L
�

5 � 10�5 mm

(11 � 10�6/C°)(1.0 mm)
� 4.5 C°,

With these ideas in mind, you should be able to show
(see Exercises 22 and 23) that to a high degree of accuracy
the fractional change in area A per degree temperature
change for an isotropic solid is 2�, that is,

(21-10)

and the fractional change in volume V per degree tempera-
ture change for an isotropic solid is 3�, that is,

(21-11)

Equations 21-8 to 21-11 cannot be applied to the expan-
sion of fluids, because fluids have no definite shape and so
the coefficient of linear expansion is not a meaningful
quantity for a fluid. Instead, we define the coefficient of vol-
ume expansion � of a fluid by analogy with Eq. 21-8 or 
21-11:

(21-12)

For liquids, the coefficient of volume expansion is rela-
tively independent of the temperature. Liquids usually ex-
pand with increasing temperature (that is, � 	 0). Typical
values of � for liquids at room temperature are in the
range of 200 � 10�6/C° to 1000 � 10�6/C°, more than an
order of magnitude larger than the coefficient of volume
expansion of most solids (3� from Eq. 21-11). For gases,
� is strongly dependent on temperature; in fact, for an
ideal gas (discussed in the next section) you can show that
� � 1/T with T expressed in kelvins (see Exercise 36).
For a gas at room temperature and constant pressure, � is
about 3300 � 10�6/C°, as much as an order of magnitude
larger than the coefficient of volume expansion for typical
liquids.

The most common liquid, water, does not behave like
most other liquids. In Fig. 21-11 we show the volume ex-
pansion curve for water. Note that above 4°C water expands
as the temperature rises, although not linearly. (That is, � is
not constant over these large temperature intervals.) As the
temperature is lowered from 4°C to 0°C, however, water
expands instead of contracting, thus decreasing its density,
which is the reason that lakes freeze first at their upper sur-
face. Such an expansion with decreasing temperature is not
observed in any other common liquid.

�V � �V �T.

�V � 3�V �T.

� A � 2�A �T,
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Substance �(10�6 per C°)

Ice 51
Lead 29
Aluminum 23
Brass 19
Copper 17
Steel 11
Glass (ordinary) 9
Glass (Pyrex) 3.2
Invar alloy 0.7
Quartz (fused) 0.5

a Typical average values in the temperature range 0°C to 100°C are shown,
except for ice in which the range is � 10°C to 0°C.

Table 21-3 Some Average Coefficients of 
Linear Expansiona

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

(b)

(a)

Figure 21-10. A steel rule at two different temperatures. The
expansion increases in proportion in all dimensions: the scale, the
numbers, the hole, and the thickness are all increased by the same
factor. (The expansion shown is greatly exaggerated; to obtain
such an expansion would require a temperature increase of about
20,000 C°!)



Microscopic Basis of Thermal Expansion
(Optional)
On the microscopic level, thermal expansion of a solid sug-
gests an increase in the average separation between the
atoms in the solid. The potential energy curve for two adja-
cent atoms in a crystalline solid as a function of their inter-
nuclear separation is an asymmetric curve like that of Fig.
21-12. As the atoms move close together, their separation
decreasing from the equilibrium value r0 , strong repulsive
forces come into play, and the potential energy rises steeply
(F � � dU/dr); as the atoms move farther apart, their sepa-
ration increasing from the equilibrium value, somewhat
weaker attractive forces take over and the potential energy
rises more slowly. At a given vibrational energy the separa-
tion of the atoms changes periodically from a minimum to a
maximum value, the average separation being greater than
the equilibrium separation because of the asymmetric na-
ture of the potential energy curve. At still higher vibrational
energy the average separation is even greater. The effect is
enhanced because, as suggested by Fig. 21-12, the kinetic
energy is smaller at larger separations; thus the particles
move slower and spend more time at large separations,
which then contribute a larger share to the time average.

Because the vibrational energy increases as the temperature
rises, the average separation between atoms increases with
temperature, and the entire solid expands.

Note that if the potential energy curve were symmetric
about the equilibrium separation, then the average separa-
tion would equal the equilibrium separation, no matter how
large the amplitude of the vibration. Hence thermal expan-
sion is a direct consequence of the deviation from symme-
try of the characteristic potential energy curve of solids.

It should be emphasized that the microscopic models
presented here are oversimplifications of a complex phe-
nomenon that can be treated with greater insight using sta-
tistical mechanics and quantum theory. �

21-5 THE IDEAL GAS

Figure 21-5 suggests that real gases such as oxygen, nitro-
gen, and helium differ from each other as far as the rela-
tions among their thermodynamic properties, such as pres-
sure or temperature, are concerned. However, this same
figure suggests that, as we examine such real gases at lower
and lower densities, their properties seem to converge. That
suggests the concept of an ideal gas— that is, a gas whose
properties represent the limiting behavior of real gases at
sufficiently low densities.

The ideal gas is an abstraction, but it is a useful abstrac-
tion because (1) real gases—at low enough densities—ap-
proximate the behavior of the ideal gas, and (2) the thermo-
dynamic properties of an ideal gas are related to each other
in a particularly simple way. Physics is full of useful ab-
stractions and we have met many of them, such as perfectly
elastic collisions, massless rods, and unstretchable strings.

Figure 21-13 shows schematically an arrangement with
which it is possible to study the properties of real gases
and, by extrapolating to sufficiently low densities, to de-
duce the properties of the ideal gas. An insulated cylinder
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Figure 21-11. (a) The specific volume (the volume occupied
by a particular mass) of water as a function of its temperature. The
specific volume is the inverse of the density (the mass per unit
volume). (b) An enlargement of the region near 4°C, showing a
minimum specific volume (or a maximum density).
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Figure 21-12. Potential energy curve for two adjacent atoms
in a solid as a function of their internuclear separation distance.
The equilibrium separation is r0 . Because the curve is asymmet-
ric, the average separation (r1 , r2) increases as the temperature
(T1 , T2) and the vibrational energy (E1 , E2) increase.



that rests on a thermal reservoir (a glorified hot plate) con-
tains a specified quantity of gas, which we can control by
adding or removing gas using the gas supply. The tempera-
ture of this reservoir—and thus of the gas—can be regu-
lated by turning a control knob. A piston, whose position
determines the volume of the gas, can move without fric-
tion up and down in the cylinder. Weights, shown here as
lead shot, can be added to or removed from the top of the
piston, thus determining the pressure exerted by the gas.
The variables pressure, volume, temperature, and quantity
of gas (number of moles n or number of molecules N ) are
thus under our control.

From laboratory experiments with real gases, it was
found that their pressure p, volume V, and temperature T
are related, to a good approximation, by

(21-13)

Here N is the number of molecules contained in the volume
V, and k is a constant called the Boltzmann constant. Its
measured value is, to three significant figures,

(21-14)

The temperature T in Eq. 21-13 must always be expressed
in kelvins.

It is often more useful to write Eq. 21-13 in a slightly
different form, expressing the quantity of gas not in terms
of the number of molecules N but in terms of the number of
moles n. (The mole is one of the seven SI base units; see
Section 1-5). Either measures the quantity of gas, and they
are related by

(21-15)N � nNA ,

k � 1.38 � 10�23 J/K.

pV � NkT

where NA is the Avogadro constant— that is, the number of
molecules contained in a mole of any substance. Its value is

(21-16)

In terms of the number of moles, we can write Eq. 21-13 as

(21-17)

where R � kNA is a new constant, called the molar gas
constant. Its value is

(21-18)

Equations 21-13 and 21-17 are completely equivalent forms
of the ideal gas law. This law represents an idealization of
the properties of real gases, and it works best as a descrip-
tion of real gases when the pressure and density are low.
That is why the lines in Fig. 21-5 representing different
gases converged to a single temperature as the pressure
(and thus the quantity) of gas was decreased. The ideal gas
law also shows why it is critical that the volume of gas in
the thermometer of Fig. 21-4 be kept constant, if we want
to examine the dependence of pressure on temperature.

In Chapter 22 we explore the ideal gas law by examining
the microscopic structure of the gas in terms of the proper-
ties of its molecules. It is also possible to “piece together”
this law by studying a single relationship between two of the
variables in the equation while the others are held constant.
Here are three examples of these experiments:

1. The Italian investigator Amadeo Avogadro
(1776–1856), for whom the Avogadro constant is named,
discovered in 1811 that, under the same conditions of pres-
sure and temperature, equal volumes of different gases con-
tain the same number of molecules (V 
 N for constant p
and T ). At that time, the very existence of atoms and mole-
cules was much in dispute, and this discovery, known as
Avogadro’s law, was later to provide critical support for the
atomic theory.

2. The Anglo-Irish experimenter Robert Boyle
(1627–1691) discovered that, if the temperature of a fixed
amount of gas is held constant, then the pressure exerted by
the gas is inversely proportional to the volume that the gas
occupies (p 
 V �1 for constant T and N ). This observation
is known as Boyle’s law.

3. If the pressure of a fixed quantity of gas is held con-
stant, experiment shows that the volume of the gas is di-
rectly proportional to its temperature (V 
 T for constant p
and N ). These experiments were carried out by the French
experimenters Joseph Louis Gay-Lussac (1778–1850) and
J.-A.-C. Charles (1746–1823), and this relationship is thus
known either as Gay-Lussac’s law or Charles’ law.

Sample Problem 21-3. An insulated cylinder fitted
with a piston (Fig. 21-13) contains oxygen at a temperature of
20°C and a pressure of 15 atm in a volume of 22 liters. The piston
is lowered, decreasing the volume of the gas to 16 liters, and si-
multaneously the temperature is raised to 25°C. Assuming oxygen
to behave like an ideal gas under these conditions, what is the final
pressure of the gas?

R � 8.31 J/mol�K.

pV � nRT,

NA � 6.02 � 1023 molecules/mol.
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Figure 21-13. Gas is confined to a cylinder that is in contact
with a thermal reservoir at the (adjustable) temperature T. The pis-
ton exerts a total downward force Mg on the gas, which in equilib-
rium is balanced by the upward force due to the gas pressure. The
volume of the gas can be determined from a measurement of the
height h of the piston above the bottom of the cylinder, and the
temperature of the gas is measured with a suitable thermometer. A
gas supply permits additional gas to be added to the cylinder; we
assume that a mechanism is also provided for removing gas and
for changing the supply to admit different kinds of gas.



Solution From Eq. 21-13, since the quantity of gas remains un-
changed, we have

or

pf � pi � Tf

Ti
� � Vi

Vf
� .

piVi

Ti
�

pfVf

Tf
,

Because this is in the form of a ratio, we need not convert p and V
into SI units, but we must express T in absolute (Kelvin) tempera-
ture units. Thus

pf � (15 atm) � 273 � 25 K

273 � 20 K � � 22 L

16 L � � 21 atm.
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MULTIPLE CHOICE

21-1 Temperature and Thermal Equilibrium
1. Consider four objects, A, B, C, and D. It is found that A and B

are in thermal equilibrium. It is also found that C and D are in
thermal equilibrium. However, A and C are not in thermal
equilibrium. One can conclude that

(A) B and D are in thermal equilibrium.
(B) B and D could be in thermal equilibrium, but might not

be.
(C) B and D cannot be in thermal equilibrium.
(D) the zeroth law of thermodynamics does not apply here,

because there are more than three objects.

2. Objects A and B are initially in thermal equilibrium. Objects
A and C are originally not in thermal equilibrium, but the two
are placed in thermal contact and quickly reach thermal equi-
librium. After doing this

(A) B and C will also be in thermal equilibrium.
(B) B and C could be in thermal equilibrium, but might not

be.
(C) B and C cannot be in thermal equilibrium.

21-2 Temperature Scales
3. At what temperature do the Fahrenheit and Celsius scales co-

incide?
(A) � 40°F (B) 0°F (C) 32°F
(D) 40°F (E) 104°F

4. At what temperature do the Fahrenheit and Kelvin scales co-
incide?

(A) � 100°F (B) 273°F (C) 574°F (D) 844°F

21-3 Measuring Temperatures

21-4 Thermal Expansion
5. A large flat slab of metal at temperature T0 has a hole in it.

The metal is warmed to a new temperature T 	 T0 . Upon
warming, the area of the hole will

(A) increase. (B) decrease.
(C) remain the same size.
(D) possibly change size, depending on the shape of the

hole.

6. Why does a glass sometimes break if you quickly pour boil-
ing water into it?

(A) Hot water expands, pushing the glass out.
(B) The hot water cools when it touches the glass, shrink-

ing and pulling the glass in.
(C) The glass becomes hot and expands, causing the mole-

cules to break.
(D) The inside the glass expands faster than the outside of

the glass, causing the glass to break.

7. A mercury-filled glass thermometer is originally at equilib-
rium in a 20°C water bath. The thermometer is then immersed
in a 30°C water bath. The column of mercury in the ther-
mometer will

(A) rise to 30°C and then stop.
(B) first rise above 30°C, then return to 30°C and stop.
(C) first fall below 20°C, then rise to 30°C and stop.
(D) first fall below 20°C, then rise above 30°C, and finally

return to 30°C and stop.

8. A strip of copper metal is riveted to a strip of aluminum. The
two metals are then heated. What happens?

(A) The strip expands without bending.
(B) The strip expands and bends toward the copper.
(C) The strip expands and bends toward the aluminum.

9. The daily temperature variation of the Golden Gate bridge in
San Francisco can be in excess of 20 C°. The bridge is ap-
proximately 2 km long and is made of steel (with an asphalt
covering on the roadway).
(a) What is the approximate change in length of the bridge
with this temperature variation?

(A) 4.4 cm (B) 44 cm (C) 4.4 m (D) 44 m

(b) If the bridge builders neglected to include expansion
joints, then approximately how large of a “bump” would form
in the middle of the bridge when it expanded?

(A) 2.1 cm (B) 21 cm (C) 2.1 m (D) 21 m

21-5 The Ideal Gas
10. Which has the higher density (mass per unit volume)—dry

air or humid air? Assume that both have the same temperature
and pressure.

(A) Dry air (B) Humid air
(C) The densities are the same.

11. Which of the following has the largest particle density (mole-
cules per unit volume)?

(A) 0.8 L of nitrogen gas at 350 K and 100 kPa
(B) 1.0 L of hydrogen gas at 350 K and 150 kPa
(C) 1.5 L of oxygen gas at 300 K and 80 kPa
(D) 2.0 L of helium gas at 300 K and 120 kPa

12. Four different containers each hold 0.5 moles of one of the
following gases. Which is at the highest temperature?

(A) 8.0 L of helium gas at 120 kPa
(B) 6.0 L of neon gas at 160 kPa
(C) 4.0 L of argon gas at 250 kPa
(D) 3.0 L of krypton gas at 300 kPa



QUESTIONS

1. Is temperature a microscopic or macroscopic concept?

2. Can we define temperature as a derived quantity, in terms of
length, mass, and time? Think of a pendulum, for example.

3. Absolute zero is a minimum temperature. Is there a maximum
temperature?

4. Can one object be hotter than another if they are at the same
temperature? Explain.

5. Lobster traps are designed so that a lobster can easily get in, but
cannot easily get out. Can a diathermic wall be created that al-
lows heat to flow through in one direction only? Explain.

6. Are there physical quantities other than temperature that tend
to equalize if two different systems are joined?

7. A piece of ice and a warmer thermometer are suspended in an
insulated evacuated enclosure so that they are not in contact.
Why does the thermometer reading decrease for a time?

8. What qualities make a particular thermometric property suit-
able for use in a practical thermometer?

9. What difficulties would arise if you defined temperature in
terms of the density of water?

10. Let p3 be the pressure of the bulb of a constant-volume gas
thermometer when the bulb is at the triple-point temperature
of 273.16 K and let p be the pressure when the bulb is at
room temperature. Given are three constant-volume gas ther-
mometers: for A the gas is oxygen and p3 � 20 cm Hg; for B
the gas is also oxygen but p3 � 40 cm Hg; for C the gas is
hydrogen and p3 � 30 cm Hg. The measured values of p for
the three thermometers are pA , pB , and pC . (a) An approxi-
mate value of the room temperature T can be obtained with
each of the thermometers using

Mark each of the following statements true or false: (1) With
the method described, all three thermometers will give the
same value of T. (2) The two oxygen thermometers will agree
with each other but not with the hydrogen thermometer. (3)
Each of the three will give a different value of T. (b) In the
event that there is a disagreement among the three thermome-
ters, explain how you would change the method of using them
to cause all three to give the same value of T.

11. The editor-in-chief of a well-known business magazine, dis-
cussing possible warming effects associated with the increas-
ing concentration of carbon dioxide in the Earth’s atmosphere
(greenhouse effect), wrote: “The polar regions might be three
times warmer than now . . .” What do you suppose he
meant, and what did he say literally? (See “Warmth and Tem-
perature: A Comedy of Errors,” by Albert A. Bartlett, The
Physics Teacher, November 1984, p. 517.)

12. Although the absolute zero of temperature seems to be exper-
imentally unattainable, temperatures as low as 0.00000002 K
have been achieved in the laboratory. Why would physicists
strive, as indeed they do, to obtain still lower temperatures?
Isn’t this low enough for all practical purposes?

TC � (273.16 K)(pC /30 cm Hg).

TB � (273.16 K)(pB /40 cm Hg),

TA � (273.16 K)(pA /20 cm Hg),

13. You put two uncovered pails of water, one containing hot water
and one containing cold water, outside in below-freezing
weather. The pail with the hot water will usually begin to freeze
first. Why? What would happen if you covered the pails?

14. Can a temperature be assigned to a vacuum?

15. Does our “temperature sense” have a built-in sense of direction;
that is, does hotter necessarily mean higher temperature, or is
this just an arbitrary convention? Celsius, by the way, originally
chose the steam point as 0°C and the ice point as 100°C.

16. Many medicine labels inform the user to store below 86°F.
Why 86? (Hint: Change to Celsius.) (See The Science Al-
manac, 1985–1986, p. 430.)

17. How would you suggest measuring the temperature of (a) the
Sun, (b) the Earth’s upper atmosphere, (c) an insect, (d) the
Moon, (e) the ocean floor, and ( f ) liquid helium?

18. Considering the Celsius, Fahrenheit, and Kelvin scales, does
any one stand out as “nature’s scale”? Discuss.

19. Is one gas any better than another for purposes of a standard
constant-volume gas thermometer? What properties are desir-
able in a gas for such purposes?

20. State some objections to using water-in-glass as a thermome-
ter. Is mercury-in-glass an improvement? If so, explain why.

21. What are the dimensions of �, the coefficient of linear expan-
sion? Does the value of � depend on the unit of length used?
When Fahrenheit degrees are used instead of Celsius degrees
as the unit of temperature change, does the numerical value of
� change? If so, how? If not, prove it.

22. A metal ball can pass through a metal ring. When the ball is
heated, however, it gets stuck in the ring. What would happen
if the ring, rather than the ball, were heated?

23. A bimetallic strip, consisting of two different metal strips riv-
eted together, is used as a control element in the common
thermostat. Explain how it works.

24. Two strips, one of iron and one of zinc, are riveted together
side by side to form a straight bar that curves when heated.
Why is the iron on the inside of the curve?

25. Explain how the period of a pendulum clock can be kept con-
stant with temperature by attaching vertical tubes of mercury
to the bottom of the pendulum.

26. Why should a chimney be freestanding— that is, not part of
the structural support of the house?

27. Water expands when it freezes. Can we define a coefficient of
volume expansion for the freezing process?

28. Explain why the apparent expansion of a liquid in a glass bulb
does not give the true expansion of the liquid.

29. Does the change in volume of an object when its temperature
is raised depend on whether the object has cavities inside,
other things being equal?

30. Why is it much more difficult to make a precise determination
of the coefficient of expansion of a liquid than of a solid?

31. A common model of a solid assumes the atoms to be points
executing simple harmonic motion about mean lattice posi-
tions. What would be the coefficient of linear expansion of
such a lattice?

32. Explain the fact that the temperature of the ocean at great
depths is very constant the year round, at a temperature of
about 4°C.

33. Explain why lakes freeze first at the surface.

490 Chapter 21 / Temperature



34. What causes water pipes to burst in the winter?

35. What can you conclude about how the melting point of ice
depends on pressure from the fact that ice floats on water?

36. Two equal-size rooms communicate through an open doorway.
However, the average temperatures in the two rooms are main-
tained at different values. In which room is there more air?

37. It is found that the weight of an empty, flat, thin plastic bag is
not changed when the bag is filled with air. Why not?

38. Why does smoke rise, rather than fall, from a lighted candle?

39. Do the pressure and volume of air in a house change when the
furnace raises the temperature significantly? If not, is the
ideal gas law violated?
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EXERCISES

21-1 Temperature and Thermal Equilibrium

21-2 Temperature Scales

1. The boiling point and the melting point for water on the
Fahrenheit scale were chosen so the difference between the
two temperatures would be 180 F°, a number that is evenly
divisible by 2, 3, 4, 5, 6, and 9. Devise a new temperature
scale S so that absolute zero is 0°S and Tbp, water � Tmp, water �
180 S°. (a) What is the conversion formula from Celsius to S?
(b) What are Tbp, water and Tmp, water in S?

2. Absolute zero is � 273.15°C. Find absolute zero on the
Fahrenheit scale.

3. Repeat Exercise 1, except choose the new temperature scale
Q so that absolute zero is 0°Q and Tbp, water � Tmp, water �
100 Q°. (a) What is the conversion formula from Celsius to
Q? (b) What is Tbp, water and Tmp, water in Q? (c) This scale actu-
ally exists. What is the official name?

4. (a) The temperature of the surface of the Sun is about 6000
K. Express this on the Fahrenheit scale. (b) Express normal
human body temperature, 98.6°F on the Celsius scale. (c) In
the continental United States, the lowest officially recorded
temperature is � 70°F at Rogers Pass, Montana. Express this
on the Celsius scale. (d ) Express the normal boiling point of
oxygen, � 183°C, on the Fahrenheit scale. (e) At what Cel-
sius temperature would you find a room to be uncomfortably
warm?

5. If your doctor tells you that your temperature is 310 K,
should you worry? Explain your answer.

6. At what temperature is the Fahrenheit scale reading equal to
(a) twice that of the Celsius and (b) half that of the Celsius?

21-3 Measuring Temperatures
7. A resistance thermometer is a thermometer in which the elec-

trical resistance changes with temperature. We are free to de-
fine temperatures measured by such a thermometer in kelvins
(K) to be directly proportional to the resistance R, measured
in ohms (�). A certain resistance thermometer is found to
have a resistance R of 90.35 � when its bulb is placed in wa-
ter at the triple-point temperature (273.16 K). What tempera-
ture is indicated by the thermometer if the bulb is placed in an
environment such that its resistance is 96.28 �?

8. A thermocouple is formed from two different metals, joined
at two points in such a way that a small voltage is produced
when the two junctions are at different temperatures. In a par-
ticular iron–constantan thermocouple, with one junction held
at 0°C, the output voltage varies linearly from 0 to 28.0 mV
as the temperature of the other junction is raised from 0 to
510°C. Find the temperature of the variable junction when the
thermocouple output is 10.2 mV.

9. The amplification or gain of a transistor amplifier may de-
pend on the temperature. The gain for a certain amplifier at
room temperature (20.0°C) is 30.0, whereas at 55.0°C it is
35.2. What would the gain be at 28.0°C if the gain depends
linearly on temperature over this limited range?

10. If the gas temperature at the steam point is 373.15 K, what is
the limiting value of the ratio of the pressures of a gas at the
steam point and at the triple point of water when the gas is
kept at constant volume?

11. Two constant-volume gas thermometers are assembled, one
using nitrogen as the working gas and the other using helium.
Both contain enough gas so that ptr � 100 cm Hg. What is the
difference between the pressures in the two thermometers if
both are inserted into a water bath at the boiling point? Which
pressure is the higher of the two? See Fig. 21-5.

21-4 Thermal Expansion
12. An aluminum flagpole is 33 m high. By how much does its

length increase as the temperature increases by 15 C°?

13. The Pyrex glass mirror in the telescope at the Mount Palomar
Observatory (the Hale telescope) has a diameter of 200 in.
The most extreme temperatures ever recorded on Palomar
Mountain are � 10°C and 50°C. Determine the maximum
change in the diameter of the mirror.

14. A circular hole in an aluminum plate is 2.725 cm in diameter
at 12°C. What is its diameter when the temperature of the
plate is raised to 140°C?

15. Steel railroad tracks are laid when the temperature is � 5.0°C.
A standard section of rail is then 12.0 m long. What gap
should be left between rail sections so that there is no com-
pression when the temperature gets as high as 42°C?

16. A glass window is 200 cm by 300 cm at 10°C. By how much
has its area increased when its temperature is 40°C? Assume
that the glass is free to expand.

17. A brass cube has an edge length of 33.2 cm at 20.0°C. Find
(a) the increase in surface area and (b) the increase in volume
when it is heated to 75.0°C.

18. What is the volume of a lead ball at � 12°C if its volume at
160°C is 530 cm3?

19. (a) From the graph of Fig. 21-11, estimate the coefficient of
volume expansion for water at room temperature (20°C). (b)
What is the coefficient of volume expansion near 4°C?

20. Soon after the Earth formed, heat released by the decay of ra-
dioactive elements raised the average internal temperature
from 300 to 3000 K, at about which value it remains today.
Assuming an average coefficient of volume expansion of 
3.2 � 10�5 K�1, by how much has the radius of the Earth in-
creased since its formation?



21. A rod is measured to be 20.05 cm long using a steel ruler at a
room temperature of 20°C. Both the rod and the ruler are
placed in an oven at 270°C, where the rod now measures
20.11 cm using the same rule. Calculate the coefficient of
thermal expansion for the material of which the rod is made.

22. The area A of a rectangular plate is ab. Its coefficient of linear
expansion is �. After a temperature rise �T, side a is longer
by �a and side b is longer by �b. Show that if we neglect 
the small quantity �a �b/ab (see Fig. 21-14), then � A �
2�A�T, verifying Eq. 21-10.

29. At 100°C a glass flask is completely filled by 891 g of mer-
cury. What mass of mercury is needed to fill the flask at
� 35°C? (The coefficient of linear expansion of glass is 
9.0 � 10�6/C°; the coefficient of volume expansion of mer-
cury is 1.8 � 10�4/C°.)

30. (a) Prove that the change in rotational inertia I with tempera-
ture of a solid object is given by � I � 2�I �T. (b) A thin uni-
form brass rod, spinning freely at 230 rev/s about an axis per-
pendicular to it at its center, is heated without mechanical
contact until its temperature increases by 170 C°. Calculate
the change in angular velocity.

31. A cylinder placed in frictionless bearings is set rotating about
its axis. The cylinder is then heated, without mechanical con-
tact, until its radius is increased by 0.18%. What is the per-
cent change in the cylinder’s (a) angular momentum, (b) an-
gular velocity, and (c) rotational energy?

32. (a) Prove that the change in period P of a physical pendulum
with temperature is given by (b) A clock pen-
dulum made of invar has a period of 0.500 s and is accurate at
20°C. If the clock is used in a climate where the temperature
averages 30°C, what approximate correction to the time given
by the clock is necessary at the end of 30 days?

33. A pendulum clock with a pendulum made of brass is designed
to keep accurate time at 20°C. How much will the error be, in
seconds per hour, if the clock operates at 0°C?

34. An aluminum cup of 110 cm3 capacity is filled with glycerin
at 22°C. How much glycerin, if any, will spill out of the cup if
the temperature of the cup and glycerin is raised to 28°C?
(The coefficient of volume expansion of glycerin is 5.1 �
10�4/C°.)

35. A 1.28-m-long vertical glass tube is half-filled with a liquid at
20.0°C. How much will the height of the liquid column
change when the tube is heated to 33.0°C? Assume that 
�glass � 1.1 � 10�5/C° and �liquid � 4.2 � 10�5/C°.

21-5 The Ideal Gas
36. (a) Using the ideal gas law and the definition of the coeffi-

cient of volume expansion (Eq. 21-12), show that � � 1/T for
an ideal gas at constant pressure. (b) In what units must T be
expressed? If T is expressed in those units, can you express �
in units of (C°)�1? (c) Estimate the value of � for an ideal gas
at room temperature.

37. (a) Calculate the volume occupied by 1.00 mol of an ideal
gas at standard conditions— that is, pressure of 1.00 atm 
(� 1.01 � 105 Pa) and temperature of 0°C (� 273 K). (b)
Show that the number of molecules per cubic centimeter (the
Loschmidt number) at standard conditions is 2.68 � 1019.

38. The best vacuum that can be attained in the laboratory corre-
sponds to a pressure of about 10�18 atm, or 1.01 � 10�13 Pa.
How many molecules are there per cubic centimeter in such a
vacuum at 22°C?

39. A quantity of ideal gas at 12.0°C and a pressure of 108 kPa
occupies a volume of 2.47 m3. (a) How many moles of the
gas are present? (b) If the pressure is now raised to 316 kPa
and the temperature is raised to 31.0°C, how much volume
will the gas now occupy? Assume there are no leaks.

40. Oxygen gas having a volume of 1130 cm3 at 42.0°C and a
pressure of 101 kPa expands until its volume is 1530 cm3 and
its pressure is 106 kPa. Find (a) the number of moles of oxy-
gen in the system and (b) its final temperature.

�P � 1
2�P�T.
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Figure 21-14. Exercise 22.

Figure 21-15. Exercise 28.

23. Prove that, if we neglect extremely small quantities, the
change in volume of a solid upon expansion through a tem-
perature rise �T is given by �V � 3�V�T, where � is the co-
efficient  of linear expansion. See Eq. 21-11.

24. When the temperature of a copper penny (which is not pure
copper) is raised by 100 C°, its diameter increases by 0.18%.
Find the percent increase in (a) the area of a face, (b) the
thickness, (c) the volume, and (d) the mass of the penny. (e)
Calculate its coefficient of linear expansion.

25. Density is mass divided by volume. If the volume V is tem-
perature dependent, so is the density . Show that the change
in density � with change in temperature �T is given by

where � is the coefficient of volume expansion. Explain the
minus sign.

26. When the temperature of a metal cylinder is raised from 60 to
100°C, its length increases by 0.092%. (a) Find the percent
change in density. (b) Identify the metal.

27. A steel rod is 3.000 cm in diameter at 25°C. A brass ring has
an interior diameter of 2.992 cm at 25°C. At what common
temperature will the ring just slide onto the rod?

28. A composite bar of length L � L1 � L2 is made from a bar of
material 1 and length L1 attached to a bar of material 2 and
length L2 as shown in Fig. 21-15. (a) Show that the effective
coefficient of linear expansion � for this bar is given by � �
(�1L1 � �2L2)/L. (b) Using steel and brass, design such a
composite bar whose length is 52.4 cm and whose effective
coefficient of linear expansion is 13 � 10�6/C°.

� � �� �T,

L

L1 L2



41. An automobile tire has a volume of 988 in.3 and contains air
at a gauge pressure of 24.2 lb/in.2 where the temperature is
� 2.60°C. Find the gauge pressure of the air in the tire when
its temperature rises to 25.6°C and its volume increases to
1020 in.3. (Hint: It is not necessary to convert from British to
SI units. Why? Use patm � 14.7 lb/in.2.)

42. Estimate the mass of the Earth’s atmosphere. Express your es-
timate as a fraction of the mass of the Earth. Recall that at-
mospheric pressure equals 101 kPa.

43. An air bubble of 19.4 cm3 volume is at the bottom of a lake
41.5 m deep where the temperature is 3.80°C. The bubble
rises to the surface, which is at a temperature of 22.6°C. Take
the temperature of the bubble to be the same as that of the
surrounding water and find its volume just before it reaches
the surface.

44. An open–closed pipe of length L � 25.0 m contains air at at-
mospheric pressure. It is thrust vertically into a freshwater
lake until the water rises halfway up in the pipe, as shown in

Fig. 21-16. What is the depth h of the lower edge of the pipe?
Assume that the temperature is the same everywhere and does
not change.
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Figure 21-16. Exercise 44.

Figure 21-17. Problem 4.

Figure 21-18. Problem 6.

Air

L/2

L/2

h

PROBLEMS

1. It is an everyday observation that hot and cold objects cool
down or warm up to the temperature of their surroundings. If
the temperature difference �T between an object and its sur-
roundings (�T � Tobj � Tsur) is not too great, the rate of cool-
ing or warming of the object is proportional, approximately,
to this temperature difference; that is,

where A is a constant. The minus sign appears because �T de-
creases with time if �T is positive and increases if �T is nega-
tive. This is known as Newton’s law of cooling. (a) On what
factors does A depend? What are its dimensions? (b) If at some
instant t � 0 the temperature difference is �T0 , show that it is

at a time t later.

2. Early in the morning the heater of a house breaks down. The
outside temperature is � 7.0°C. As a result, the inside temper-
ature drops from 22 to 18°C in 45 min. How much longer will
it take for the inside temperature to fall by another 4.0 C°?
Assume that the outside temperature does not change and that
Newton’s law of cooling applies; see Problem 1.

3. Show that when the temperature of a liquid in a barometer
changes by �T, and the pressure is constant, the height h
changes by �h � �h�T, where � is the coefficient of volume
expansion of the liquid. Neglect the expansion of the glass tube.

4. A particular gas thermometer is constructed of two gas-
containing bulbs, each of which is put into a water bath, as
shown in Fig. 21-17. The pressure difference between the two
bulbs is measured by a mercury manometer as shown in the
figure. Appropriate reservoirs, not shown in the diagram,
maintain constant gas volume in the two bulbs. There is no
difference in pressure when both baths are at the triple point
of water. The pressure difference is 120 mm Hg when one
bath is at the triple point and the other is at the boiling point
of water. Finally, the pressure difference is 90.0 mm Hg when

�T � �T0 e �At

d�T

dt
� �A(�T ),

one bath is at the triple point and the other is at an unknown
temperature to be measured. Find the unknown temperature.

5. Show that if � is dependent on the temperature T, then

where L0 is the length at the reference temperature T0 .

6. In a certain experiment, it was necessary to be able to move a
small radioactive source at selected, extremely slow speeds.
This was accomplished by fastening the source to one end of
an aluminum rod and heating the central section of the rod in
a controlled way. If the effective heated section of the rod in
Fig. 21-18 is 1.8 cm, at what constant rate must the tempera-
ture of the rod be made to change if the source is to move at a
constant speed of 96 nm/s?

L � L 0 �1 � �T

T0

�(T ) dT� ,

Clamp1.8 cm

Electric
heater

Radioactive
source



7. (a) Show that if the lengths of two rods of different solids are
inversely proportional to their respective coefficients of linear
expansion at the same initial temperature, the difference in
length between them will be constant at all temperatures. (b)
What should be the lengths of a steel and a brass rod at 0°C
so that at all temperatures their difference in length is 0.30 m?

8. As a result of a temperature rise of 32 C°, a bar with a crack
at its center buckles upward, as shown in Fig. 21-19. If the
fixed distance L0 � 3.77 m and the coefficient linear expan-
sion is 25 � 10�6/C°, find x, the distance to which the center
rises.

temperature? (The cross-sectional area of the tube is equal to
that of the iron rod. Neglect the mass of the glass. Iron has a
density of 7.87 � 103 kg/m3 and a coefficient of linear expan-
sion equal to 12 � 10�6/C°. The coefficient of volume expan-
sion of mercury is 18 � 10�5/C°.)

13. An aluminum cube 20 cm on an edge floats on mercury. How
much farther will the block sink when the temperature rises
from 270 to 320 K? (The coefficient of volume expansion of
mercury is 1.8 � 10�4/C°.)

14. Dumet wire was developed to allow for the expansion of glass
in lightbulbs. The wire consists of a core of nickel– steel (in-
var) surrounded by a sheath of copper. The diameters of the
core and of the sheath are chosen so that the wire duplicates
the expansion characteristics of glass. (a) Show that the ratio
of the nickel– steel radius to that of the copper sheath should
be

(b) What is a typical value for this ratio?

15. The distance between the towers of the main span of the
Golden Gate Bridge near San Francisco is 4200 ft (Fig. 21-
21). The sag of the cable halfway between the towers at 50°F
is 470 ft. Take � � 6.5 � 10�6/F° for the cable and compute
(a) the change in length of the cable and (b) the change in sag
for a temperature change from 10 to 90°F. Assume no bend-
ing or separation of the towers and a parabolic shape for the
cable.

rnickel-steel

rcopper
� √ �copper � �glass

�copper � �nickel-steel
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Figure 21-19. Problem 8.

Figure 21-20. Problem 9.

Figure 21-21. Problem 15.

L0

L0

x

9. Figure 21-20 shows the variation of the coefficient of volume
expansion of water between 4°C and 20°C. The density of
water at 4°C is 1000 kg/m3. Calculate the density of water at
20°C.

0.0002

0.0001

0.0000
4 6 8 10 12 14 16 18 20

Temperature (°C)

C
oe

ffi
ci

en
t o

f v
ol

um
e

ex
pa

ns
io

n 
(/

C
°)

10. Consider a mercury-in-glass thermometer. Assume that the
cross section of the capillary is constant at A and that V is the
volume of the bulb of mercury at 0.00°C. Suppose that the
mercury just fills the bulb at 0.00°C. Show that the length L
of the mercury column in the capillary at a temperature T, in
°C, is

that is, proportional to the temperature, where � is the coeffi-
cient of volume expansion of mercury and � is the coefficient
of linear expansion of glass.

11. Three equal-length straight rods, of aluminum, invar, and
steel, all at 20°C, for an equilateral triangle with hinge pins at
the vertices. At what temperature will the angle opposite the
invar rod be 59.95°? See Appendix I for needed trigonometric
formulas.

12. A glass tube nearly filled with mercury is attached in tandem
to the bottom of an iron pendulum rod 100 cm long. How
high must the mercury be in the glass tube so that the center
of mass of this pendulum will not rise or fall with changes in

L �
V

A
 (� � 3�)T,

16. A weather balloon is loosely inflated with helium at a pres-
sure of 1.00 atm (� 76.0 cm Hg) and a temperature of
22.0°C. The gas volume is 3.47 m3. At an elevation of 
6.50 km, the atmospheric pressure is down to 36.0 cm Hg,
and the helium has expanded, being under no restraint from
the confining bag. At this elevation the gas temperature is
� 48.0°C. What is the gas volume now?

17. Two vessels of volumes 1.22 L and 3.18 L contain krypton
gas and are connected by a thin tube. Initially, the vessels are
at the same temperature, 16.0°C, and the same pressure,
1.44 atm. The larger vessel is then heated to 108°C while the
smaller one remains at 16.0°C. Calculate the final pressure.
(Hint: There are no leaks.)



18. Container A contains an ideal gas at a pressure of 5.0 �
105 Pa and at a temperature of 300 K. It is connected by a
thin tube to container B with four times the volume of A; see
Fig. 21-22. B contains the same ideal gas at a pressure of 
1.0 � 105 Pa and at a temperature of 400 K. The connecting
valve is opened, and equilibrium is achieved at a common
pressure while the temperature of each container is kept con-
stant at its initial value. What is the final pressure in the sys-
tem?

drops to zero? The surface tension for a soap bubble is � �
2.50 � 10�2 N/m. (See Computer Problem 1.)

21. A mercury-filled manometer with two unequal-length arms of
the same cross-sectional area is sealed off with the same pres-
sure p in the two arms, as in Fig. 21-23. With the temperature
constant, an additional 10.0 cm3 of mercury is admitted
through the stopcock at the bottom. The level on the left in-
creases 6.00 cm and that on the right increases 4.00 cm. Find
the pressure p.
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Figure 21-22. Problem 18.

Figure 21-23. Problem 21.

A

B

19. The variation in pressure in the Earth’s atmosphere, assumed
to be at a uniform temperature, is given by p � p0e�Mgy/RT,
where M is the molar mass of the air. (See Section 15-3.)
Show that nV � nV,0e�Mgy/RT, where nV is the number of mole-
cules per unit volume.

20. A soap bubble of radius r0 � 2.0 mm floats freely inside a
vacuum bell jar. The pressure inside the bell jar is originally 
p � 1 atm. The vacuum pump is turned on and the pressure
in the bell jar is slowly decreased to zero while the temper-
ature of the gas inside the bubble remains constant. What is
the radius of the soap bubble when the outside pressure 

p

Stopcock

50 cm

30 cm

22. The “surface tension” of a certain spherical balloon is propor-
tional to the radius of the balloon. Originally the balloon is
filled with 10.0 L of an ideal gas at 80°C and 103 kPa. The
gas cools to 20°C; find the new volume of the balloon. 
Assume that the pressure outside the balloon remains at 
101 kPa.

COMPUTER PROBLEMS

1. A soap bubble with surface tension � � 2.50 � 10�2 N/m
has a radius r0 � 2.0 mm when the pressure outside the bub-
ble is 1.0 atmosphere. (a) Numerically calculate the radius of
the soap bubble when the pressure outside the bubble drops to
0.5 atm. (b) Numerically calculate the radius of the soap bub-
ble if the pressure outside the bubble is raised to 2.0 atm.

2. A small balloon is filled with nitrogen gas (assumed ideal) at
the bottom of the Marianas Trench, 35,000 ft beneath the sur-
face of the ocean. The balloon originally has a radius of 1.0
mm, is massless, and is infinitely expandable without any sur-
face tension, but always keeps a spherical shape. Assume the

ideal gas inside the balloon is at 4°C throughout this problem.
The balloon begins to rise to the surface, as the balloon rises
it expands, and as it moves there is a retarding force f propor-
tional to speed v and balloon radius r given by

where � � 1.7 � 10�3 N � s/m is the viscosity of water. (a)
Calculate the initial buoyant force on the balloon. (b) What
will be the size of the balloon on the surface? (c) Numerically
solve this problem to find out how long it takes for the bal-
loon to rise to the surface.

f � 6��rv,
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22-1 THE ATOMIC NATURE OF
MATTER

Today no informed person doubts that all matter is made up
of atoms. It may come as a surprise to learn that universal
acceptance of the existence of atoms by the scientific com-
munity did not occur until the early 1900s. There were
many earlier speculations about the atomic nature of matter,
dating back to the ancient Greeks, but none were suffi-
ciently firmly supported by experiment to exclude other
points of view. Today the hypothesis that atoms exist is so
essential to our understanding of the nature of the world
around us that the Nobel laureate physicist Richard Feyn-
man could write: “If all scientific knowledge were to be de-
stroyed, I would hope that the knowledge that atoms exist
might be spared.”

The modern trail to belief in atoms can be said to have
started in 1828 when the Scottish botanist Robert Brown
observed through his microscope that tiny grains of pollen
suspended in water underwent ceaseless random motion.
We now call this phenomenon Brownian motion. Brown

also noted that this same “dancing” motion occurred when
particles of finely powdered coal, glass, rocks, and various
minerals were suspended in a fluid. The motion seemed to
be—and indeed proved to be—a fundamental property of
matter.

In 1905, Einstein (unaware of Brown’s report of his ob-
servations) predicted that the effect should occur and pre-
sented it as direct evidence that the fluid in which the parti-
cle is suspended is made up of atoms. A particle suspended
in a fluid is bombarded on all sides by the atoms of the
fluid, which are in constant motion of thermal agitation. Let
N be the average number of particle–atom collisions on
any one side of the particle during a short time interval �t.
On average, the same number of collisions will occur on
the other side of the particle. However, because the colli-
sions occur randomly, there will be fluctuations about this
average on each side. Thus in any particular interval �t
there will be slightly more collisions on one side of the par-
ticle than on the other. These random unbalances occur in
three dimensions so the bombarded particle, which typi-
cally is many orders of magnitude more massive than the
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In Section 21-5 we introduced the ideal gas law,

which is expressed in terms of pressure, volume, and temperature. When we deal with such large-scale,

measurable properties of gases, we are taking what we describe as a macroscopic approach to the subject.

The ideal gas law says nothing about the fact that gases—and indeed matter of all kinds—are made up of

particles, which may be atoms or molecules.

In this chapter we take a microscopic approach and seek to account for the macroscopic properties of a

gas in terms of the properties of its molecules. Our plan is to follow the motion of a representative molecule

and then average this behavior over all the molecules that make up the system. If the number of molecules

is very large—and it usually is—such averages give sharply defined quantities. The formal name for the

approach we are taking is the kinetic theory of gases, the word “kinetic” suggesting that we are dealing

with particles that are in motion.



atoms that bombard it, jitters about in the erratic manner
that characterizes Brownian motion.

A few years after Einstein’s analysis of Brownian mo-
tion, the French physical chemist Jean Baptiste Perrin
(1870–1942) made quantitative measurements of the ef-
fect. Figure 22-1 shows a sample of his data. It displays the
Brownian motion of a tiny particle of gum resin suspended
in water and viewed through a microscope. Perrin measured
the x, y coordinates of the moving particle every 30 s and
marked the particle’s position with a dot on a graph. (The
straight line segments in Fig. 22-1 were drawn simply to
connect the dots; the particle does not follow these lines but
moves in the same erratic fashion that characterizes the fig-
ure as a whole.)

The quantities that can be directly measured from the
so-called random walk pattern of Fig. 22-1 are �x and �y,
which are, respectively, the changes in the x and the y coor-
dinates of the particle between successive observations. Be-
cause �x and �y can be either positive or negative, their av-
erage value over many measurements is zero. The
significant parameters are the average values of the squares
of these quantities, [(�x)2]av and [(�y)2]av , which are inher-
ently positive.

Einstein derived the following expression for [(�x)2]av if
the bombarded particle is a sphere of radius a suspended in
a gas:

(22-1)

Here � (Greek “eta”) is a measure of the viscosity of the
gas (see Section 16-6). This quantity enters because, when
the suspended particle is given a “kick” because of an un-
balance in the atomic bombardment, the particle is slowed

[(�x)2]av �
RT

3��aNA
�t.

down by friction-like viscous forces. R in Eq. 22-1 is the
molar gas constant, T is the Kelvin temperature, and NA is
the Avogadro constant.

If NA were much larger than it actually is, the extent of
the Brownian motion would be reduced because the colli-
sion rates would be more closely equal on opposite sides of
the suspended particle. On the other hand, if NA were much
smaller than it actually is, the Brownian magnitude would
be increased. Thus, with [(�x)2]av measured, Eq. 22-1 can
be used to deduce NA. After collecting much data, of which
Fig. 22-1 is a small sample, Perrin found NA � 6 � 1023

molecules/mol, which agreed with results obtained at that
time by other methods. For this work, which was so com-
pelling a confirmation of the existence of atoms, Perrin 
received the 1926 Nobel Prize in physics. In his 1913 
book, Atoms, Perrin wrote enthusiastically about his
Brownian motion observations: “The atomic theory has tri-
umphed. Until recently still numerous, its adversaries, at
last overcome, now renounce one after another their mis-
givings . . . ”

Properties of the Ideal Gas
In Section 21-5 we described the macroscopic properties of
the ideal gas and showed that they were related by the ideal
gas law (pV � nRT ). Now that we have shown the evi-
dence that matter is really made up of atoms, let us look in
a little more detail at the atomic or microscopic properties
of the ideal gas. In most of the remaining sections of this
chapter we will rely on the ideal gas as our thermodynamic
system of choice.

1. The ideal gas consists of particles, which are in ran-
dom motion and obey Newton’s laws of motion. These par-
ticles may be single atoms or groups of atoms. In either
case, we will refer to the particles as “molecules.” The mol-
ecules move in all directions and with a wide range of
speeds.

2. The total number of molecules is “large.” When a
molecule rebounds from the wall of its container, it delivers
momentum to it. We assume that the number of molecules
is so large that the rate at which momentum is delivered to
any area A of the container wall is essentially constant.

3. The volume occupied by the molecules is a negligibly
small fraction of the volume occupied by the gas. We know
that when a gas condenses to liquid form, the volume of the
liquid is much smaller than that of the gas. Thus molecules
are “small” and our assumption is plausible.

4. No forces act on a molecule except during a colli-
sion, either with the container walls or with another mole-
cule. If we follow a particular molecule, it moves in a
zigzag path consisting of straight-line segments with con-
stant velocity between impulsive encounters.

5. All collisions are (i) elastic and (ii) of negligible du-
ration. Part (i) tells us that the total kinetic energy of the
molecules is a constant. Part (ii) tells us that the total poten-
tial energy of the molecules (which can only come into play
during a collision) is negligible.
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Figure 22-1. The Brownian motion of a tiny particle of gum
resin of radius about 3�m. The dots, which are connected by
straight lines, mark the positions of the particle at 30-s intervals.
The path of the particles is an example of a fractal, a curve for
which any small section resembles the curve as a whole. For ex-
ample, if we take any short 30-s segment and view it in smaller in-
tervals, perhaps 0.1 s, the plot of the motion in that single 30-s
segment would be similar to the entire figure.



In the ideal gas model, we take all molecules of a gas of
a particular type to be identical and thus to have identical
masses. The mass of a molecule is determined by adding
the masses of the atoms that make up the molecule. Atomic
masses (in units of u), which are often given on a periodic
chart of the elements, can be found in Appendix D. For ex-
ample, the mass of a molecule of sulfur dioxide (SO2) is
given in terms of the atomic masses of sulfur and oxygen as

m � m(S) � 2m(O) � 32.1 u � 2(16.0 u) � 64.1 u.

Instead of the number of molecules N, it is often more
convenient to describe the amount of a gas in terms of the
number of moles n; the relationship between these two
equivalent measures of the quantity of gas was given in Eq.
21-15, N � nNA, where NA is the Avogadro constant with a
value of NA � 6.02 � 1023 molecules/mol.

The mass of a mole of any substance, called the molar
mass M, is simply the mass of one molecule times the num-
ber of molecules per mole, or

M � mNA. (22-2)

The molar mass, measured in grams, is numerically equal
to the molecular mass, measured in u. Thus the molar mass
of SO2 is M � 64.1 g/mol � 0.0641 kg/mol.

In the rest of this chapter we show how the analysis of a
gas as a collection of molecules that behave according to
Newton’s laws gives us a connection between its macro-
scopic thermodynamic properties and such microscopic
properties as the average molecular speed or the average
distance a molecule travels between collisions.

22-2 A MOLECULAR VIEW OF
PRESSURE

In this section we associate the pressure exerted by a gas on
the walls of its container with the constant bombardment of
those walls by the molecules of the gas, a point of view per-
haps first advanced by the Swiss scientist Daniel Bernoulli
(1700–1782) in 1738. We will take the ideal gas as our sys-
tem and will derive an expression for the pressure it exerts
in terms of the properties of the molecules that make it up.

Consider N molecules of an ideal gas confined within a
cubical box of edge length L, as in Fig. 22-2. Call the faces
at right angles to the x axis A1 and A2 , each of area L2. Let
us focus our attention on a single molecule of mass m,
whose velocity we can resolve into components vx , vy ,
and vz . When this molecule strikes face A1, it rebounds with
its x component of velocity reversed, because all collisions
are assumed to be elastic; that is, vx : 	 vx . There is no ef-
fect on vy or vz , so that the change in the molecule’s mo-
mentum has only an x component, given by

(22-3)

Because the total momentum is conserved in the collision,
the momentum imparted to A1 is � 2mvx .

	mvx 	 (mvx) � 	2mvx .
 final momentum 	 initial momentum �

vB

Suppose that this molecule reaches A2 without striking
any other molecule on the way. The time required to cross
the cube is L /vx . (If the molecule strikes one of the other
faces of the box on the way to A2 , the x component of its
velocity does not change, nor does the transit time.) At A2 it
again has its x component of velocity reversed and returns
to A1. Assuming there are no collisions with other mole-
cules, the round trip takes a time 2L /vx , which is the time
between collisions with A1. The average impulsive force ex-
erted by this molecule on A1 is the transferred momentum
divided by the time interval between transfers, or

(22-4)

To obtain the total force on A1 — that is, the rate at which
momentum is imparted to A1 by all the gas molecules—we
must sum the quantity mv2

x /L for all the molecules. Then, to
find the pressure, we divide this force by the area of A1 —
namely, L 2. The pressure is therefore

(22-5)

where v1x is the x component of the velocity of molecule 1,
v2x is that of molecule 2, and so on. If N is the total number
of molecules in the container, then Nm is the total mass and
Nm/L3 is the density 
. Thus m/L3 � 
/N, and

. (22-6)

The quantity in parentheses in Eq. 22-6 is the average value
of v2

x for all the molecules in the container, which we repre-
sent by (v2

x)av . Then
p � 
(v2

x)av . (22-7)

For any molecule, v2 � v2
x � v2

y � v2
z . Because we have

many molecules and because they are moving entirely at
random, the average values of v2

x , v2
y , and v2

z are equal, and
the value of each is exactly one-third the average value of

p � 
 � v2
1x � v2

2x � ���

N �

�
m

L3  (v2
1x � v2

2x � ���),

p �
1

L2

mv2
1x � mv2

2x � ���

L

Fx �
2mvx

2L /vx

�
mv2

x

L
.
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Figure 22-2. A cubical box of edge L containing an ideal
gas. A molecule of the gas is shown moving with velocity to-
ward side A1.
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v2. There is no preference among the molecules for motion
along any one of the three axes. Hence , so
that Eq. 22-7 becomes

. (22-8)

Although we derived this result by neglecting collisions
between molecules, the result is true even when we con-
sider collisions. Because of the exchange of velocities in an
elastic collision between identical particles, there will al-
ways be a molecule that collides with A2 with momentum
mvx corresponding to the molecule that left A1 with this
same momentum. Also, the time spent during collisions is
negligible compared to the time spent between collisions.
Hence our neglect of collisions is merely a convenient de-
vice for calculation. Similarly, we could have chosen a con-
tainer of any shape: the cube merely simplifies the calcula-
tion. Although we have calculated the pressure exerted only
on the side A1, it follows from Pascal’s law that the pressure
is the same on all sides and everywhere in the interior.
(This is true only if the density of the gas is uniform. In a
large sample of gas, gravitational effects might be signifi-
cant, and we should take into account the varying density.
See Section 15-3 and Problem 19 of Chapter 21.) 

The square root of (v2)av is called the root-mean-square
speed of the molecules and is a useful measure of average
molecular speed. Using Eq. 22-8, we can calculate the root-
mean-square speed from measured values of the pressure
and density of the gas. Thus

(22-9)

In Eq. 22-8 we relate a macroscopic quantity (the pres-
sure p) to an average value of a microscopic quantity, that
is, to (v2)av or v2

rms.

Sample Problem 22-1. Calculate the root-mean-square
speed of hydrogen molecules at 0.00°C and 1.00 atm pressure, as-
suming hydrogen to be an ideal gas. Under these conditions hy-
drogen has a density 
 of 8.99 � 10	2 kg/m3.

Solution Since p � 1.00 atm � 1.01 � 105 Pa,

This is equal to 4120 mi/h, or just slightly more than a mile per
second.

Table 22-1 gives the results of similar calculations for
some selected gases at room temperature. The values of vrms

in that table refer to the speeds of the molecules between
collisions. Because of these collisions, gas molecules are
continuously changing direction and do not move very
rapidly in any selected direction. This contrast between in-
tercollision speeds and outward diffusion speeds is some-
times said to account for the noticeable time lag between

vrms � √ 3p



� √ 3(1.01 � 105 Pa)

8.99 � 10	2 kg/m3 � 1840 m/s.

vrms � √(v2)av � √ 3p



.

p � 1
3
(v2)av

(v2
x)av � 1

3 (v
2)av

opening a perfume bottle at one end of a room and smelling
perfume at the other end. However, the fact that one smells
perfume at all can be shown to be due to unavoidable con-
vection currents in the air of the room. If these currents
could be eliminated, the time lag would be very much
greater indeed. The diffusion speed of one gas into another
is very much less than the rms speed of the diffusing mole-
cules.

Sample Problem 22-2. The cubical box of Fig. 22-2 is
10 cm on edge and contains oxygen at a pressure of 1.0 atm and a
temperature T � 300 K. (a) How many moles of oxygen are in the
box? (b) How many molecules? (c) At what approximate rate do
oxygen molecules strike one face of the box? (Hint: For simplic-
ity, assume that the molecules all move with the same speed vrms,
that they do not collide with each other, and that one-third of them
move back and forth between each pair of opposing faces of the
cube.)

Solution (a) Solving the ideal gas equation (Eq. 21-17) for n, the
number of moles, we obtain

Here we have replaced V by L3 and used the fact that, in SI units,
1 atm � 1.01 � 105 Pa.
(b) The number of molecules follows from Eq. 21-15:

(c) Consider the back-and forth motion of a single molecule. Its
average time between collisions on a particular face is 2L/vrms and
the rate at which it strikes that face is the inverse of this, or
vrms/2L. If the box contains N molecules, on our assumption of
them are doing the same thing. So the total rate at which mole-
cules hit the face in question is ( )(vrms /2L). From Table 22-1
we see that vrms for oxygen at 300 K is 483 m/s. Thus

A more rigorous analysis, taking into account the varying speeds
and directions of the molecules, yields 2.8 � 1025 collisions/s.
Thus our approximate answer is not too far removed from the cor-
rect answer. In solving problems in physics, we often make

� 2.0 � 1025 collisions /s.

Rate �
Nvrms

6L
�

(2.5 � 1022 molecules)(483 m/s)

(6)(0.1 m)

1
3 N

1
3 N

� 2.5 � 1022 molecules.
N � nNA � (0.041 mol)(6.02 � 1023 molecules/mol)

n �
pV

RT
�

(1.01 � 105 Pa)(0.10 m)3

(8.31 J/mol�K)(300 K)
� 0.041 mol.
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Molecular Mass m vrms

Gas (u) (m/s)

Hydrogen 2.0 1920
Helium 4.0 1370
Water vapor 18.0 645
Nitrogen 28.0 517
Oxygen 32.0 483
Carbon dioxide 44.0 412
Sulfur dioxide 64.1 342

Table 22-1 Some Molecular Speeds at Room
Temperature (300 K)



grossly simplifying assumptions if we seek only an approximate
answer.

Sample Problem 22-3. Natural uranium consists pri-
marily of two isotopes, fissionable 235U (0.7% abundance) and
practically nonfissionable 238U (99.3%). (a) In UF6 (uranium hexa-
fluoride) gas containing a natural mixture of these two isotopes at
a common temperature T, calculate the ratio of the rms speed of
the gas molecules containing 235U to those containing 238U. (b) If
this gas is passed through a porous barrier, the faster molecules
emerge first, and the resulting abundances of the two kinds of gas
molecules on the far side of the barrier are proportional to their
rms speeds. What will be the relative abundance of gas molecules
containing 235U after the passage of the gas through such a bar-
rier? (c) How many times must the gas be passed through such a
barrier before the abundance of 235U reaches 3%? This abundance
is typical of the enrichment of 235U needed for the uranium fuel in
fission reactors.

Solution (a) Consider two samples of UF6 gas, identical except
that one contains only 235U and the other only 238U. The molecular
masses of 235UF6 and 238UF6 are m(235) � 235 u � 6(19 u) �
349 u and m(238) � 238 u � 6(19 u) � 352 u. The ratio of densi-
ties—all other factors being equal— is the ratio of the molecular
masses so, from Eq. 22-9,

(b) The relative abundance of the two kinds of gas molecules in
the mixed gas sample is the same as the relative abundance of the
uranium isotopes they contain. On entering the barrier this ratio is
0.007/0.993 � 0.00705. On our assumption, passage through the
barrier increases this ratio by the factor calculated in (a), so

ratio after 1 pass � 0.00705 � 1.0043 � 0.00708.

(c) The gas entering the first barrier has an isotope ratio, calcu-
lated in (b), of 0.00705. After passage through a barrier n times,
we wish the isotope ratio of the emerging gas to be 0.030/0.97 �
0.03093. There is an increase in this ratio of 1.0043 at each pas-
sage, so

(1.0043)n (0.00705) � 0.03093.

If we solve this relationship for n (by taking logarithms) we find
n � 350.

22-3 THE MEAN FREE PATH

Suppose that we could follow the zigzag path (Fig. 22-3) of
a typical molecule in a gas as it moves around, colliding
with other molecules. In particular, let us measure the
straight-line distance our chosen molecule travels between
collisions and find its average value. We call this quantity
the molecule’s mean free path �. Because our chosen mole-
cule is not “special,” all molecules of the gas have the same
mean free path. Of course, we cannot follow a single mole-
cule and make these measurements, but in this section we
will calculate the outcome of such measurements.

vrms(235)

vrms(238)
� √ m(238)

m(235)
� √ 352 u

349 u
� 1.0043.

Consider the molecules of a gas to be spheres of diame-
ter d. A collision will take place when the centers of two
such molecules approach within a distance d of each other.
An equivalent description of collisions made by any chosen
molecule is to regard that molecule as having a diameter 2d
and all other molecules as point particles; see Fig. 22-4.

Let us temporarily assume that our molecule of diame-
ter 2d exerts no forces on the point molecules among which
it moves. In time t our “fat” molecule would sweep out a
cylinder of cross-sectional area �d 2, length Lcyl � vt
(where v is the speed of the molecule), and volume Vcyl �
area � length � (�d 2)(vt). Let the volume of the box
within which the gas is confined be V and let the box con-
tain N molecules. The number of (point) molecules in the
cylinder of Fig. 22-5 is then

(22-10)

Since our moving molecule and the point molecules do ex-
ert forces on each other, this number is also the number of
collisions experienced by our moving molecule in time t.

Ncyl � N
Vcyl

V
�

N�d 2vt

V
.
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Figure 22-3. A molecule traveling through a gas, colliding
with other molecules in its path. Of course, the other molecules
are themselves moving and experiencing collisions.

Figure 22-4. (a) A collision occurs when the centers of two
molecules come within a distance d of each other, where d is the
molecular diameter. (b) An equivalent but more convenient repre-
sentation is to think of the moving molecule as having a diameter
2d, all other molecules being points.

m

m

m

2d

d

d

d

m

(a) (b)



The cylinder of Fig. 22-5 is, in fact, a broken one, changing
direction with every collision.

The mean free path � is the total distance covered by the
moving molecule in time t divided by the number of colli-
sions that it makes in that time, or

(22-11)

As Eq. 21-13 shows, we can write the ideal gas law in the
form pV � NkT, in which k is the Boltzmann constant.
From this equation, V/N � kT/p and Eq. 22-11 becomes

(22-12)

Equation 22-12 is based on the assumption of a single
moving molecule hitting stationary targets. Actually, the
molecule that we are following hits moving targets. When
all molecules are moving, the two v’s in Eq. 22-11 are not
the same and thus do not cancel. The v in the numerator
( ) is the average molecular speed measured with re-
spect to the box in which the gas is contained. The v in the
denominator ( ) is the average relative speed with re-
spect to the other molecules. It is this relative speed that de-
termines the collision rate.

We can see qualitatively that vrel  vav as follows. Two
molecules of speed v moving toward each other have vrel �
2v, which is greater than v. You can easily show that two
molecules moving at right angles to each other have

which is also greater than v. Two molecules
moving with speed v in the same direction have vrel � 0,
which, of course, is less than v. If the angle between the ve-
locities of the colliding molecules (assuming them to have
the same speed) is between 0° and 60°, then 0 � vrel � v. If
the angle is between 60° and 180° (the latter corresponding
to a head-on collision), then v � vrel � 2v. Because the col-
lisions are random, there is a greater probability that the
collision angle will be in the range of 60° to 180° than in
the range of 0° to 60°. Thus the relative speed will on the
average be greater than v.

vrel � √2 v,

� vrel

� vav

� �
kT

�d 2p
.

� �
Lcyl

Ncyl
�

vtV

N�d 2vt
�

V

N�d 2 .

A similar conclusion holds on the average if the mole-
cules have a distribution of different speeds. A full calcula-
tion, taking into account the actual speed distribution of the
molecules, gives . As a result, Eq. 22-12 be-
comes

(mean free path). (22-13)

This equation relates two microscopic quantities (� and d)
to two macroscopic quantities (p and T ).

For air molecules at sea level, � � 10	 7 m or 0.1 �m.
At an altitude of 100 km, the density of air has dropped to
such an extent that � � 16 cm. At 300 km, � � 20 km. In
much scientific and industrial work it is necessary to pump
the air out of a sealed container, producing a vacuum. Once
the pressure has been reduced to the extent that the mean
free path calculated from Eq. 22-13 exceeds the dimensions
of the container, the concept of mean free path loses its sig-
nificance; at that stage molecules collide more often with
the container walls than with each other.

The ability of gases to conduct heat, the viscosity of
gases, and the rate at which gases diffuse from regions of
high concentration to regions of lower concentration are
matters of considerable interest, both in science and in in-
dustry. All are proportional to the mean free path of the gas
molecules. Designers of high-energy particle accelerators,
such as those at CERN and Fermilab, go to great lengths to
remove as much air as possible from the huge circular rings
around which the accelerating particles must circulate thou-
sands of times without colliding with a residual air mole-
cule.

Sample Problem 22-4. What are (a) the mean free
path and (b) the average collision rate for nitrogen at room tem-
perature (T � 300 K) and atmospheric pressure ( p � 1.01 �
105 Pa)? A nitrogen molecule has an effective diameter of d �
3.15 � 10	 10 m and, for the conditions stated, an average speed
vav � 478 m/s.

Solution (a) From Eq. 22-13,

This is about 300 molecular diameters. On average, the distance
between molecules in a gas is equal to the cube root of the volume
occupied by a single molecule or (V/N )1/3. From Eq. 21-13 ( pV �
NkT ), we can write this as (kT/p)1/3, which proves to be about
3.4 � 10	 9 m. This is about 11 molecular diameters. In one mean
free path � a given molecule will pass about 27 other molecules
before experiencing a collision.
(b) The average collision rate is the average speed divided by the
mean free path, or

� 5.1 � 109 collisions/second

rate �
vav

�
�

478 m/s

9.3 � 10	8 m/collision

� 9.3 � 10	8 m.

� �
kT

√2�d 2p
�

(1.38 � 10	23 J/K)(300 K)

(√2�)(3.15 � 10	10 m)2(1.01 � 105 Pa)

� �
kT

√2�d 2p

vrel � √2 vav
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Figure 22-5. A molecule with an equivalent diameter 2d (as
in Fig. 22-4b) traveling with speed v sweeps out a cylinder of base
area �d2 and length vt in a time t. The number of collisions suf-
fered by the molecule in this time is equal to the number of mole-
cules (regarded as points) that lie within the cylinder. In actuality,
this cylinder would be bent many times as the direction of the
molecule’s path is changed by collisions; for convenience that
path has been straightened.



On average, every nitrogen molecule makes more than 5 billion
collisions per second!

22-4 THE DISTRIBUTION OF
MOLECULAR SPEEDS

We can calculate vrms, the root-mean-square speed of the
molecules of an ideal gas, using Eq. 22-9. However, sup-
pose we want to know how the speeds of the molecules are
distributed about this average. It is not likely that the mole-
cules would all have this same speed, because collisions be-
tween molecules would soon upset this situation. Speeds ei-
ther close to zero or very much greater than vrms are also
relatively unlikely; such speeds would require a sequence
of preferential collisions that would be very improbable in a
condition of thermal equilibrium.

The Scottish physicist James Clerk Maxwell
(1831–1879) first solved the problem of the distribution of
speeds in a gas containing a large number of molecules.
The Maxwell speed distribution—as it is called— for a
sample of gas at temperature T containing N molecules,
each of mass m, is

(22-14)

Figure 22-6 shows a plot of this equation for molecules of
oxygen at room temperature.

The interpretation of N(v) in Eq. 22-14 is that the (di-
mensionless) product N(v) dv gives the number of mole-
cules having speeds in the range v to v � dv. Graphically,
this product for v � 600 m/s is represented in Fig. 22-6 as
the shaded area of the narrow vertical strip located at that
speed.

Avoid the temptation to interpret N(v) as “the number of
molecules having a speed v.” This interpretation is mean-
ingless because, although the number of molecules may be

N(v) � 4�N � m

2�kT �
3/2

v2e	mv2/2kT.

large, it cannot be infinite but the number of available
speeds is infinite; they cannot be matched up on a one-to-
one basis. The probability that a molecule has a precisely
stated speed, such as 600.34326759 . . . m/s, is exactly
zero. However, the number of molecules whose speeds lie
in a narrow range such as 600 m/s to 602 m/s has a definite
nonzero value.

If we add up (integrate) the numbers of molecules in
each differential speed range dv from v � 0 to v : �, we
must obtain N, the total number in the system. That is, it
must be true that

(22-15)

Note that the integral in Eq. 22-15 can be interpreted as the
total area under the speed distribution curve of Fig. 22-6.
The number of molecules whose speeds lie between any
given values, such as v1 and v2 , is equal to the area under
the speed distribution curve between those limits.

As the temperature increases, the average speed of the
molecules increases, so the speed distribution curve must
become broader. Because the area under the distribution
curve (which is the total number of molecules) remains the
same, the distribution curve must also flatten as the tem-
perature rises. Figure 22-7 shows how the speed distribu-
tion curve for oxygen molecules at T � 80 K is both
broadened and flattened as the temperature is increased to
300 K.

The distribution of speeds of molecules in a liquid re-
sembles that of Fig. 22-6. This distribution allows us to un-
derstand why water in a saucer will eventually evaporate
completely. The speed needed for a molecule of water to

N � ��

0
N(v) dv.
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Figure 22-6. The Maxwell speed distribution for the mole-
cules of a gas. The plotted curve is characteristic of oxygen mole-
cules at T � 300 K. The number of molecules with speeds in any
interval dv is N(v)dv, indicated by the narrow shaded strip. The
number with speeds between any limits v1 and v2 is given by the
area under the curve between those limits.
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escape from the water surface would be very far out indeed
on the tail of a distribution curve like that of Fig. 22-6.
Only a very small number of molecules would have speeds
above this threshold. The escape of these few energetic
molecules reduces the average kinetic energy of the remain-
ing molecules, leaving the water at a lower temperature.
This explains why evaporation is a cooling process. If the
saucer is not thermally isolated from its surroundings, how-
ever, energy will flow into the water from these surround-
ings, maintaining the water in thermal equilibrium with its
environment. Energy will flow into the water as heat to
compensate for the energy carried away by the escaping
“fast” molecules; this process will continue until there is no
more water.

Equation 22-14 also shows that the distribution of mole-
cular speeds depends on the mass of the molecule as well
as on the temperature. At any given temperature, the
smaller the mass of a molecule, the faster it moves. Thus
hydrogen is more likely to escape from the Earth’s upper
atmosphere than oxygen or nitrogen.

Consequences of the Speed Distribution
We can obtain much useful information from Eq. 22-14, the
speed distribution equation.

1. The most probable speed vp . This quantity is the
speed at which N(v) of Eq. 22-14 has its maximum value.
We find it by requiring that dN/dv � 0 and solving for v. As
you should verify, the result proves to be

(22-16)

Here we have made the substitutions k � R/NA (see Eq. 21-
17) and m � M/NA (see Eq. 22-2).

2. The average speed vav. To find the average speed of
the molecules, we add up all the individual speeds and di-
vide by the number of molecules. This is most simply done
by summing the products of the speed v in each speed inter-
val and the number N(v) dv in that interval. Thus

(22-17)

The next step is to substitute for N(v) from Eq. 22-14 and
evaluate the integral. The result is

(22-18)

3. The root-mean square speed vrms. We encountered
this quantity earlier, in Eq. 22-9. To find it from the speed
distribution equation we proceed as above except that we
find the average value of v2 (rather than the average value
of v). This leads, after another integration, to

(22-19)(v2)av �
1

N
��

0
v2 N(v) dv �

3kT

m
.

vav � √ 8kT

�m
� √ 8RT

�M
.

vav �
1

N
��

0
vN(v) dv.

vp � √ 2kT

m
� √ 2RT

M
.

The root-mean-square speed is the square root of this quan-
tity, or

(22-20)

4. The average translational kinetic energy per mole-
cule Ktrans. Note first that, because we assume that our ideal
gas is monatomic, translational kinetic energy is the only
kind of energy that the molecules can have. An essentially
point molecule cannot have energy of rotation, and we as-
sume that there are no changes in the internal energies of
the molecules.

To find Ktrans, we must first find the total translational ki-
netic energy of the set of N molecules and then divide by N.
The total energy K is

Replacing v2
rms from Eq. 22-20 and dividing by N, the total

number of molecules, leads to

(22-21)

We will have more to say about this important relation in
Chapter 23.

5. The ideal gas law. We have derived two equations for
vrms , the root-mean-square velocity of the molecules, Eq.
22-9 and Eq. 22-20. Setting these equations equal yields

The density 
 can be written as nM/V. With this substitution
the above equality reduces to pV � nRT. Thus we have re-
covered the ideal gas law from our investigation into the
molecular speeds.

Experimental Verification of the Maxwell
Speed Distribution
Maxwell derived his speed distribution law (Eq. 22-14) in
1860. At that early date it was not possible to check this law
by direct measurement and it was not until about 1920 that
the first attempts were made. However, techniques im-
proved rapidly and, in 1955, R. C. Miller and P. Kusch of
Columbia University provided a high-precision experimen-
tal verification of Maxwell’s prediction.

Their apparatus is illustrated in Fig. 22-8. The walls 
of oven O, containing some thallium metal, were heated,
in one set of experiments, to a uniform temperature of 
870 � 4 K. At this temperature thallium vapor, at a pres-
sure of 3.2 � 10	 3 torr, fills the oven. Some molecules of
thallium vapor escape from slit S into the highly evacuated
space outside the oven, falling on the rotating cylinder R.

v2
rms �

3p



�

3RT

M
.

Ktrans � 3
2 kT.

� 1
2 mNv2

rms.

� 1
2 mN

(v2
1 � v2

2 � ��� � v2
N)

N

K � 1
2 m(v2

1 � v2
2 � ��� � v2

N)

vrms � √(v2)av � √ 3kT

m
� √ 3RT

M
.
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This cylinder, of length L, has about 700 helical grooves cut
into it, only one of which is shown in Fig. 22-8. For a given
angular speed � of the cylinder, only molecules of a
sharply defined speed v can pass along the grooves without
striking the walls. The speed v can be found from

or

in which � (see Fig. 22-8) is the angular displacement be-
tween the entrance and the exit of a helical groove. Thus
the rotating cylinder is a velocity selector, in which the
speed is selected by the (controllable) angular speed �. The
beam intensity is recorded by detector D as a function of
the selected speed v. Figure 22-9 shows the remarkable
agreement between theory (the solid line) and experiment
(the open and filled circles) for thallium vapor.

The distribution of speeds in the beam (as distinguished
from the distribution of speeds in the oven) is not propor-
tional to as in Eq. 22-14, but to Con-
sider a group of molecules in the oven whose speeds lie
within a certain small range v1 to v1 � �v, where v1 is less
than the most probable speed vp. We can always find an-
other equal speed interval �v, extending from v2 to v2 � �v,
where v2 , which will be greater than vp , is chosen so that
the two speed intervals contain the same number of mole-
cules. However, more molecules in the higher interval than
in the lower will escape from slit S to form the beam,
because molecules in the higher interval “bombard” the 
slit with a greater frequency, by precisely the factor v2/v1.
Thus, other things being equal, fast molecules are favored
in escaping from the oven, just in proportion to their
speeds, and the molecules in the beam have a v3 rather than
a v2 distribution. This effect is included in the theoretical
curve of Fig. 22-9.

v3e	mv2/2kT.v2e	mv2/2kT,

v �
L�

�
,

time of travel along the groove �
L

v
�

�

�

Sample Problem 22-5. The speeds of ten particles in
m/s are 0, 1.0, 2.0, 3.0, 3.0, 3.0, 4.0, 4.0, 5.0, and 6.0. Find (a) the
average speed, (b) the root-mean-square speed, and (c) the most
probable speed of these particles.

Solution (a) The average speed is found from

� 3.0 � 4.0 � 4.0 � 5.0 � 6.0]

� 3.1 m/s.

(b) The mean-square speed is the average value of v2:

and the root-mean-square speed is

(c) Of the ten particles, three have speeds of 3.0 m/s, two have
speeds of 4.0 m/s, and each of the other five has a different speed.
Hence the most probable speed vp of a particle is

vp � 3.0 m/s.

Sample Problem 22-6. A container filled with N mole-
cules of oxygen gas is maintained at 300 K. What fraction of the
molecules has speeds in the range 599–601 m/s? The molar mass
M of oxygen is 0.032 kg/mol.

vrms � √(v2)av � √12.5 m2/s2 � 3.5 m/s.

� 12.5 m2/s2,

� (3.0)2 � (4.0)2 � (4.0)2 � (5.0)2 � (6.0)2]

(v2)av �
1

N �
N

n�1
v2

n �
1

10
 [0 � (1.0)2 � (2.0)2 � (3.0)2 � (3.0)2

vav �
1

N �
N

n�1
vn �

1

10
 [0 � 1.0 � 2.0 � 3.0 � 3.0
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Figure 22-8. Apparatus used by Miller and Kusch to verify
the Maxwell speed distribution. A beam of thallium molecules
leaves the oven O through the slit S, travels through the helical
groove in the rotating cylinder R, and strikes the detector D. The
angular velocity � of the cylinder can be varied so that molecules
of differing speeds will pass through the cylinder.

L

Axis

Pump

D
R

SO

Figure 22-9. The results of the experiment to verify the
Maxwell speed distribution. The open circles show data taken
with the oven temperature at T � 870 K, and the filled circles
show data at T � 944 K. When the distributions are plotted
against v/vp, the two distributions should be identical. The solid
curve is the Maxwell distribution. The data agree remarkably well
with the curve.
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Solution This speed interval �v ( m/s) is so small that we can
treat it as a differential dv. The number of molecules in this inter-
val is N(v)dv, and the fraction in that interval is f � N(v)dv/N,
where N(v) is to be evaluated at v � 600 m/s, the midpoint of the
range; see the narrow shaded strip in Fig. 22-6. Using Eq. 22-14
with the substitution m/k � M/R, we find the fraction

Substituting the given numerical values yields

f � 2.6 � 10	 3 or 0.26%.

At room temperature, 0.26% of the oxygen molecules have speeds
that lie in the narrow range between 599 and 601 m/s. If the
shaded strip of Fig. 22-6 were drawn to the scale of this problem,
it would be a very thin strip indeed.

Sample Problem 22-7. Calculate (a) the most proba-
ble speed, (b) the average speed, and (c) the rms speed for oxygen
molecules at T � 300 K.

Solution (a) From Eq. 22-16 we have

(b) From Eq. 22-18 we have

(c) From Eq. 22-20 we have

From the equations we have used note that, for any gas at a given
temperature,

vp :vav :vrms � 1 :1.128 :1.225.

22-5 THE DISTRIBUTION OF
MOLECULAR ENERGIES

An alternative description of the motion of molecules can
be obtained if we look for the distribution in energy rather
than in speed. That is, we seek the distribution N(E), such
that N(E)dE gives the number of molecules with energies
between E and E � dE.

This problem was first solved by Maxwell. We derive
the result, called the Maxwell–Boltzmann energy distribu-
tion, in the special case that translational kinetic energy is
the only form of energy that a molecule can have.

Let us consider again the situation of Sample Problem
22-6, in which we obtained the fraction of oxygen mole-
cules having speeds between 599 and 601 m/s. We found
that 0.26% of the molecules in a container at a temperature
of 300 K have speeds in that range. An oxygen molecule
with a speed of 599 m/s has a kinetic energy of 9.54 �

� 483 m/s.vrms � √ 3RT

M
� √ (3)(8.31 J/mol �K)(300 K)

0.032 kg/mol

� 445 m/s.vav � √ 8RT

�M
� √ (8)(8.31 J/mol �K)(300 K)

(�)(0.032 kg/mol)

� 395 m/s.vp � √ 2RT

M
� √ (2)(8.31 J/mol �K)(300 K)

0.032 kg/mol

f �
N(v) dv

N
� 4� � M

2�RT �
3/2

v2e	Mv2/2RT dv.

� 2 10	 21 J, and one with a speed of 601 m/s has a kinetic en-
ergy of 9.60 � 10	 21 J. What fraction of the oxygen mole-
cules has kinetic energies in the range of 9.54 � 10	 21 to
9.60 � 10	 21 J?

A bit of thought should convince you that this fraction
must also be 0.26%. It makes no difference whether we
count the molecules by their speeds or by their kinetic ener-
gies; as long as we set the lower and upper limits of the in-
terval to have corresponding speeds and kinetic energies,
we count the same number of molecules between the limits.
That is, the number with kinetic energies between E and 
E � dE is the same as the number with speeds between v and
v � dv. Mathematically, we express this conclusion as

N(E ) dE � N(v) dv, (22-22)
or

(22-23)

Since the energy is only kinetic, we must have or
and thus

(22-24)

Substituting Eqs. 22-14 and 22-24 into Eq. 22-23, we obtain

(22-25)

Equation 22-25 is the Maxwell–Boltzmann energy dis-
tribution. In deriving this result, we have assumed that the
gas molecules can have only translational kinetic energy.
This distribution therefore applies only to a monatomic gas.
In the case of gases with more complex molecules, other
factors (such as rotational kinetic energy) will be present in
Eq. 22-25. The factor e	 E/kT, however, is a general feature
of the Maxwell–Boltzmann energy distribution that is pres-
ent no matter what the form of the energy E. This factor
which is generally known as the Boltzmann factor, is often
taken as a rough estimate of the relative probability for a
particle to have an energy E in a collection of particles
characterized by a temperature T.

Using Eq. 22-25, we can calculate the fraction of the
gas molecules having energies between E and E � dE,
which is given by N(E)dE/N. As before, N is the total num-
ber of molecules, which is determined from

(22-26)

One interesting feature of the Maxwell–Boltzmann en-
ergy distribution is that it is precisely the same for any gas
at a given temperature, no matter what the mass of the mol-
ecules (in contrast to the Maxwell speed distribution, Eq.
22-14, in which the mass appears explicitly). Even a “gas”
of electrons, to the extent they can be treated as classical
particles, has the same energy distribution as a gas of heavy

N � ��

0
N(E ) dE.

N(E) �
2N

√�

1

(kT)3/2
E 1/2 e	E/kT.

dv

dE
� √ 2

m
 (1

2 E	1/2).

v � √2E/m,
E � 1

2 mv2

N(E) � N(v) 
dv

dE
.
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atoms. The effect of increasing the mass m by some factor
is to reduce v2 by the same factor, so that the product mv2,
and thus the kinetic energy, remains the same.

For a simple application of the Boltzmann factor, con-
sider a long, gas-filled vertical container with its bottom
resting on the Earth’s surface. We’ll assume that the gas in
the container is in thermal equilibrium at a uniform temper-
ature T. A molecule at a height y above the bottom has en-
ergy E0 � mgy, where E0 is the energy of a similar mole-
cule at the bottom of the container. Using the Boltzmann
factor e	E/kT, we can deduce that the number of molecules
at height y is, compared with the number at y � 0,

(22-27)

or
N(y) � N0e	mgy/kT (22-28)

where N0 � N(0). With kT � pV/N from the ideal gas law,
the factor m/kT in the exponent can be written as mN/pV �

/p, where 
 is the density of the gas. Because we have as-
sumed the gas to be at a uniform temperature, we must
have 
/p � 
0/p0 , with 
0 and p0 being the values of the
density and pressure at the Earth’s surface. Furthermore,
because the number of molecules in a small volume ele-
ment at any height is proportional to the density at that
height, which is in turn proportional to the pressure, we can
write Eq. 22-28 as

. (22-29)

Equation 22-29 is identical with Eq. 15-12 for the pressure
in the atmosphere as a function of the height above the
Earth’s surface. We also derived Eq. 15-12 under the as-
sumption of a uniform temperature for the atmosphere, and
it is comforting that the dynamic approach used in Chapter
15 and the present statistical approach give the same result.

Sample Problem 22-8. Find (a) the average energy
and (b) the most probable energy of a gas in thermal equilibrium
at temperature T.
(a) The average energy Eav can be written, in analogy with Eq.
22-17, as

.

Substituting Eq. 22-25, we obtain

. (22-30)

To evaluate this integral, make the substitution x2 � E/kT and con-
vert it to a standard form for a definite integral given in Appendix
I. The result, which you should verify, is

(22-31)

a result that agrees precisely with Eq. 22-21 for this case in which
we have assumed kinetic energy to be the only type of energy that
the gas molecules may have.

Eav � 3
2 kT

Eav �
2

√� (kT )3/2 ��

0
E 3/2e	E/kT dE

Eav �
1

N
��

0
E N(E ) dE

p(y) � p0e	mgy/kT � p0e	gy
0/p0

N(y)

N(0)
�

e	(E0�mgy)/kT

e	E0/kT

(b) To find the most probable energy, we take the derivative of
Eq. 22-25, set the result equal to zero, and solve for the energy.
The result, which you should derive, is

.

Note that this is not equal to , which gives an energy of kT.
Can you explain why the energy corresponding to the most proba-
ble speed is not the most probable energy?

22-6 EQUATIONS OF STATE FOR
REAL GASES

The equation of state for an ideal gas holds well enough
for real gases at sufficiently low densities. However, it does
not hold exactly for real gases at any density and departs
more and more the greater the density. There is much in-
terest in finding an equation of state that describes real
gases over a range of densities. We discuss two of the
many approaches.

The Virial Expansion
Our first approach to an equation of state for a real gas is to
write

, (22-32)

in which B1, B2, . . . , called virial coefficients, are func-
tions of temperature and grow successively smaller as the
series progresses. It is clear that, at small molar densities 
(n/V : 0), this equation of state reduces to the ideal gas
law. This must be the case for all equations of state for
gases because the ideal gas law holds in the limit of low
densities. The virial coefficients must be found empirically,
by fitting Eq. 22-32 to experimental data.

The van der Waals Equation of State
This equation, proposed in 1873 by the Dutch physicist 
Johannes Diderik van der Waals (1837–1923), is

(V 	 nb) � nRT, (22-33)

in which a and b are constants whose values must be ob-
tained by experiment. Comparison of Eq. 22-33 with the
ideal gas law (pV � nRT ) suggests that van der Waals (who
received the 1910 Nobel Prize for his work) arrived at his
equation by correcting perceived points of failure in the
ideal gas law. That is indeed the case. Note that if the con-
stants a and b are put equal to zero (or if we allow the mo-
lar density n/V to become very small), Eq. 22-33 reduces to
the ideal gas law. We now investigate the line of reasoning
that led to the terms containing these constants.

�p �
an2

V 2 �

pV � nRT �1 � B1
n

V
� B2� n

V �
2

� ���	

1
2 mv2

p

Ep � 1
2 kT
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The Volume Correction. In Section 22-1 we assumed
(property 3) that the volume occupied by the molecules of
an ideal gas is negligible. This is not quite true for real
gases. Let us regard each molecule of a real gas as a hard
sphere of diameter d. Two such molecules cannot approach
each other so close that the distance between their centers
would be less than d (Fig. 22-10). The “free volume” per
mole available for one molecule is therefore decreased by
the volume of a hemisphere of radius d centered on the
other molecule. If we estimate d as 2.5 � 10	 10 m (a typi-
cal molecular diameter), then we can find an approximate
value of b of

The factor of comes about because, as two molecules ap-
proach each other, the volume within which they interact is
not a full sphere but the hemisphere facing the direction of
approach. Under standard conditions of temperature and
pressure the molar density n/V of an ideal gas is 45 mol/m3.
Thus bn/V � 0.0009 or about 0.1%; under these conditions,
the volume correction b is relatively small.

The Pressure Correction. In Section 22-1 (property 4) we
assumed that the molecules of an ideal gas exert forces on
each other only during collisions. That is also not quite true
for real gases. A molecule in the body of the gas would ex-
perience no net force due to the forces exerted on it by the
surrounding molecules; that is, these forces would balance
out to zero. However, that is not true for a molecule located
near the wall of the containing vessel, as in Fig. 22-11.
Such a molecule would experience a net force of attraction
away from the wall because of its interaction with the
nearby molecules that are within the range of the attractive
force that it exerts. Thus the pressure measured at the wall
is somewhat less than what we may call the true pressure
that exists in the body of the gas.

The reduction in pressure owing to the collisions of
molecule C with the wall is proportional to the number of
molecules in the hemisphere within the range R of its at-

1
2

b � 1
2NA(4

3�d 3) � 2 � 10	5 m3/mol.

tractive force and thus to the number of molecules per unit
volume or, alternatively, to n/V. The net effect due to all
the molecules that strike the wall (C is a typical member of
this group) is also proportional to the number of molecules
per unit volume or to n/V. The total reduction in pressure
is proportional to the product of these two quantities, or
(n/V )2.

That is, if we triple the number of molecules in a given
container, molecule C will experience three times the 
unbalanced force. In the entire gas there will be three
times as many molecules like C. The overall pressure re-
duction thus increases ninefold. If p in Eq. 22-33 is to be
the measured pressure, we must increase it by a term pro-
portional to (n/V )2 — that is, by an2/V 2 — to obtain the
“true” pressure.

Figure 22-12 compares a pV plot of an ideal gas at var-
ious temperatures with a plot of Eq. 22-33 for carbon
dioxide gas. Note that the deviation from ideal behavior
occurs primarily at high pressures and low temperatures.
For CO2 at 264 K, the graph contains a region of positive
slope, indicating that as we decrease the volume in this re-
gion the pressure also decreases. Since this behavior is
contrary to expectations for a gas, it suggests that some of
the CO2 is condensing to a liquid, leaving less of it in the
gaseous state. The van der Waals equation thus suggests
the existence of mixtures of different phases, which the
ideal gas model cannot do. If we were to compress a sam-
ple of CO2, we would find that the actual T � 264 K
graph would not follow the curve shown in Fig. 22-12b,
but instead would follow the dashed horizontal segment
AB in that figure.
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Figure 22-10. If molecules of a gas are considered to behave
like hard spheres, then the center of molecule B is not permitted to
move within the hemisphere of radius d centered on molecule A.
Here d is the diameter of a molecule. The free volume available
for molecule B is reduced by the volume of such a hemisphere
centered on each molecule of the gas.

Figure 22-11. A gas molecule C (here considered to be a
point) near the wall of the container experiences a net force away
from the wall due to the attraction of the surrounding molecules
within the range R of the force between molecules. The net pres-
sure on the walls of the container is reduced by all such molecules
within a distance R of the walls.
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Sample Problem 22-9. For oxygen the van der Waals
coefficients have been measured to be a � 0.138 J � m3/mol2 and
b � 3.18 � 10	 5 m3/mol. Assume that 1.00 mol of oxygen at 
T � 50 K is confined to a box of volume 0.0224 m3. What pres-
sure does the gas exert according to (a) the ideal gas law and (b)
the van der Waals equation?

Solution (a) The ideal gas law yields

(b) The pressure and the volume correction terms in the van der
Waals equation (Eq. 22-33) are

and

Substituting these quantities into the van der Waals equation and
solving that equation for p yields

p � 1.83 � 104 Pa � 0.181 atm.

For oxygen under these conditions the ideal gas law and the van
der Waals equation yield results that are within 2% of each other.
Note that the pressure correction term is only (275 Pa)/(1.83 �
104 Pa) or about 1.5%. The volume correction bn/V is only 
(3.18 � 10	 5 m3/mol)(1.00 mol)/(0.0224 m3) or about 0.14%. For
lower temperatures, as the gas moves in the direction of liquifac-
tion, the van der Waals equation will better agree with experiment
than will the ideal gas law.

b � 3.18 � 10	5 m3/mol.

an2

V 2 �
(0.138 J �m3/mol2)(1.00 mol)2

(0.0224 m3)2 � 275 Pa

� 1.85 � 104 Pa � 0.184 atm.

p �
nRT

V
�

(1.00 mol)(8.31 J/mol�K)(50 K)

0.0224 m3

22-7 THE INTERMOLECULAR
FORCES (Optional)

Forces between molecules are of electromagnetic origin.
All molecules contain electric charges in motion. These
molecules are electrically neutral in the sense that the nega-
tive charge of the electrons is equal and opposite to the pos-
itive charge of the nuclei. This does not mean, however,
that molecules do not interact electrically. For example,
when two molecules approach each other, the charges on
each are disturbed and depart slightly from their usual posi-
tions in such a way that the average distance between oppo-
site charges in the two molecules is a little smaller than that
between like charges. Hence an attractive intermolecular
force results. This internal rearrangement takes place only
when molecules are fairly close together, so that these
forces act only over short distances; they are short-range
forces. If the molecules come very close together, so that
their outer charges begin to overlap, the intermolecular
force becomes repulsive. The molecules repel each other
because there is no way for a molecule to rearrange itself
internally to prevent repulsion of the adjacent external elec-
trons. It is this repulsion on contact that accounts for the
billiard-ball character of molecular collisions in gases. If it
were not for this repulsion, molecules would move right
through each other instead of rebounding on collision.

Let us assume that molecules are approximately spheri-
cally symmetrical. Then we can describe intermolecular
forces graphically by plotting the mutual potential energy of
two molecules, U, as a function of distance r between their
centers. The force F acting on each molecule is related to
the potential energy U by F � 	 dU/dr. In Fig. 22-13a we
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Figure 22-12. pV graphs for one mole of (a) an ideal gas and (b) CO2 determined from the van der Waals equa-
tion. Note that at large volume, the ideal and van der Waals graphs behave similarly. As the temperature is raised, the
van der Waals graphs behave more like those of the ideal gas. Note also that, as the pressure becomes very large, the
volume approaches the value of b, as Eq. 22-33 requires, rather than the value of zero, as the ideal gas equation of state
would predict. The dashed line AB shows a more realistic representation of the behavior at T � 264 K. As the gas is
compressed from A, some of the gas condenses into a liquid, and the pressure remains constant.
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plot a typical U(r). Here we can imagine one molecule to be
fixed at O. Then the other molecule is repelled from O when
the slope of U is negative and is attracted to O when the
slope is positive. At r0 no force acts between the molecules;
the slope is zero there. In Fig. 22-13b we plot the mutual
force F(r) corresponding to this potential energy function.
The line E in Fig. 22-13a represents the mechanical energy
of the colliding molecules. The intersection of U(r) with this
line is a “turning point” of the motion (see Section 12-5).
The separation of the centers of two molecules at the turning
point is the distance of closest approach. The separation dis-
tance at which the mutual potential energy is zero may be
taken as the approximate distance of closest approach in a
low-energy collision and hence as the diameter of the mole-
cule. For simple molecules the diameter is about 2.5 �

10	 10 m. The distance r0 at which the potential is a mini-
mum (the equilibrium point) is about 3.5 � 10	 10 m for
simple molecules, and the force and potential energy ap-
proach zero as r increases to about 10	 9 m, or about 4 diam-
eters. The molecular force thus has a very short range. Of
course, different molecules have different sizes and internal
arrangement of charges so that intermolecular forces vary
from one molecule to another. However, they always show
the qualitative behavior indicated in Fig. 22-13.

In a solid, molecules vibrate about the equilibrium posi-
tion r0. Their total energy E is negative— that is, lying be-
low the horizontal axis in Fig. 22-13a. The molecules do not
have enough energy to escape from the potential valley (that
is, from the attractive binding force). The centers of vibra-
tion O are more or less fixed in a solid. In a liquid the mole-
cules have greater vibrational energy about centers that are
free to move but that remain about the same distance from
one another. Molecules have their greatest kinetic energy in
the gaseous state. In a gas the average distance between the
molecules is considerably greater than the effective range of
intermolecular forces, and the molecules move in straight
lines between collisions. Maxwell discusses the relation be-
tween the kinetic theory model of a gas and the intermolecu-
lar forces as follows: “Instead of saying that the particles are
hard, spherical, and elastic, we may if we please say that the
particles are centers of force, of which the action is insensi-
ble except at a certain small distance, when it suddenly ap-
pears as a repulsive force of very great intensity. It is evident
that either assumption will lead to the same results.”

It is interesting to compare the measured intermolecular
forces with the gravitational force of attraction between
molecules. If we choose a separation distance of 4 �
10	 10 m, for example, the force between two helium atoms
is about 6 � 10	 13 N. The gravitational force at that sepa-
ration is about 7 � 10	 42 N, smaller than the intermolecu-
lar force by a factor of 1029! This is a typical result and
shows that gravitation is negligible in intermolecular forces.

Although the intermolecular forces appear to be small
by ordinary standards, we must remember that the mass of
a molecule is so small (about 10	 26 kg) that these forces
can impart instantaneous accelerations of the order of
1015 m/s2 (1014 g). These accelerations may last for only a
very short time, of course, because one molecule can very
quickly move out of the range of influence of the other. �
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Figure 22-13. (a) The mutual potential energy U of two
molecules as a function of their separation distance r. The me-
chanical energy E is indicated by the horizontal line. (b) The ra-
dial force between the molecules, given by 	 dU/dr, correspond-
ing to this potential energy. The potential energy is a minimum at
the equilibrium separation r0, at which point the force is zero.
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MULTIPLE CHOICE

22-1 The Atomic Nature of Matter

1. Which two of the following cases do not correspond to the be-
havior of an ideal gas?

(A) A molecule loses kinetic energy when it collides elasti-
cally with another molecule.

(B) There is a potential energy associated with the interac-
tion between molecules.

(C) Collisions can change the internal energy of molecules.

(D) The speed of a molecule is unchanged after a collision
with the walls of the container.

2. The gas in a closed container consists of a mixture of helium
and krypton. This mixture can be treated as an ideal gas if it is
assumed that the helium and krypton atoms have the same av-
erage

(A) mass. (B) speed.
(C) momentum. (D) kinetic energy.



22-2 A Molecular View of Pressure
3. Where does the factor of “3” come from in Eq. 22-9?

(A) It is an approximation for �.
(B) It is found from comparing the units of pressure and

density.
(C) It is related to the number of spatial dimensions.
(D) It arises from integrating v2 to find the average.

22-3 The Mean Free Path
4. (a) At approximately what density, in molecules/m3, does the

mean free path of nitrogen molecules equal the size of a room
(� 3 m)?

(A) 1023 molecules/m3 (B) 1020 molecules/m3

(C) 1018 molecules/m3 (D) 109 molecules/m3

(b) Assuming that room temperature is 300 K, what is the ap-
proximate pressure?

(A) 10	1 atm (B) 10	2 atm
(C) 10	5 atm (D) 10	7 atm

5. The density of gas in a bell jar is kept constant while varying
the temperature. If the temperature is doubled, then the mean
free path will

(A) double. (B) remain the same.
(C) decrease by half.

6. In a fixed amount of gas, how would the mean free path be af-
fected if
(a) the density of the gas is doubled?
(b) the mean molecular speed is doubled?
(c) both the density and mean molecular speed are doubled?

(A) The mean free path will also double.
(B) The mean free path will remain the same.
(C) The mean free path will decrease by one-half.
(D) The mean free path will decrease to one-fourth its

original value.

22-4 The Distribution of Molecular Speeds
7. Rank vp , vav , and vrms from highest to lowest at T � 350 K for

hydrogen molecules.
(A) vrms  vp  vav (B) vrms  vav  vp

(C) vav  vrms  vp (D) vp  vav  vrms

8. The root-mean-square speed of molecules in still air at room
temperature is closest to

(A) walking speed (2 m/s).
(B) the speed of a fast car (30 m/s).
(C) the speed of a supersonic airplane (500 m/s).
(D) escape speed from Earth (1.1 � 104 m/s).
(E) the speed of light (3 � 108 m/s).

9. Which of the following speeds divides the molecules in a gas
in thermal equilibrium so that half have speeds faster, and half
have speeds slower?

(A) vp (B) vav (C) vrms

(D) None of the above.

10. Which of the following speeds corresponds to a molecule
with the average kinetic energy?

(A) vp (B) vav (C) vrms

(D) None of the above.

11. Consider the distribution of speeds shown in Fig. 22-14.
Which is the correct ordering for the speeds?

(A) vrms � vav � vp (B) vrms � vp � vav

(C) vav � vrms � vp (D) vav � vp � vrms

(E) vp � vav � vrms
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Figure 22-14. Multiple-choice question 11.
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22-5 The Distribution of Molecular Energies

22-6 Equations of State for Real Gases
12. A certain (fictitious!) gas is found to obey the van der Waals

equation exactly. The volume of the gas is changed from Vi �
1000nb to Vf � 2000nb. Assume that a is small compared to
pV 2/n2, but not negligible. If the change in volume occurred at
constant pressure, then

(A) Tf is slightly more than 2Ti.
(B) Tf is slightly less than 2Ti.
(C) Tf is exactly equal to 2Ti.
(D) The answer depends on the value of an2/pV 2.

13. A plasma is a gas consisting of charged particles. If all the
particles have the same charge, then the forces between the
particles will be repulsive at all distances. What would be the
sign of a in the van der Waals equation for this type of gas?

(A) Positive (B) Negative
(C) The sign would depend on the sign of the charges in

the plasma.
(D) There would be no sign, since the van der Waals equa-

tion applies only for attractive forces.

22-7 Intermolecular Forces

QUESTIONS

1. In kinetic theory we assume that the number of molecules in a
gas is large. Real gases behave like an ideal gas at low densi-
ties. Are these statements contradictory? If not, what conclu-
sion can you draw from them?

2. We have assumed that the walls of the container are elastic
for molecular collisions. Actually, the walls may be inelastic.
Why does this make no difference as long as the walls are at
the same temperature as the gas?

3. We have assumed that the force exerted by molecules on 
the wall of a container is steady in time. How is this justi-
fied?

4. We know that a stone will fall to the ground if we release it.
We put no constraint on molecules of the air, yet they do not
all fall to the ground. Why not?

5. How is the speed of sound related to the gas variables in the
kinetic theory model?



6. Why doesn’t the Earth’s atmosphere leak away? At the top of
the atmosphere atoms will occasionally be headed out with a
speed exceeding the escape speed. Isn’t it just a matter of
time?

7. Titan, one of Saturn’s many moons, has an atmosphere, but
our own Moon does not. What is the explanation?

8. How, if at all, would you expect the composition of the air to
change with altitude?

9. Would a gas whose molecules were true geometric points
obey the ideal gas law?

10. Why do molecules not travel in perfectly straight lines be-
tween collisions and what effect, easily observable in the lab-
oratory, occurs as a result?

11. Suppose we want to obtain 238U instead of 235U as the end
product of a diffusion process. Would we use the same
process? If not, explain how the separation process would
have to be modified.

12. Considering the diffusion of gases into each other, can you
draw an analogy to a large jostling crowd with many “colli-
sions” on a large inclined plane with a slope of a few degrees?

13. Would you expect real molecules to be spherically symmetri-
cal? If not, how would the potential energy function of Fig.
22-13 change?

14. Although real gases can be liquefied, an ideal gas cannot be.
Explain.

15. Show that as the volume per mole of a gas increases, the van
der Waals equation tends to the equation of state of an ideal
gas.

16. Consider the case in which the mean free path is greater than
the longest straight line in a vessel. Is this a perfect vacuum
for a molecule in this vessel?

17. List effective ways of increasing the number of molecular col-
lisions per unit time in a gas.

18. Give a qualitative explanation of the connection between the
mean free path of ammonia molecules in air and the time it
takes to smell the ammonia when a bottle is opened across the
room.

19. If molecules are not spherical, what meaning can we give to d
in Eq. 22-13 for the mean free path? In which gases would
the molecules act most nearly like rigid spheres?

20. In what sense is the mean free path a macroscopic property of
a gas rather than a microscopic one?

21. Since the actual force between molecules depends on the dis-
tance between them, forces can cause deflections even when
molecules are far from “contact” with one another. Further-
more, the deflection caused should depend on how long a
time these forces act and hence on the relative speed of the
molecules. (a) Would you then expect the measured mean
free path to depend on temperature, even though the density
remains constant? (b) If so, would you expect � to increase or

decrease with temperature? (c) How does this dependence en-
ter into Eq. 22-13?

22. When a can of mixed nuts is shaken, why does the largest nut
generally end up on the surface, even if it is denser than the
others?

23. Justify qualitatively the statement that, in a mixture of mole-
cules of different kinds in complete equilibrium, each kind of
molecule has the same Maxwellian distribution in speed that
it would have if the other kinds were not present.

24. A gas consists of N particles. Explain why vrms � vav regard-
less of the distribution of speeds.

25. What observation is good evidence that not all molecules of a
body are moving with the same speed at a given temperature?

26. The fraction of molecules within a given range �v of the rms
speed decreases as the temperature of a gas rises. Explain.

27. Figure 22-15 shows the distribution of the x component of the
velocities of the molecules in a container at a fixed tempera-
ture. (a) The distribution is symmetrical about vx � 0; make
this plausible. (b) What does the total area under the curve
represent? (c) How would the distribution change with an in-
crease in temperature? (d) What is the most probable value of
vx? (e) Is the most probable speed equal to zero? Explain.
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Figure 22-15. Question 27.

28. The slit system in Fig. 22-8 selects only those molecules
moving in the � x direction. Does this destroy the validity of
the experiment as a measure of the distribution of speeds of
molecules moving in all directions?

29. List examples of the Brownian motion in physical phenom-
ena.

30. A golf ball is suspended from the ceiling by a long thread.
Explain in detail why its Brownian motion is not readily ap-
parent.

31. Let 
n be the number of molecules per unit volume in a gas. If
we define 
n for a very small volume in a gas— say, one equal
to 10 times the volume of an atom— then 
n fluctuates with
time through the range of values zero to some maximum
value. How then can we justify a statement that 
n has a defi-
nite value at every point in a gas?

N(vx)

vx

0

EXERCISES

22-1 The Atomic Nature of Matter
1. Gold has a molar (atomic) mass of 197 g/mol. Consider a 2.56-

g sample of pure gold vapor. (a) Calculate the number of moles
of gold present. (b) How many atoms of gold are present?

2. (a) Find the number of molecules in 1.00 m3 of air at 20.0°C
and at a pressure of 1.00 atm. (b) What is the mass of this vol-
ume of air? Assume that 75% of the molecules are nitrogen
(N2) and 25% are oxygen (O2).



3. A steel tank contains 315 g of ammonia gas (NH3) at an ab-
solute pressure of 1.35 � 106 Pa and temperature 77.0°C. (a)
What is the volume of the tank? (b) The tank is checked later
when the temperature has dropped to 22.0°C and the absolute
pressure has fallen to 8.68 � 105 Pa. How many grams of gas
leaked out of the tank?

4. (a) Consider 1.00 mol of an ideal gas at 285 K and 1.00 atm
pressure. Imagine that the molecules are for the most part
evenly spaced at the centers of identical cubes. Using Avo-
gadro’s constant and taking the diameter of a molecule to be
3.00 � 10	 8 cm, find the length of an edge of such a cube
and calculate the ratio of this length to the diameter of a 
molecule. The edge length is an estimate of the distance be-
tween molecules in the gas. (b) Now consider a mole of water
having a volume of 18 cm3. Again imagine the molecules to
be evenly spaced at the centers of identical cubes and repeat
the calculation in (a).

5. Consider a sample of argon gas at 35.0°C and 1.22 atm pres-
sure. Suppose that the radius of a (spherical) argon atom is
0.710 � 10	 10 m. Calculate the fraction of the container vol-
ume actually occupied by atoms.

22-2 A Molecular View of Pressure
6. The mass of the H2 molecule is 3.3 � 10	 24 g. If 1.6 � 1023

hydrogen molecules per second strike 2.0 cm2 of wall at an
angle of 55° with the normal when moving with a speed of
1.0 � 105 cm/s, what pressure do they exert on the wall?

7. At 44.0°C and 1.23 � 10	 2 atm the density of a gas is
1.32 � 10	 5 g/cm3. (a) Find vrms for the gas molecules. (b)
Using the ideal gas law, find the number of moles per unit vol-
ume (molar density) of the gas. (c) By combining the results of
(a) and (b), find the molar mass of the gas and identify it.

8. A cylindrical container of length 56.0 cm and diameter
12.5 cm holds 0.350 moles of nitrogen gas at a pressure of
2.05 atm. Find the rms speed of the nitrogen molecules.

22-3 Mean Free Path
9. At standard temperature and pressure (0°C and 1.00 atm) the

mean free path in helium gas is 285 nm. Determine (a) the
number of molecules per cubic meter and (b) the effective di-
ameter of the helium atoms.

10. At 2500 km above the Earth’s surface the density is about
1.0 molecule/cm3. (a) What mean free path is predicted by
Eq. 22-13 and (b) what is its significance under these condi-
tions? Assume a molecular diameter of 2.0 � 10	 8 cm.

11. At what frequency would the wavelength of sound be on the
order of the mean free path in nitrogen at 1.02 atm pressure
and 18.0°C? Take the diameter of the nitrogen molecule to be
315 pm.

12. In a certain particle accelerator the protons travel around a
circular path of diameter 23.5 m in a chamber of 1.10 � 10	 6

mm Hg pressure and 295 K temperature. (a) Calculate the
number of gas molecules per cubic meter at this pressure. (b)
What is the mean free path of the gas molecules under these
conditions if the molecular diameter is 2.20 � 10	 8 cm?

13. In Sample Problem 22-4, at what temperature is the average
rate of collision equal to 6.0 � 109 s	 1? The pressure remains
unchanged.

22-4 The Distribution of Molecular Speeds
14. The speeds of a group of ten molecules are 2.0, 3.0, 4.0, . . . ,

11 km/s. (a) Find the average speed of the group. (b) Calcu-
late the root-mean-square speed of the group.

15. (a) Ten particles are moving with the following speeds: four
at 200 m/s, two at 500 m/s, and four at 600 m/s. Calculate the
average and root-mean-square speeds. Is vrms  vav? (b) Make
up your own speed distribution for the ten particles and show
that vrms � vav for your distribution. (c) Under what condition
(if any) does vrms � vav?

16. Calculate the root-mean-square speed of ammonia (NH3)
molecules at 56.0°C. An atom of nitrogen has a mass of
2.33 � 10	 26 kg and an atom of hydrogen has a mass of
1.67 � 10	 27 kg.

17. The temperature in interstellar space is 2.7 K. Find the root-
mean-square speed of hydrogen molecules at this tempera-
ture. (See Table 22-1.)

18. Verify Eq. 22-16 by evaluating dN(v)/dv � 0 and solving 
for v.

19. Evaluate the integral in Eq. 22-17 to verify Eq. 22-18.

20. Evaluate the integral in Eq. 22-19 to verify that (v2)av �
3kT/m.

21. Calculate the root-mean-square speed of smoke particles of
mass 5.2 � 10	 14 g in air at 14°C and 1.07 atm pressure.

22. At what temperature do the atoms of helium gas have the
same rms speed as the molecules of hydrogen gas at 26.0°C?

23. (a) Compute the temperatures at which the rms speed is equal
to the speed of escape from the surface of the Earth for mole-
cular hydrogen and for molecular oxygen. (b) Do the same
for the Moon, assuming the gravitational acceleration on its
surface to be 0.16g. (c) The temperature high in the Earth’s
upper atmosphere is about 1000 K. Would you expect to find
much hydrogen there? Much oxygen?

24. You are given the following group of particles (Nn represents
the number of particles that have a speed vn):

(a) Compute the average speed vav. (b) Compute the root-
mean-square speed vrms. (c) Among the five speeds shown,
which is the most probable speed vp for the entire group?

25. In the apparatus of Miller and Kusch (see Fig. 22-8) the
length L of the rotating cylinder is 20.4 cm and the angle � is
0.0841 rad. What rotational speed corresponds to a selected
speed v of 212 m/s?

26. It is found that the most probable speed of molecules in a gas
at temperature T2 is the same as the rms speed of the mole-
cules in this gas when its temperature is T1. Calculate T2 /T1.

27. Show that, for atoms of mass m emerging as a beam from a
small opening in an oven of temperature T, the most probable
speed is 

28. An atom of germanium (diameter � 246 pm) escapes from a
furnace (T � 4220 K) with the root-mean-square speed into
a chamber containing atoms of cold argon (diameter �
300 pm) at a density of 4.13 � 1019 atoms/cm3. (a) What is
the speed of the germanium atom? (b) If the germanium atom
and an argon atom collide, what is the closest distance be-

vp � √3kT/m.
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Nn vn (km/s)

2 1.0
4 2.0
6 3.0
8 4.0
2 5.0



tween their centers, considering each as spherical? (c) Find
the initial collision frequency experienced by the germanium
atom.

22-5 The Distribution of Molecular Energies
29. Calculate the fraction of particles in a gas moving with trans-

lational kinetic energy between 0.01kT and 0.03kT. (Hint: For
E �� kT, the term e	 E/kT in Eq. 22-25 can be replaced with
1 	 E/kT. Why?)

30. Find the fraction of particles in a gas having translational ki-
netic energies within a range 0.02kT centered on the most
probable energy Ep. (Hint: In this region, N(E) � constant.
Why?)

22-6 Equations of State for Real Gases
31. Estimate the van der Waals constant b for H2O knowing that

one kilogram of water has a volume of 0.001 m3. The molar
mass of water is 18 g/mol.

32. The value of the van der Waals constant b for oxygen is
32 cm3/mol. Compute the diameter of an O2 molecule.

33. Show that the constant a in the van der Waals equation can be
written in units of

.

22-7 Intermolecular Forces

energy per particle

particle density
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Figure 22-16. Problem 9.

Figure 22-17. Problem 10.

PROBLEMS

1. At 0°C and 1.000 atm pressure the densities of air, oxygen,
and nitrogen are, respectively, 1.293 kg/m3, 1.429 kg/m3, and
1.250 kg/m3. Calculate the fraction by mass of nitrogen in the
air from these data, assuming only these two gases to be pres-
ent.

2. Dalton’s law states that when mixtures of gases having no
chemical interaction are present together in a vessel, the pres-
sure exerted by each constituent at a given temperature is the
same as it would exert if it alone filled the whole vessel, and
that the total pressure is equal to the sum of the partial pres-
sures of each gas. Derive this law from kinetic theory, using
Eq. 22-8.

3. A container encloses two ideal gases. Two moles of the first
gas are present, with molar mass M1. Molecules of the second
gas have a molar mass M2 � 3M1, and 0.5 mol of this gas is
present. What fraction of the total pressure on the container
wall is attributable to the second gas? (Hint: See Problem 2.)

4. Calculate the mean free path for 35 spherical jelly beans in a
jar that is vigorously shaken. The volume of the jar is 1.0 L
and the diameter of a jelly bean is 1.0 cm.

5. The mean free path A of the molecules of a gas may be deter-
mined from measurements (for example, from measurement
of the viscosity of the gas). At 20.0°C and 75.0 cm Hg pres-
sure such measurements yield values of �(argon) � 9.90 �
10	 6 cm and �(nitrogen) � 27.5 � 10	 6 cm. (a) Find the ra-
tio of the effective cross-section diameters of argon to nitro-
gen. (b) What would be the value of the mean free path of ar-
gon at 20.0°C and 15.0 cm Hg? (c) What would be the value
of the mean free path of argon at 	 40.0°C and 75.0 cm Hg?

6. The probability that a gas molecule will travel a distance be-
tween r and r � dr before colliding with another molecule is
given by Ae	crdr, where A and c are constants. By setting the
average distance of travel to be equal to the mean free path,
find A and c in terms of the number of molecules N and the
mean free path �.

7. Two containers are at the same temperature. The first contains
gas at pressure p1 whose molecules have mass m1 with a root-
mean-square speed vrms,1. The second contains molecules of
mass m2 at pressure 2p1 that have an average speed vav,2 �
2vrms,1. Find the ratio m1:m2 of the masses of their molecules.

8. A gas, not necessarily in thermal equilibrium, consists of N
particles. The speed distribution is not necessarily Maxwel-

lian. (a) Show that vrms � vav regardless of the distribution of
speeds. (b) When would the equality hold?

9. Figure 22-16 shows a hypothetical speed distribution of N gas
molecules with N(v) � Cv2 for 0 � v � v0 and N(v) � 0 for
v  v0. Find (a) an expression for C in terms of N and v0, (b)
the average speed of the particles, and (c) the rms speed of the
particles.

N
(v

)

0
0 v0

v

10. A gas of N particles has the hypothetical speed distribution
shown in Fig. 22-17 [N(v) � 0 for v  2v0]. (a) Express a in
terms of N and v0. (b) How many of the particles have speeds
between 1.50v0 and 2.00v0? (c) Express the average speed of
the particles in terms of v0. (d) Find vrms.

0

a

0 v0

v

2v0

N
(v

)

11. For a gas in which all molecules travel with the same speed
vav, show that vrel � vav rather than vav (which is the result
obtained when we consider the actual distribution of molecu-
lar speeds). See Eq. 22-13.

√24
3



12. The Sun is a huge ball of hot ideal gas. The glow surrounding
the Sun in the ultraviolet image shown in Fig. 22-18 is the
corona— the atmosphere of the Sun. Its temperature and pres-
sure are 2.0 � 106 K and 0.030 Pa. Calculate the rms speed of
free electrons in the corona.

and that the different atoms combine at constant volume to
form molecules of mass ma � mb. Once the temperature re-
turns to its original value, what would be the ratio of the pres-
sure after combination to the pressure before?

14. Find all of the virial coefficients for a gas that obeys the van
der Waals equation of state.

15. The envelope and basket of a hot-air balloon have a combined
mass of 249 kg, and the envelope has a capacity of 2180 m3.
When fully inflated, what should be the temperature of the
enclosed air to give the balloon a lifting capacity of 272 kg
(in addition to its own mass)? Assume that the surrounding
air, at 18.0°C, has a density of 1.22 kg/m3.

16. Very small solid particles, called grains, exist in interstellar
space. They are continually bombarded by hydrogen atoms of
the surrounding interstellar gas. As a result of these collisions,
the grains execute Brownian movement in both translation
and rotation. Assume that the grains are uniform spheres of
diameter 4.0 � 10	 6 cm and density 1.0 g/cm3, and that the
temperature of the gas is 100 K. Find (a) The root-mean-
square speed of the grains between collisions and (b) the ap-
proximate rate (rev/s) at which the grains are spinning. (As-
sume that the average translational kinetic energy and average
rotational kinetic energy are equal.)

17. As Fig. 22-11 suggests, if the intermolecular forces are large
enough, the measured pressure p of a gas that obeys the van
der Waals equation of state could be zero. (a) For what value
of the volume per mole would this occur? (Hint: There are
two solutions; find them both and interpret them.) (b) Show
that there is a maximum temperature for zero pressure to oc-
cur, and find this maximum temperature in terms of the a and
b parameters in the van der Waals equation. (c) Assuming that
oxygen obeys the van der Waals equation with a � 0.138
J � m3/mol2 and b � 3.18 � 10	5 m3/mol, find the maximum
temperature for which p � 0 for oxygen and compare this
value with the normal boiling point of oxygen.
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Figure 22-18. Problem 12.

13. Consider a gas at temperature T occupying a volume V to
consist of a mixture of atoms—namely, Na atoms of mass ma

each having an rms speed va and Nb atoms of mass mb each
having an rms speed vb. (a) Give an expression for the total
pressure exerted by the gas. (b) Suppose now that Na � Nb

COMPUTER PROBLEMS

1. Write a program to simulate the random walk of a particle.
The particle starts at the origin, and can then take a step with
�x and �y increments assigned randomly between 	 1 and 1.
(a) Allow the particle to “walk” through 200 steps, and graph
the motion as was done in Fig. 22-1. Choose the scale of the
graph to just fit the data. (b) Allow the particle to walk
through 2000 steps, but this time plot the position of the parti-
cle only at the end of each 10 steps. Again, choose the scale
of the graph to just fit the data. (c) Repeat, but now allow the
particle to walk through 20,000 steps, and only plot the posi-
tion at the end of each 100 steps. Compare the three graphs.

How does the size of the graph grow with the number of
steps? Do the graphs look similar? If the graphs were shuf-
fled, would you be able to tell which was which?

2. Consider a van der Waals gas with a � 0.10 J � m3/mol2 and
b � 1.0 � 10	 4 m3/mol. (a) Find the temperature Tcr , pres-
sure pcr , and volume Vcr where and 
(b) Graph the pressure along isotherms as a function of vol-
ume for 0.80Tcr , 0.85Tcr , 0.90Tcr , 0.95Tcr , 1.00Tcr , 1.05Tcr ,
and 1.10Tcr . The graphs should extend from V � 0 to V �
5Vcr . (c) What is physically significant about the Tcr isotherm?

�2p/�V 2 � 0.�p/�V � 0
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THE FIRST LAW OF
THERMODYNAMICS

In earlier chapters we used the concept of heat,

without defining it carefully. In this chapter we explore the nature of heat in more detail. With the concepts

of work, heat, and internal energy now in hand, we return to the first law of thermodynamics—first dis-

cussed in Chapter 13—for a deeper analysis. We conclude by applying this law to a number of thermody-

namic processes, once more choosing the ideal gas as our system of interest.

23-1 HEAT: ENERGY IN TRANSIT

It is a common observation that if you place a cup of hot
coffee or a glass of ice water on a table at room tempera-
ture, the coffee will get colder and the ice water will get
warmer, the temperature of each approaching that of the
room. In each case the object will tend toward thermal
equilibrium with its environment.

We have mentioned earlier that such approaches to ther-
mal equilibrium must involve some sort of exchange of en-
ergy between the system and the environment. In Section
13-7 (which you should review) we defined the heat Q to be
the energy that is transferred, such as from the coffee to the
room or from the room to the ice water. Specifically:

Heat is energy that flows between a system and its envi-
ronment because of a temperature difference between
them.

Figure 23-1 summarizes this view. If the temperature TS of
a system is less than the temperature TE of the system’s en-
vironment, energy flows into the system as heat. We choose
our sign convention so that Q is positive in this case, which
tends to increase the internal energy Eint of the system.
Conversely, when TS � TE , energy flows out of the system
(thereby decreasing Eint), and we take Q for this case to be
negative.

Like other forms of energy, heat can be expressed in the
SI unit of joules (J). In Section 13-7 we listed the relation-
ship of the joule to other units in which heat energy is
sometimes measured.

Misconceptions about Heat
Heat is similar to work in that both represent ways of 
transferring energy. Neither heat nor work is an intrinsic
property of a system; that is, we cannot say that a system
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Figure 23-1. (a) If the temperature TS of a
system is less than the temperature TE of its envi-
ronment, heat is transferred into the system until
thermal equilibrium is established, as in (b). 
(c) If the temperature of a system is greater than
that of its environment, heat is transferred out of
the system.

Boundary

System 
TS

Environment
TE

Environment Environment

(a) (b) (c)

System System

Q > 0

TS < TE TS = TE TS > TE

Q = 0 Q < 0



“contains” a certain amount of heat or work. Unlike proper-
ties such as pressure, temperature, and internal energy, heat
and work are not properties of the state of the system; they
are not state functions. Instead, we say that a certain
amount of energy can be transferred, either into or out of
the system, as heat or as work. Both heat and work are thus
associated with a thermodynamic process— that is, with the
interaction between the system and its environment as the
system changes from one equilibrium state to another.

As we indicated in Section 13-7, in common usage, heat
is often confused with temperature or internal energy.
When cooking instructions say, “heat at 300 degrees,” it is
temperature (on the Fahrenheit scale!) that is being dis-
cussed. We also may hear someone refer to the “heat gener-
ated” in the brake linings of a car as it is braked to a halt. In
this case, both the temperature and the internal energy of
the brake linings have increased because of frictional work
done on them. The rise in temperature of the brake linings
did not occur because heat was transferred to the brake lin-
ings from some external object at a higher temperature.
There is no such object. The only transfer of heat in this
case is from the high-temperature brake linings to their im-
mediate surroundings.

23-2 THE TRANSFER OF HEAT

We know that heat is transferred between a system and its
environment when their temperatures differ. However, we
have not yet described the mechanisms by which this trans-
fer takes place. There are three of them: thermal conduc-
tion, convection, and radiation. We will discuss each in
turn.

Thermal Conduction
If you leave a poker in a fire for a long enough time, its
handle will become hot. Energy is transferred from the fire
to the handle by thermal conduction along the metal shaft.
In metals—as we shall learn in Chapter 49— some of the
atomic electrons are free to move about within the confines
of the metallic object and thus are able to pass along in-
creases in their kinetic energy from regions of higher tem-
perature to regions of lower temperature. In this way a re-
gion of rising temperature passes along the shaft to your
hand.

Consider a thin slab of a homogeneous material of
thickness �x and area A (Fig. 23-2). One face is held at a
constant temperature T and the other at a somewhat higher
constant temperature T � �T, both temperatures being uni-
form over their respective surfaces. Consider the rate 
H (� Q/�t) at which heat is transferred through the slab.
(The SI unit for H is the joule/second, which is the watt.)
Experiment shows that H is (1) directly proportional to A—
the more area available, the more heat can be transferred
per unit time; (2) inversely proportional to �x— the thicker

the slab, the less heat will be transferred per unit time; and
(3) directly proportional to �T— the larger the temperature
difference is, the more heat will be transferred.

We can summarize these experimental findings as

(23-1)

in which the proportionality constant k is called the thermal
conductivity of the material. The SI unit of k is the watt per
meter kelvin (W/m � K).

Table 23-1 shows some values of k for selected sub-
stances. A substance with a large value of k is a good ther-
mal conductor; one with a small value of k is a poor ther-
mal conductor or, equivalently, a good thermal insulator.
Figure 23-3 shows a patio in which concrete slabs are sepa-
rated by fir strips. As Table 23-1 shows, the thermal con-
ductivity of concrete is more than five times that of fir; heat
conduction from the (warmer) ground through the concrete

H � kA
�T

�x
,
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Figure 23-2. Heat Q flows through a rectangular slab of ma-
terial of thickness �x and area A.

Temperature
T + ∆T

∆x

Q

Area A
Temperature T

Conductivity, k R-Value
Material (W/m K) (ft2 F° h/Btu)

Metals
Stainless steel 14 0.010
Lead 35 0.0041
Aluminum 235 0.00061
Copper 401 0.00036
Silver 428 0.00034

Gases
Air (dry) 0.026 5.5
Helium 0.15 0.96
Hydrogen 0.18 0.80

Building materials
Polyurethane foam 0.024 5.9
Rock wool 0.043 3.3
Fiberglass 0.048 3.0
Fir 0.14 1.0
Concrete 0.80 0.18
Window glass 1.0 0.14

a Values are for room temperature. Note that values of k are given in SI
units and those of R in the customary British units. The R-values are for a
1-in. slab.

���

Table 23-1 Some Thermal Conductivities and 
R-Valuesa



and the fir to the (cooler) air causes the snow above the
concrete to melt first.

In choosing building materials, one often finds them
rated in terms of the thermal resistance or R-value, defined
by

(23-2)

where L is the thickness of the material through which the
heat is transfered. Thus the lower the conductivity is, the
higher is the R-value: good insulators have high R-values.
Numerically, the R-value is evaluated according to Eq. 23-2
expressed in the British units of ft2 � F°� h/Btu. The R-value
is determined for a certain thickness of material. For exam-
ple, a 1-in. thickness of fiberglass has whereas a 
1-in. thickness of wood has (and therefore conducts
heat at three times the rate of fiberglass). One inch of air
has but air is a poor thermal insulator because it can
transfer more heat by convection, and the thermal conduc-
tivity is thus not a good measure of the insulating value of
air. Table 23-1 shows the R-values of one-inch slabs of
some materials.

Now let us consider two applications of Eq. 23-1. We
first take the case of a long rod of length L and uniform
cross section A (Fig. 23-4a), in which one end is main-
tained at the high temperature TH and the other end at the
low temperature TL .* We call this a steady state situation:

R � 5,

R � 1
R � 3,

R �
L

k
,

the temperatures and the rate of heat transfer are constant in
time. In this situation, every increment of energy that enters
the rod at the hot end leaves it at the cold end. Put another
way, through any cross section along the length of the rod,
we would measure the same rate of heat transfer.

For this case, we can write Eq. 23-1 as

(23-3)

Here L is the thickness of the material in the direction of
heat transfer. The rate of heat flow H is a constant, and the
temperature decreases in linear fashion between the ends of
the rod (Fig. 23-4b).

We now consider the case in which the slab has infini-
tesimal thickness dx and temperature difference dT between
its faces. In this limit, we obtain

(23-4)

The derivative dT/dx is called the temperature gradient. We
choose the positive direction of the variable x in Eq. 23-4 to
be the direction in which heat is transferred. Because heat
flows in the direction of decreasing temperature, the gradi-
ent dT/dx is inherently negative. We introduce a minus sign
into Eq. 23-4 to ensure that H, the rate of heat transfer, will
be a positive quantity.

Equation 23-4 is particularly applicable in cases where
the cross section of the material through which heat is be-
ing transferred is not uniform. Sample Problem 23-2 is an
illustrative example.

Sample Problem 23-1. Consider a compound slab
consisting of two materials having different thicknesses, L1 and
L2 , and different thermal conductivities, k1 and k2 . If the tempera-
tures of the outer surfaces are T1 and T2 (with find the
rate of heat transfer through the compound slab (Fig. 23-5) in a
steady state.

T2 � T1),

H � �kA
dT

dx
.

H � kA
TH � TL

L
.
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Figure 23-3. Snow melts on the concrete, but not on the fir
strips between the concrete sections, because concrete is a better
thermal conductor than wood.

* The ends of the rod can be considered to be immersed in thermal reser-
voirs, which can supply or absorb an unlimited amount of heat while
maintaining a constant temperature. A thermal reservoir might be a mater-
ial of such large quantity or ability to absorb heat that the heat flowing to
or from the rod makes a negligible difference in its temperature. Or it
might be a mixture of steam and water maintained at the boiling point or
ice and water at the melting point, so that the heat absorbed causes a
change in phase but no change in temperature. Other possibilities for ther-
mal reservoirs include furnaces or refrigerators in which the heat is ulti-
mately converted to or from mechanical work while keeping the tempera-
ture fixed.

L

TH

T

TH TL

TL

x

Insulation

TH > TL

Fixed 
temperature

Fixed 
temperatureHeat

(a)

(b)

Figure 23-4. (a) Conduction of heat through an insulated
conducting rod. (b) The variation of temperature along the rod.



Solution Let Tx be the temperature at the interface between the
two materials. Then the rate of heat transfer through slab 2 is

and that through slab 1 is

In a steady state so that

Let H be the rate of heat transfer (the same for all sections). Then,
solving for Tx and substituting into either of the equations for H1

or H2 , we obtain

The extension to any number of sections in series is

(23-5)

Sample Problem 23-2. A thin, cylindrical metal pipe
is carrying steam at a temperature of The pipe has a
diameter of 5.4 cm and is wrapped with a thickness of 5.2 cm of
fiberglass insulation. A length m of the pipe passes
through a room in which the temperature is (a) At
what rate does heat energy pass through the insulation? (b) How
much additional insulation must be added to reduce the heat trans-
fer rate by half?

Solution (a) Figure 23-6 illustrates the geometry appropriate to
the calculation. In the steady state, the rate of heat transfer H will
be constant and will be the same for every thin cylindrical shell,
such as the one indicated by the dashed lines in Fig. 23-6. We can
regard this shell as a slab of material, having a thickness dr and an
area of 2�rD. Applying Eq. 23-4 to this geometry, we have

or

H
dr

r
� �2�kD dT.

H � �kA
dT

dr
� �k(2�rD) 

dT

dr

TR � 11	C.
D � 6.2

TS � 100	C.

H �
A(T2 � T1)


 (Ln /kn)
�

A(T2 � T1)


 Rn

.

H �
A(T2 � T1)

(L1 /k 1) � (L2 /k 2)
�

A(T2 � T1)

R1 � R2
.

k 2 A(T2 � Tx)

L2
�

k 1 A(Tx � T1)

L1
.

H2 � H1 ,

H1 �
k 1 A(Tx � T1)

L1
.

H2 �
k 2 A(T2 � Tx)

L2

We assume that the thin metal pipe is at the temperature of the
steam, so it does not enter into the calculation. We integrate from
the inner radius r1 of the insulation at temperature TS to the outer
radius r2 at temperature TR :

Removing the constant H from the integral on the left and carry-
ing out the integrations, we obtain

Solving for H and inserting the numerical values, we find

Note that, if we had not inserted a minus sign into Eq. 23-4, the
algebraic sign of H would not have been positive.
(b) To reduce the heat transfer rate by half, we must increase r2 to
the value r�2 such that the denominator in the above expression for
H becomes twice as large; that is,

Solving for r�2 , we find

Thus we need nearly four times the thickness of insulation to re-
duce the heat transfer by half! This effect is due to the increase in
the area, and therefore in the mass, contained in each thin slab as
we increase the radius in the cylindrical geometry. There is more
material available to conduct heat at the outer radii, and we must
therefore supply an increasing amount of insulation as r grows
larger. This differs from the linear geometry, in which the heat
transferred decreases linearly as the insulation thickness increases.
In the spherical geometry (which might be appropriate to calculat-
ing the heat energy transferred from the Earth’s core to its sur-
face), the calculation is still different; see Problem 3.

r�2 �
r 2

2

r1
�

(7.9 cm)2

2.7 cm
� 23 cm.

ln(r�2 /r1)

ln(r2 /r1)
� 2.

�
2� (0.048 W/m�K)(6.2 m)(89 K)

ln(7.9 cm/2.7 cm)
� 155 W.

H �
2�kD(TS � TR)

ln(r2 /r1)

H ln 
r2

r1
� �2�kD(TR � TS) � 2�kD(TS � TR).

�r2

r1

H
dr

r
� �2�kD �TR

TS

dT.
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Heat

k2 k1

T2 T1Tx

L2 L1

Figure 23-5. Sample Problem 23-1. Conduction of heat
through two layers of matter with different thermal conductivities.

Figure 23-6. Sample Problem 23-2. The inner surface (radius
r1) of the insulation on a cylindrical pipe is at the temperature TS

and the outer surface (radius r2) is at TR . The same heat Q flows
through every cylindrical shell of insulation, such as the intermedi-
ate one of thickness dr and radius r shown by the dashed lines.

r1

r2

r

D

Q

dr

Temperature TS Temperature TR



Convection
If you look at the flame of a candle or a match, you are
watching heat energy being transported upward by 
convection. Heat transfer by convection occurs when a
fluid, such as air or water, is in contact with an object
whose temperature is higher than that of its surroundings.
The temperature of the fluid that is in contact with the 
hot object increases, and (in most cases) the fluid ex-
pands. The warm fluid is less dense than the surrounding
cooler fluid, so it rises because of buoyant forces; see Fig.
23-7. The surrounding cooler fluid falls to take the place
of the rising warmer fluid, and a convective circulation is
set up.

Atmospheric convection plays a fundamental role in
determining the global climate patterns and in our daily
weather variations. Glider pilots and condors alike seek
the convective thermals that, rising from the warmer Earth
beneath, keep them aloft. Huge energy transfers take place
within the oceans by the same process. The outer region
of the Sun, called the photosphere, contains a vast array 
of convection cells that transport energy to the solar 
surface and give the surface a granulated appearance. 
Finally, there are thought to be huge convective cells
within the mantle of the Earth, their outermost surfaces
being the tectonic plates whose motions move the conti-
nents.

We have so far been describing free or natural con-
vection. Convection can also be forced, as when a fur-
nace blower causes air circulation to heat the rooms of a
house.

Radiation
Energy is carried from the Sun to us by electromagnetic
waves that travel freely through the near vacuum of the in-
tervening space. If you stand near a bonfire or an open fire-
place, you are warmed by the same process. All objects
emit such electromagnetic radiation because of their tem-
perature and also absorb some of the radiation that falls on
them from other objects. The higher the temperature of an
object is, the more it radiates. We shall see in Chapter 45 of
this text that the energy radiated by an object is propor-
tional to the fourth power of its (Kelvin) temperature. The
average temperature of our Earth, for example, levels off at
about 300 K because at that temperature the Earth radiates
energy into space at the same rate that it receives it from the
Sun; see Fig. 23-8.

23-3 THE FIRST LAW OF
THERMODYNAMICS

In Chapter 13 we discussed the fundamental concept of
conservation of energy in a system of particles. As we did
in the case of conservation of momentum in Chapter 7, we
concentrated our attention on a particular collection of par-
ticles or objects that we defined as our system. We drew an
imaginary boundary that separated the system from its envi-
ronment, and then we carefully accounted for all interac-
tions between the system and its environment. Sometimes,
as in the case of momentum conservation, we characterize
those interactions in terms of forces. Other times it is more
convenient to characterize those interactions in terms of en-
ergy transfer.

We are free to define our system in any convenient way,
as long as we are consistent and can account for all energy
transfers to or from the system. For example, we might de-
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Figure 23-7. Air rises by convection around a heated cylin-
der. The dark areas represent regions of uniform temperature.

Radiation from
the Earth

Solar
radiation

T
S
 =

 5
80

0 
K

Earth
TE = 300 K

Figure 23-8. Solar radiation is intercepted by the Earth and
is (mostly) absorbed. The temperature TE of the Earth adjusts it-
self to a value at which the Earth’s heat loss by radiation is just
equal to the solar heat that it absorbs.



fine the system to be a block of metal that is at a lower tem-
perature than its environment, so that the interaction in-
volves a transfer of heat from the environment to the block.
Or we might define a system to be water and ice that are
mixed together in an insulated container. In this case there
is an exchange of energy within the system but no interac-
tion with the environment.

For a thermodynamic system, in which internal energy
is the only type of energy the system may have, the law of
conservation of energy may be expressed as

(23-6)

In this section we examine this equation, which is a state-
ment of the first law of thermodynamics. In this equation:

Q is the energy transferred (as heat) between the system
and its environment because of a temperature difference
between them. A heat transfer that occurs entirely
within the system boundary is not included in Q.

W is the work done on (or by) the system by forces that
act through the system boundary. Work done by forces
that act entirely within the system boundary is not in-
cluded in W.

�Eint is the change in the internal energy of the system
that occurs when energy is transferred into or out of the
system as heat or work.

By convention we have chosen Q to be positive when heat
is transferred into the system and W to be positive when
work is done on the system. With these choices, positive
values of Q and W each serve to increase the internal en-
ergy of the system.*

Equation 23-6 is a restricted form of the general law of
conservation of energy. For example, the system as a whole
may be in motion in our frame of reference. That is, there
may be kinetic energy associated with the motion of the
center of mass of the system. If that were the case, we
would have to add a term �Kcm to the right side of Eq. 23-
6. However, in the systems we discuss the center of mass of

Q � W � �Eint .

the system will always be at rest in our reference frame so
that no such term is needed.

Figure 23-9 suggests how Eq. 23-6 is to be applied. The
system starts in an initial equilibrium state i in Fig. 23-9a,
in which the properties of the system, such as its internal
energy Eint , have definite constant values. We then permit
the system to undergo a thermodynamic process— that is,
to interact with its environment as in Fig. 23-9b—during
which work may be done and/or heat energy exchanged.
When the process is concluded, the system ends up in a fi-
nal equilibrium state f, in which the properties of the sys-
tem will, in general, have different constant values.

There are many processes by which we can take a sys-
tem from a specified initial state to a specified final state. In
general, the values of Q and W will differ, depending on the
process we choose. However, experiment shows that, al-
though Q and W may differ individually, their sum 
is the same for all processes that connect the given initial
and final states. As Eq. 23-6 suggests, this is the experimen-
tal basis for regarding the internal energy Eint as a true state
function— that is, as just as much an inherent property of a
system as pressure, temperature, and volume. To stress this
point of view, we can express the first law of thermodynam-
ics formally in these words:

In any thermodynamic process between equilibrium
states i and f, the quantity Q � W has the same value
for any path between i and f. This quantity is equal to
the change in value of a state function called the inter-
nal energy Eint .

The first law of thermodynamics is a general result that is
thought to apply to every process in nature that proceeds
between equilibrium states. It is not necessary that every
stage of the process be an equilibrium state, only the initial
and the final states. For example, we can apply the first law
to the explosion of a firecracker in an insulated steel drum.
We can account for the energy balance before the explosion
and after the system has returned to equilibrium, and for
this calculation we need not worry that the intermediate
condition is turbulent and that pressure and temperature are
not well defined.

Because of its generality, the first law is somewhat in-
complete as a description of nature. It tells us that energy
must be conserved in every process, but it does not tell us
whether any particular process that conserves energy can

Q � W
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Environment 

Initial state

(a) (b) (c)

Process Final state

Q W

Boundary

* Some authors define work done by the system to be positive, in which
case the first law would be written We have chosen to de-
fine work done on the system to be positive, so that thermodynamic work
will have the same sign convention that we used in earlier chapters for me-
chanical work.

Q � W � �Eint .

Figure 23-9. (a) A system in an initial
state in equilibrium with its surroundings.
(b) A thermodynamic process during which
the system may exchange heat Q or work W
with its environment. (c) A final equilibrium
state reached as a result of the process.



actually occur. The explosion of a firecracker, for example,
releases chemical energy stored in the gunpowder that
eventually raises the temperature of the gas in the drum. We
can imagine the hot gas giving its thermal energy back to
the combustion products, turning them once again into gun-
powder and reassembling the firecracker, but this never
happens. Conservation of energy works either way but na-
ture seems to go in a preferred direction. The second law of
thermodynamics, which we discuss in Chapter 24, accounts
for this distinction.

In thermal physics as in mechanics, you must be quite
clear as to the system to which you are applying fundamen-
tal laws such as Eq. 23-6. Figure 23-10, for example, shows
a heating coil immersed in water contained in an insulated
bucket. The current through the coil is supplied by an
(ideal) generator that is driven by a weight that falls with
constant speed. Let us see what values of Q, W, and �Eint

result for different arbitrary choices of what we choose to
call our system:

1. System � water alone. Heat is delivered to the water
from the coil so that No work is done because the
water does not move under the influence of any external
force that acts on it. Thus From the first law, then
(Eq. 23-6) �Eint � 0. The heat delivered to the water
causes its internal energy, and thus its temperature, to rise.

2. System � coil � weight. As long as the weight is
falling at a constant rate the coil maintains a constant tem-
perature. Thus the system is in a steady state, with no en-
ergy transfers occurring within the system boundary. Thus
�Eint � 0. Heat energy is transferred from coil to water out
of this system, so that Work is done by the (exter-
nal) gravitational force so that The system acts as a
conduit for energy, the work done by the gravitational force
being delivered as heat energy to the water.

W � 0.
Q � 0.

W � 0.

Q � 0.

3. System � coil � weight � water. Here the gravita-
tional force does work on this system so that The in-
sulation of the bucket prevents heat transfer to the environ-
ment so that From Eq. 23-6 then, �Eint � 0. Again,
work done by an external force produces an increase in the
internal energy, and thus the temperature, of the system.

4. System � coil � weight � water � Earth. In this
case the gravitational force is internal to the system so that

Also, as for system choice 3 above. From
Eq. 23-6 then, we must have �Eint � 0. The internal energy
of part of the system rises because of the rise in tempera-
ture of the water. However, the internal energy of another
part of the system falls—and by the same amount—be-
cause the falling weight and the Earth move closer together,
thus reducing their potential energy.

The lesson to learn from this analysis is to define your
system carefully and stay with that definition throughout
your analysis.

23-4 HEAT CAPACITY AND
SPECIFIC HEAT

We can change the state of a body by transferring energy to
or from it in the form of heat, or by doing work on the
body. One property of a body that may change in such a
process is its temperature T. The change in temperature �T
that corresponds to the transfer of a particular quantity of
heat energy Q will depend on the circumstances under
which the heat was transferred. For example, in the case of
a gas confined to a cylinder with a movable piston, we can
add heat and keep the piston fixed (thus keeping the volume
constant), or we can add heat and allow the piston to move
but keep the force on the piston constant (thus keeping the
gas under constant pressure). We can even change the tem-
perature by doing work on a system, such as by rubbing to-
gether two objects that exert frictional forces on one an-
other; in this case, no heat transfer need occur.

It is convenient to define the heat capacity C of a body
as the ratio of the amount of heat energy Q transferred to a
body in any process to its corresponding temperature
change �T; that is,

(23-7)

The word “capacity” may be misleading because it suggests
the essentially meaningless statement “the amount of heat a
body can hold,” whereas what is meant is simply the energy
per degree of temperature change that is transferred as heat
when the temperature of the body changes.

The heat capacity per unit mass of a body, called spe-
cific heat capacity or usually just specific heat, is character-
istic of the material of which the body is composed:

(23-8)c �
C

m
�

Q

m �T
.

C �
Q

�T
.

Q � 0,W � 0.

Q � 0.

W � 0.
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Generator

Weightm

Current

Water

Insulation

Figure 23-10. A heating coil is immersed in water, the elec-
tric current through the coil being provided by an (ideal) generator
that is driven by a falling weight. Values of Q, W, and �Eint in Eq.
23-6 depend critically on what parts of this arrangement we
choose to define as the “system.”



The heat capacity is characteristic of a particular object, but
the specific heat characterizes a substance. Thus we speak,
on one hand, of the heat capacity of a copper pot but, on the
other, of the specific heat of copper.

Neither the heat capacity of a body nor the specific heat
of a material is constant; both depend on the temperature
(and possibly on other variables as well, such as the pres-
sure). The previous equations give only average values for
these quantities in the temperature range of �T. In the limit,
as we can speak of the specific heat at a particular
temperature T.

We can find the heat that must be given to a body of
mass m, whose material has a specific heat c, to increase its
temperature from initial temperature Ti to final temperature
Tf by dividing the temperature change into N small intervals
�Tn , assuming that cn is constant in each small interval,
and summing the contributions to the total heat transfer
from all intervals 2, . . . , N. This gives

(23-9)

In the differential limit this becomes

(23-10)

where c may be a function of the temperature. At ordinary
temperatures and over ordinary temperature intervals, spe-
cific heats can be considered to be constants. For example,
the specific heat of water varies by less than 1% over the in-
terval from 0°C to 100°C. We can therefore write Eq. 23-10
in the more generally useful form

(23-11)Q � mc(Tf � Ti).

Q � m �Tf

Ti

c dT,

Q � �
N

n�1
mcn �Tn .

n � 1,

�T : 0,

Equation 23-8 does not define specific heat uniquely.
We must also specify the conditions under which the heat Q
is added to the material. One common condition is that the
specimen remain at normal (constant) atmospheric pressure
while we add the heat, but there are many other possibili-
ties, each leading, in general, to a different value for c. To
obtain a unique value for c we must indicate the conditions,
such as specific heat at constant pressure cp , specific heat at
constant volume cV, and so on.

Table 23-2 shows values for the specific heat capacities
of a number of common substances, measured under condi-
tions of constant pressure. Although the units are expressed
in terms of K, we can also work with temperatures in °C,
because a temperature difference in C° is equal to the same
temperature difference in K.

Sample Problem 23-3. A cube of copper of mass
75 g is placed in an oven at a temperature of 

until it comes to thermal equilibrium. The cube is then dropped
quickly into an insulated beaker containing a quantity of water of
mass The heat capacity of the beaker alone is

Initially the water and the beaker are at a tempera-
ture of What is the final equilibrium temperature Tf

of the system consisting of the copper � water � beaker?

Solution Once the copper cube has been dropped into the beaker,
no energy enters or leaves the system copper � water � beaker,
either as heat or as work, so that there is no change in the internal
energy of this system. However, there are changes in the internal
energies of the three objects—which we now regard as
subsystems— that make up the system. These three internal en-
ergy changes must add up to zero, or

However, for each object (because no work is done on any
object) so that, from Eq. 23-6, we must have

(23-12)

From Eqs. 23-7 and 23-11, the heat transfers for these subsystems
are:

Note that we have written the temperature differences as the final
temperature minus the initial temperature, so that Qw and Qb are
positive (indicating that heat energy is transferred into the water
and beaker subsystems, thus increasing their internal energies) and
Qc is negative (indicating that heat energy is transferred from this
subsystem, corresponding to a decrease in its internal energy).
Substituting these heat transfers into Eq. 23-12 above, we obtain

Solving for Tf and substituting, we have

�

� 19.6	C. 

(0.220 kg)(4190 J/kg �K)(12	C) � (190 J/K)(12	C) � (0.075 kg)(387 J/kg�K)(312	C)

(0.220 kg)(4190 J/kg �K) � 190 J/K � (0.075 kg)(387 J/kg �K)

Tf �
mwcwTi � CbTi � m cccT0

mwcw � Cb � m ccc

mwcw(Tf � Ti) � Cb(Tf � Ti) � mccc(Tf � T0) � 0.

Beaker:  Qb � Cb(Tf � Ti) 
Water:  Qw � mwcw(Tf � Ti)
Copper: Qc � mccc(Tf � T0) 

Qc � Qw � Qb � 0.

W � 0

�Eint, c � �Eint, w � �Eint, b � 0.

Ti � 12.0	C.
Cb � 190 J/K.

mw � 220 g.

T0 � 312	Cm c �
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Specific Molar
Heat Capacity Heat Capacity

Substance (J/kg K) (J/mol K)

Elemental solids
Lead 129 26.7
Tungsten 135 24.8
Silver 236 25.5
Copper 387 24.6
Carbon 502 6.02
Aluminum 900 24.3

Other solids
Brass 380
Granite 790
Glass 840
Ice (�10°C) 2220

Liquids
Mercury 139
Ethyl alcohol 2430
Seawater 3900
Water 4190

a Measured at room temperature and atmospheric pressure, except where
noted.

��

Table 23-2 Heat Capacities of Some Substancesa



Note that, because all temperatures were part of temperature dif-
ferences, we can use °C in this expression. In most thermody-
namic expressions, however, only Kelvin temperatures can be
used.

From the given data you can show that

The algebraic sum of these three heat transfers is indeed zero, as
Eq. 23-12 requires.

Heats of Transformation
When heat enters a solid or a liquid, the temperature of
the sample does not necessarily rise. Instead, the sample
may change from one phase or state (that is, solid, liq-
uid, or gas) to another. Thus ice melts and water boils,
absorbing heat in each case without a temperature change.
In the reverse processes (water freezes, steam condenses),
heat is released by the sample, again at a constant temper-
ature.

The amount of heat per unit mass that must be trans-
ferred to produce a phase change is called the heat of trans-
formation or latent heat (symbol L) for the process. The to-
tal heat transferred in a phase change is then

(23-13)

where m is the mass of the sample that changes phase. The
heat transferred during melting or freezing is called the
heat of fusion (symbol Lf), and the heat transferred during
boiling or condensing is called the heat of vaporization
(symbol Lv). Table 23-3 shows the heats of transformation
of some substances.

Knowledge of heat capacities and heats of transforma-
tion is important because we can measure a heat transfer by
determining either the temperature change of a material of
known heat capacity or the amount of a substance of known
heat of transformation converted from one phase to another.
For example, in low-temperature systems involving liquid
helium at 4 K, the rate at which helium gas boils from the
liquid gives a measure of the rate at which heat enters the
system.

Q � Lm,

Qw � 7010 J, Qb � 1440 J, and Qc � �8450 J.

Heat Capacities of Solids
Recall that the specific heat capacity of any material (SI
unit: J/kg � K) is the heat capacity per unit mass. In Table
23-2 we see that the values of this quantity vary widely
from one solid material to another. If we multiply the spe-
cific heat capacity by the molar mass M we obtain the mo-
lar heat capacity (SI unit: J/mol � K) or the heat capacity
per mole. Table 23-2 shows that, with few exceptions (see
carbon) the molar heat capacities of all solids have values
close to 25 J/mol � K. This remarkable experimental obser-
vation was first pointed out in 1819 by the French scientists
P. L. Dulong (1785–1838) and A. T. Petit (1791–1820).

In comparing molar heat capacities, we are, in effect,
comparing samples that contain the same number of moles
rather than samples that have the same mass. Samples with
the same number of moles have the same number of atoms,
and we conclude that the heat energy required per atom to
raise the temperature of a solid by a given amount seems—
with a few exceptions— to be about the same for all solids.
This is striking evidence for the atomic theory of matter.

Actually, molar heat capacities vary with temperature,
approaching zero as and approaching the so-called
Dulong–Petit value only at relatively high temperatures.
Figure 23-11 shows the variation for lead, aluminum, and
carbon. The low value of the molar heat capacity for carbon
listed in Table 23-2 occurs because, at room temperature,
carbon has not yet achieved its limiting value.*

T : 0
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Melting Heat of Boiling Heat of
Point Fusion Point Vaporization

Substancea (K) (kJ/kg) (K) (kJ/kg)

Hydrogen 14.0 58.6 20.3 452
Oxygen 54.8 13.8 90.2 213
Mercury 234 11.3 630 296
Water 273 333 373 2256
Lead 601 24.7 2013 858
Silver 1235 105 2485 2336
Copper 1356 205 2840 4730

a Substances are listed in order of increasing melting points.

Table 23-3 Some Heats of Transformation

Figure 23-11. The molar heat capacity of three elements as
a function of temperature. At high temperatures, the heat capaci-
ties of all solids approach the same limiting value. For lead and
aluminum, that value is nearly reached at room temperature; for
carbon it is not.

* The data plotted in Fig. 23-11 are the molar heat capacities at constant
volume. It is almost impossible to keep a solid from expanding as you in-
crease its temperature so the direct measurements of molar heat capacity
are made under conditions of constant pressure. The constant-volume val-
ues plotted in the figure are found by making a small theory-based correc-
tion to the measured constant-pressure values.
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We will learn in Section 23-6 that the Dulong–Petit
high-temperature limit for the molar heat capacity can be
understood on the basis of classical physics. However, to
understand the complete temperature variation of the molar
heat capacity requires an analysis based on quantum
physics. Einstein was quick to realize that measurements of
the molar heat capacity provide a sensitive probe of the
manner in which atoms absorb energy—a matter of deep
significance. Understanding the temperature variation of the
molar heat capacities of solids was the first problem to
which Einstein turned his attention after the introduction of
quantum theory, and he provided a preliminary but insight-
ful solution in 1906.*

The data plotted in Fig. 23-11 vary smoothly and char-
acterize materials that do not change their state in that tem-
perature range. That is, they do not melt or change from
one crystal structure to another. Measurements of heat ca-
pacity are useful in studying such changes. For example,
Fig. 23-12a shows the variation of the molar heat capacity
of tantalum for temperatures in the range 3–5.5 K. It seems
likely that something is happening to tantalum at K
and indeed it is. Above that temperature, tantalum conducts
electricity in the same way that copper and other familiar
electrical conductors do. Below that temperature, however,

T � 4.4

the electrical resistance of tantalum completely disappears;
it becomes a so-called superconductor.

For another example, Fig. 23-12b shows the specific heat
capacity of brass in the range 300–600°C. X-ray analysis
shows that a change in the crystal structure of brass occurs
at about 460°C, from a very ordered structure below that
temperature to a rather disordered structure above it.

23-5 WORK DONE ON OR BY
AN IDEAL GAS

So far in this chapter we have explored energy transfers as
heat in relation to the first law of thermodynamics. In this
section we explore energy transfers as work and—as we
have done before—we choose the ideal gas as our thermo-
dynamic system of interest. The stylized apparatus of Fig.
21-13 suggests how work might be done either on an ideal
gas or by it under various conditions.

If we increase the temperature of the gas in the cylinder
of Fig. 21-13, the gas expands and raises the piston against
gravity; the gas does (positive) work on the piston. The up-
ward force exerted on the piston by the gas due to its pres-
sure p is given by pA, where A is the area of the piston. By
Newton’s third law, the force exerted on the gas by the pis-
ton is equal and opposite to the force exerted on the piston
by the gas. Using Eq. 11-14, we can therefore write the
work W done on the gas as

(23-14)

Here dx represents the displacement of the piston, and the
minus sign enters because the force exerted on the gas by
the piston is in a direction opposite to the displacement of
the piston. If we reduce the temperature of the gas, it con-
tracts instead of expanding; the work done on the gas in
that case is positive. We assume that the process described
by Eq. 23-14 is carried out slowly, so that the gas can be
considered to be in thermal equilibrium at all intermediate
stages. Otherwise, the pressure would not be clearly defined
during the process, and the integral in Eq. 23-14 could not
easily be evaluated.

We can write Eq. 23-14 in a more general form that
turns out to be very useful. If the piston moves through a
distance dx, then the volume of the gas changes by an
amount Thus the work done on the gas is

(23-15)

The integral is carried out between the initial volume Vi and
the final volume Vf .

Equation 23-15 is the most general result for the work
done on a gas. It makes no reference to the outside agent that
does the work; it states simply that the work done on the gas
can be calculated from the pressure and the change in vol-
ume of the gas itself. Note that the algebraic sign of the work
is implicitly contained in Eq. 23-15; if the gas expands, dV is

W � �� p dV.

dV � A dx.

W � � Fx dx � � (�pA)dx.
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* Details of Einstein’s calculation can be found in Modern Physics, by
Kenneth S. Krane (Wiley, 1996), Chapter 10.

Figure 23-12. (a) The molar heat capacity of tantalum near
its superconducting transition temperature. (b) The specific heat
capacity of brass.
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positive and W is negative, p being a scalar quantity having
only positive values. Conversely, if the gas is compressed, dV
is negative and the work done on the gas is positive.

Equation 23-15 is analogous to the general result for the
work done on a system by a variable force F. You will re-
call from Fig. 11-12 that if we plot F against x, the work
done by F is simply the area under the curve between xi and
xf . Figure 23-13 shows the similar situation for the work
done on the gas. A graph in the form of Fig. 23-13 is called
a pV diagram, with p plotted on the vertical axis (like F)
and V plotted on the horizontal axis (like x). The magnitude
of the work done on the gas is equal to the area under the
curve representing the process on a pV diagram. The sign
of W is determined according to whether (in which
case W is negative, as in Fig. 23-13), or (in which
case W is positive). Once again, the work done on the gas is
negative if the process increases the volume of the gas and
positive if the process reduces the volume of the gas.

The pressure force is clearly nonconservative, as Fig.
23-14 demonstrates. Let us suppose we wish to take our
ideal gas from the initial conditions Vi and pi (point A) to
the final conditions Vf and pf (point D). There are many dif-
ferent paths we can take between A and D, of which two are
shown in Fig. 23-14. Along path 1 (ABD), we first increase
the pressure from pi to pf at constant volume. (We might
accomplish this by turning up the control knob on the ther-
mal reservoir, increasing the temperature of the gas, while
we simultaneously add just the right amount of additional
weight to the piston to keep it from moving.) We then fol-

Vf � Vi

Vf � Vi

low path BD by increasing the temperature but adding no
additional weight to the piston, so that the pressure remains
constant at the value pf while the volume increases from Vi

to Vf . The work done in this entire procedure is the area of
the rectangle BDFE (the area below the line BD).

We can find W1 , the work done on the gas along path 1,
by considering the work done along the two segments AB
and BD:

Because the volume is constant along AB, it follows from
Eq. 23-15 that Along BD, the pressure is constant
(at the value pf) and comes out of the integral. The result is

To follow path 2 (ACD), we first increase the tempera-
ture while holding the pressure constant at pi (that is,
adding no additional weight to the piston), so that the vol-
ume increases from Vi to Vf . We then increase the pressure
from pi to pf at the constant volume Vf by increasing the
temperature and adding weight to the piston to keep it from
moving. The work done in this case is the area under the
line AC or the rectangle ACFE. We can compute this as

Clearly and the work depends on the path.
We can perform a variety of operations on the gas and

evaluate the work done in each case.

Work Done at Constant Volume
The work is zero for any process in which the volume re-
mains constant (as in segments AB and CD in Fig. 23-14):

(23-16)

We deduce directly from Eq. 23-15 that if V is con-
stant. Note that it is not sufficient that the process start and
end with the same volume; the volume must be constant
throughout the process for the work to vanish. For example,
consider process ACDB in Fig. 23-14. The volume starts
and ends at Vi , but the work is certainly not zero. The work
is zero only for vertical paths such as AB, representing a
process at constant volume.

Work Done at Constant Pressure
Here we can easily apply Eq. 23-15, because the constant p
comes out of the integral:

(23-17)� �p(Vf � Vi) (constant p).

W � �p � dV

W � 0

W � 0 (constant V ).

W1  W2 ,

� �� p dV � 0 � �pi �Vf

Vi

dV � �pi(Vf � Vi).

W2 � WAC � WCD

� 0 � � p dV � �pf �Vf

Vi

dV � �pf (Vf � Vi).

W1 � WAB � WBD

WAB � 0.

W1 � WAB � WBD .
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p

Vi Vf

V

W

Figure 23-13. The magnitude of the work W done on a gas
by a process of arbitrarily varying pressure is equal to the area un-
der the pressure curve on a pV diagram between the initial volume
Vi and the final volume Vf .

Figure 23-14. A gas is taken from the pressure and volume
at point A to the pressure and volume at point D along two differ-
ent paths, ABD and ACD. Along path 1 (ABD) the work is equal to
the area of the rectangle BDFE, whereas along path 2 (ACD) the
work is equal to the area of the rectangle ACFE.
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Examples are the segments AC and BD in Fig. 23-14. Note
that the work done on the gas is negative for both of these
segments, because the volume increases in both processes.

Work Done at Constant Temperature
In the gas expands or contracts at constant temperature, the
relationship between p and V, given by the ideal gas law

is

On a pV diagram, the plot of the equation is
exactly like a plot of the equation on an xy
coordinate system: it is a hyperbola, as shown in Fig. 23-15.

A process done at constant temperature is called an
isothermal process, and the corresponding hyperbolic curve
on the pV diagram is called an isotherm. To find the work
done on a gas during an isothermal process, we use Eq. 23-
15, but we must find a way of carrying out the integral
when p varies. To do this we use the ideal gas equation of
state to write and thus

where the last step can be made because we are taking T to
be a constant. Carrying out the integral, we find

(23-18)

Note that this is also negative whenever (ln x is
positive for and positive whenever 

Work Done in Thermal Isolation
Let us remove the gas cylinder in Fig. 21-13 from contact
with the thermal reservoir and rest it on a slab of insulating
material. The gas will then be in complete thermal isolation
from its surroundings; if we do work on it, its temperature

Vf � Vi .x � 1)
Vf � Vi

W � �nRT ln 
Vf

Vi
(constant T ).

W � ��Vf

Vi

p dV � ��Vf

Vi

nRT

V
dV � �nRT �Vf

Vi

dV

V
,

p � nRT/V,

xy � constant
pV � constant

pV � constant.
( pV � nRT ),

will change, in contrast to its behavior when it was in con-
tact with the thermal reservoir. A process carried out in
thermal isolation is called an adiabatic process.

If we allow the gas to change its volume with no other
constraints, we state—and we will derive it in Section 23-
8— that the path it will follow is represented on a pV dia-
gram by the parabola-like curve

(23-19)

as shown in Fig. 23-16. The dimensionless parameter �,
called the ratio of specific heats, must be determined by ex-
periment for any particular gas. Its values are typically in
the range 1.1–1.8. Because � is greater than 1, the curve

constant is a bit steeper than the curve con-
stant at any point at which they intersect. As Fig. 23-16
shows, this means that the work done by the gas in expand-
ing adiabatically from Vi to Vf will be somewhat smaller in
magnitude than the work done in expanding isothermally
between these same two volumes.

We can find the “constant” in Eq. 23-19 if we know �
and also the pressure and volume at any particular point on
the curve. If we choose the initial point pi , Vi in Fig. 23-16,
the “constant” has the value piVi

� and we can write Eq. 23-
19 as

or

(23-20)

We can now find the adiabatic work:

� �
piVi

�

� � 1
 (Vi

1�� � Vf
1��). 

� ��Vf

Vi

piVi
�

V �
dV � �piVi

� �Vf

Vi

dV

V �

W � ��Vf

Vi

p dV

p �
piVi

�

V �
.

pV � � piVi
�

pV �pV � �

pV � � constant,
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Figure 23-15. A process done at constant temperature
(isothermal process) is represented by a hyperbola on a pV dia-
gram. The work done in changing the volume is equal to the area
under the curve between Vi and Vf .

Figure 23-16. An adiabatic process is represented on a pV
diagram by the hyperbola-like curve constant. The work
done in changing the volume is equal to the area under the curve
between Vi and Vf . Because � � 1, the adiabatic curve has a
steeper negative slope than the isothermal curve constant.pV �

pV � �

p

Vi Vf

V

W

pi

pf

p pV = constant

pV γ  = constant

Vi Vf

V

W



By bringing a factor of inside the parentheses, we can
write the adiabatic work in the form

(23-21)

If the gas expands, then and since a number less
than 1 raised to any positive power remains less than one,
the work is again shown to be negative. By further using

we can also write the adiabatic work in
equivalent form as

(23-22)

Sample Problem 23-4. A sample of gas consisting of
0.11 mol is compressed from a volume of 4.0 m3 to 1.0 m3 while
its pressure increases from 10 to 40 Pa. Compare the work done
along the three different paths shown in Fig. 23-17.

Solution Path 1 consists of two processes, one at constant pres-
sure followed by another at constant volume. The work done at
constant pressure is found from Eq. 23-17,

The work done at constant volume is zero (see Eq. 23-16), so the
total work for path 1 is

Path 2 represents an isothermal process, along which con-
stant. Thus The work done during the isother-
mal process can be found using Eq. 23-18, substituting piVi for
nRT, which gives

Path 3 consists of a process at constant volume, for which the
work is again zero, followed by a process at constant pressure, and
so the total work for path 3 is

W3 � 0 � pf(Vf � Vi) � �(40 Pa)(1.0 m3 � 4.0 m3) � 120 J.

W2 � �piVi ln 
Vf

Vi
� �(10 Pa)(4.0 m3) ln 

1.0 m3

4.0 m3 � 55 J.

piVi � pfVf � nRT.
T �

W1 � 30 J � 0 � 30 J.

W � �p(Vf � Vi) � �(10 Pa)(1.0 m3 � 4.0 m3) � 30 J.

W �
1

� � 1
 ( pfVf � piVi) (adiabatic).

piVi
� � pfVf

�,

Vi /Vf � 1,

W �
piVi

� � 1 �� Vi

Vf
�

��1

� 1�.

Vi
��1 Note that the work is positive for all three processes, and that the

magnitudes increase according to the area under each path on the
pV diagram.

Sample Problem 23-5. (a) Find the bulk modulus B
for an adiabatic process involving an ideal gas. (b) Use the adia-
batic bulk modulus to find the speed of sound in the gas as a func-
tion of temperature. Evaluate for air at room temperature (20°C).

Solution (a) In the differential limit, the bulk modulus (see Eq.
15-5) can be written

For an adiabatic process, Eq. 23-19 gives, tak-
ing the derivative with respect to V,

or

Thus

for an adiabatic process involving an ideal gas.
(b) In Section 19-3, we determined that the speed of sound in a
gas can be written

where B is the bulk modulus and � is the density of the gas. Using
the result of part (a) and the ideal gas equation of state

we obtain

The quantity �V is the total mass of the gas, which can also be
written nM, where n is the number of moles and M is the molar
mass. Making this substitution, we have

Thus the speed of sound in a gas depends on the square root of the
temperature. For air, the average molar mass is about 0.0290
kg/mol, and the parameter � is about 1.4. Thus for 

23-6 THE INTERNAL ENERGY
OF AN IDEAL GAS

In Section 22-4 we showed that the average translational ki-
netic energy per molecule of an ideal monatomic gas is

(23-23)

For such a gas this is the entire store of internal energy be-
cause there is no other form the internal energy can take.
The molecules of an ideal monatomic gas have no potential

Ktrans � 3
2 kT.

v � √ (1.4)(8.31 J/mol �K)(293 K)

0.0290 kg/mol
� 343 m/s.

� 293 K,
T � 20	C

v � √ �RT

M
.

v � √ �p

�
� √ �(nRT/V )

�
� √ �nRT

�V
.

(pV � nRT ),

v � √B/�,

B � �p

V
dp

dV
� ��p.

d( pV �)

dV
� � dp

dV � V � � p(�V ��1) � 0,

( pV � � constant)

B � �V
dp

dV
.
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Figure 23-17. Sample Problem 23-4. A gas is taken from
initial point i to final point f along three different paths. Path 2 is
an isotherm.
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energy; they cannot vibrate, nor is any energy associated
with their rotation.

The total internal energy of n moles of an ideal
monatomic gas is then the number of molecules 
times the average energy per molecule:

or
(23-24)

Here (see Eq. 21-17) we have replaced NAk with its equal,
the molar gas constant R.

Equation 23-24 shows that, if we change the internal en-
ergy of the gas—by doing work on it or transferring heat to
it— its temperature will change, so that

(23-25)

Let us now consider, not the monatomic or point mole-
cule that has been the focus of our attention so far, but a mol-
ecule consisting of two point particles separated by a given
distance. This model gives a better description of diatomic
gases, such as O2 , N2 , or CO (carbon monoxide). Such a
molecule can acquire kinetic energy by rotating about its
center of mass, and we need to consider contributions to the
internal energy of the gas from the rotational motions of its
molecules as well as from their translational motions.

The rotational kinetic energy of a diatomic molecule, il-
lustrated in Fig. 23-18, can be written

where I is the rotational inertia of the molecule for rotation
about a particular axis. For point masses, no kinetic energy
is associated with rotation about the z axis because 
The total kinetic energy of a diatomic molecule is the sum
of its translational and rotational terms, or

(23-26)K � 1
2 mvx

2 � 1
2 mvy

2 � 1
2 mvz

2 � 1
2 Ix � x

2 � 1
2 Iy � y

2.

Iz � 0.

Krot � 1
2 Ix � x

2 � 1
2 I y � y

2,

�Eint � 3
2 nR �T.

Eint � 3
2 nRT.

Eint � (nNA)(Ktrans) � (nNA)(3
2 kT )

(� nNA)

To find the total internal energy of the gas, we must find the
average energy of a single molecule and then multiply by
the number of molecules.

The five terms in Eq. 23-26 represent independent ways
in which a molecule can absorb energy and are called de-
grees of freedom. A monatomic gas has three degrees of
freedom, since it has only translational kinetic energy

As Eq. 23-26 shows, a diatomic molecule has five de-
grees of freedom, three translational degrees and two rota-
tional degrees. If we increase the internal energy of such a
gas by an amount �Eint , it is clear (because all directions in
the gas are equivalent) that the three translational degrees
will absorb the same amount of energy. Similarly, the two
rotational degrees will absorb the same amount of energy
but there seems to be no reason why these two amounts
should be the same.

However, James Clerk Maxwell derived a theorem
called the equipartition of energy theorem, which asserts
that the energy of a molecule is shared equally, on average,
among all independent ways in which the molecule can ab-
sorb energy. Specifically,

When the number of molecules is large, the average en-
ergy per molecule is for each independent degree of
freedom.

We have already encountered an equipartition of energy sit-
uation in our studies of the one-dimensional simple har-
monic oscillator. In this case energy can be stored in either
kinetic or potential form and, as Fig. 17-8 suggests, on av-
erage the available energy is shared equally between these
two forms.

Let us use the equipartition of energy theorem to write
an expression for the internal energy of a monatomic ideal
gas. The average energy per molecule is (3 degrees of
freedom � for each degree of freedom). The total en-
ergy for N molecules is

(23-27)

Equation 23-27 is identical with Eq. 23-24. For a diatomic
gas, with five degrees of freedom, the result is

(23-28)

A polyatomic gas (more than two atoms per molecule)
generally has three possible axes of rotation (unless 
the three atoms lie in a straight line, as for CO2). The 
kinetic energy of a single molecule would then have a
sixth term, For six degrees of freedom, the internal
energy is

(23-29)

Equations 23-27, 23-28, and 23-29 show us a fact that is in-
herent in the equipartition of energy theorem—namely,
that no matter what the nature of its molecules,

Eint � N( 6
2 kT ) � 3nRT (polyatomic gas).

1
2Iz�z

2.

Eint � N( 5
2 kT ) � 5

2 nRT (diatomic gas).

Eint � N( 3
2 kT ) � 3

2 nRT (monatomic gas).

1
2 kT

3
2 kT

1
2 kT

� 1
2 mvy

2 � 1
2 mvz

2.)(K � 1
2 mvx

2
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Figure 23-18. A diatomic molecule, consisting of two atoms
considered to be point particles, is shown with its axis along the z
axis of a coordinate system. In this orientation, the rotational iner-
tia for rotations about the z axis is zero, and thus there is no term
in the kinetic energy corresponding to such rotations. The rota-
tional inertias for rotations about the x and y axes are not zero,
and thus there are kinetic energy terms for such rotations.
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z



The internal energy of an ideal gas depends only on its
temperature.

It does not depend on its pressure or its volume.
So far we have considered only the contributions of the

translational or rotational kinetic energy to the internal en-
ergy of the gas. Other kinds of energy may also contribute.
For example, a diatomic molecule that is free to vibrate
(imagine two point atoms connected by a spring) has two
additional contributions to the energy: the potential energy
of the spring and the kinetic energy of the oscillating
atoms. Thus a diatomic molecule free to translate, rotate,
and vibrate would have degrees of free-
dom. For polyatomic molecules, the number of vibrational
terms can be greater than two. The vibrational modes in the
internal energy are usually apparent only at high gas tem-
peratures, where the more violent collisions can cause the
molecule to vibrate.

Molar Heat Capacities of Solids
We can also apply the equipartition of energy theorem to
the molar heat capacities of solids, a topic that we dis-
cussed in Section 23-4. As Fig. 21-9 suggests, an atom in a
solid is fixed in a lattice. The atom can oscillate back and
forth about its equilibrium position in three independent di-
rections, thus displaying three degrees of freedom associ-
ated with its kinetic energy. The atom also has potential en-
ergy, associated with the forces between it and its
neighboring atoms, again in three independent directions.
This gives rise to three more degrees of freedom for a total
of six. The average energy per atom is then 
3kT. For a sample containing N atoms, the total internal en-
ergy is then

in which n is the number of moles.
Suppose that energy Q is added to the solid sample as

heat, raising its temperature by �T. Because no work is
done in this process the first law of thermody-
namics yields

The molar heat capacity is then

As Fig. 23-11 shows, this is simply the experimentally ob-
served high-temperature limit for the molar heat capacities
of solids. Note that, although the (classical) equipartition of
energy theorem gives the correct value for the molar heat
capacity in the limit of sufficiently high temperatures, it
fails at lower temperatures. In this region only a treatment
based on quantum physics proves to agree with experiment.

� (3)(8.31 J/mol �K) � 25 J/mol�K.

C �
Q

n �T
�

3nR �T

n �T
� 3R

Q � �Eint � 3nR �T.

(Q � W � �Eint)
(W � 0),

Eint � N(3kT ) � 3nNAkT � 3nRT,

6 � 1
2 kT �

7(� 3 � 2 � 2)

23-7 HEAT CAPACITIES OF AN
IDEAL GAS

We have used the equipartition of energy theorem to calcu-
late the molar heat capacity of a solid. Let us now use it to
calculate the molar heat capacities of an ideal gas. The
measured heat capacity of a substance depends on the man-
ner in which the heat is added to it. In the case of a gas, for
example, is the volume held constant during the process? Is
the pressure held constant? We explore both possibilities.

Molar Heat Capacity at Constant Volume
Let us introduce n moles of a gas into a cylinder fitted with
a piston. We fix the position of the piston so that there 
can be no volume change and thus no work done, and then
we add an amount of energy Q to the gas as heat. From the
first law of thermodynamics (Eq. 23-6) we have, because
W � 0,

(23-30)

We let CV represent the molar heat capacity at constant vol-
ume, so that

(23-31)

From Eq. 23-27, for a monatomic ideal gas 
and so

. (23-32)

Repeating this derivation using Eqs. 23-28 and 23-29 for
diatomic and polyatomic gases, we find

, (23-33)

. (23-34)

Molar Heat Capacity at Constant Pressure
Figure 23-19 shows two ideal gas isotherms differing in
temperature by �T. Path AB is the constant-volume process
considered previously. Path AC is a constant-pressure

CV � 3R � 24.9 J/mol�K (polyatomic gas)

CV � 5
2R � 20.8 J/mol�K (diatomic gas)

CV � 3
2 R � 12.5 J/mol�K (monatomic gas)

3
2 nR �T,

�Eint �

CV �
Q

n �T
�

�Eint

n �T
.

Q � �Eint .
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Figure 23-19. Two ideal-gas isotherms differing in tempera-
ture by �T are connected by the constant-volume process AB and
the constant-pressure process AC.
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process that connects the same two isotherms. In Section
23-6 we established that the internal energy of an ideal gas
depends only on the temperature. For all paths connecting
the two isotherms of Fig. 23-19, the change in internal en-
ergy has the same value, because all paths correspond to the
same change in temperature. In particular, the change in in-
ternal energy is the same for paths AB and AC.

(23-35)

There are two contributions to the change in internal en-
ergy along path AC— the heat Q transferred to the gas and
the work W done on the gas:

(23-36)

Note the sign conventions that are implicit in Eq. 23-36.
Heat transferred from the environment is considered to be
positive and tends to increase the internal energy. If the vol-
ume decreases, the work done on the gas by the environ-
ment is positive, which tends to increase the internal en-
ergy. If the volume increases we regard the gas as
doing work on the environment, which tends to decrease
the supply of internal energy of the gas.

The heat transferred in a constant-pressure process can
be written

(23-37)

where Cp is the molar heat capacity at constant pressure.
Equation 23-15 gives the work along path AC as

which can be written for this constant-pres-
sure process using the ideal gas law as

(23-38)

Using Eq. 23-31 to obtain the change in internal energy
along path AB, we can substitute into Eq. 23-36 to find

or
(23-39)

From Eqs. 23-32 to 23-34 we then find the molar heat ca-
pacities at constant pressure:

(23-40)

(23-41)

(23-42)

Another parameter of interest, which can be directly
measured independently of the values of Cp and CV, is the
ratio of molar heat capacities �, defined as

(23-43)

Because the specific heat capacity is related to the molar
heat capacity by where M is the molar mass of
the substance, we can also express � as For this rea-
son � is often called the ratio of specific heats or specific
heat ratio. We used � previously in the expression for the

cp /cV .
c � C/M,

� �
Cp

CV
.

Cp � 4R � 33.3 J/mol�K (polyatomic gas).

Cp � 7
2R � 29.1 J/mol�K (diatomic gas), 

Cp � 5
2R � 20.8 J/mol�K (monatomic gas),

Cp � CV � R.

nCV �T � nCp �T � nR �T

W � �p �V � �nR �T.

W � �p �V,

Q � nCp �T,

(W � 0),

�Eint, AC � Q � W.

�Eint, AB � �Eint, AC .

speed of sound in a gas (Sample Problem 23-5) and in the
relationship between pressure and volume in an adiabatic
process (Eq. 23-19).

Using Eqs. 23-40 to 23-42 for Cp and Eqs. 23-32 to 23-
34 for CV, we obtain

(23-44)

(23-45)

(23-46)

Table 23-4 shows a comparison of observed values with the
predictions of the ideal gas model. The agreement is excel-
lent.

Sample Problem 23-6. A family enters a winter vaca-
tion cabin that has been unheated for such a long time that the in-
terior temperature is the same as the outside temperature (0°C).
The cabin consists of a single room of floor area 6 m by 4 m and
height 3 m. The room contains one 2-kW electric heater. Assum-
ing that the room is perfectly airtight and that all the heat from the
electric heater is absorbed by the air, none escaping through the
walls or being absorbed by the furnishings, how long after the
heater is turned on will the air temperature reach the comfort level
of 21°C 

Solution Let us assume that the air in the room (which is mostly
nitrogen and oxygen) behaves like an ideal diatomic gas, so that
(according to Table 23-4) The volume of the
room is

Since 1 mole of an ideal gas occupies 22.4 L at 0°C and 1 atm, the
number of moles is

If the room is airtight (see the discussion below), we can regard
the absorption of heat to take place at constant volume, for which

� 1.4 � 106 J. 
Q � nCV �T � (3.2 � 103 mol)(20.8 J/mol �K)(21 K)

n � (72,000 L)/(22.4 L/mol) � 3.2 � 103 mol.

V � (6 m)(4 m)(3 m) � 72 m3 � 72,000 L.

CV � 20.8 J/mol�K.

(� 70	F)?

� � 4
3 � 1.33 (polyatomic gas).

� � 7
5 � 1.40 (diatomic gas), 

� � 5
3 � 1.67 (monatomic gas),
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Cp CV

Gas (J/mol K) (J/mol K) (J/mol K) �

Monatomic
Ideal 20.8 12.5 8.3 1.67
He 20.8 12.5 8.3 1.66
Ar 20.8 12.5 8.3 1.67

Diatomic
Ideal 29.1 20.8 8.3 1.40
H2 28.8 20.4 8.4 1.41
N2 29.1 20.8 8.3 1.40
O2 29.4 21.1 8.3 1.40

Polyatomic
Ideal 33.3 24.9 8.3 1.33
CO2 37.0 28.5 8.5 1.30
NH3 36.8 27.8 9.0 1.31

���
Cp � CV

Table 23-4 Molar Heat Capacities of Gases



The heater delivers a power P of 2 kW and can provide this en-
ergy in a time of

or about 12 min.
This problem contained some very unphysical assumptions

about the absorption of heat in this room. Try to estimate the heat
capacity of some pieces of furniture to see whether neglecting
their effect on the heat absorption (and thus on the time to bring
the room to comfort level) was reasonable. The heat loss through
the walls of the room, which we considered in Section 23-2, also
will have a considerable effect on this problem.

Is the assumption about the room being airtight reasonable? If
the air in the cabin were originally at a pressure of 1 atm when the
temperature was 0°C, what will be the interior pressure at 21°C?
What will be the resulting outward force on the roof and walls? A
more reasonable assumption might be that the room is not quite
airtight, but that as the temperature rises some air will escape,
thereby keeping the pressure constant. See Problem 16 for a cal-
culation based on this assumption.

Sample Problem 23-7. Consider once again the situa-
tion of Sample Problem 23-4, in which 0.11 mole of an ideal gas
begins at the initial point with volume and pressure

Pa. Let the cylinder be removed from the thermal reser-
voir, and let us compress the gas adiabatically until its volume is

m3. Find the change in internal energy of the gas, assum-
ing it to be helium (a monatomic gas with � � 1.66).

Solution To find the change in internal energy, we can use Eq.
23-27 if we know the change in temperature. We can find the ini-
tial temperature using the ideal gas law (since pi and Vi are
known), and we can find the final temperature if we know the
pressure and volume of the final point. The final pressure can be
found using the adiabatic relationship of Eq. 23-19:

On the pV diagram of Fig. 23-17, the final point reached in the
adiabatic process lies vertically far above the final point reached in
the isothermal process (40 Pa). This is consistent with the adia-
batic curves being steeper than the isothermal curves, as shown in
Fig. 23-16.

We can now proceed to find the initial and final temperatures
and then the change in internal energy:

The change in internal energy is positive. This is consistent with
the first law of thermodynamics because 
for this adiabatic process and the work done in compressing the
gas is positive.

Q � 0W � �Eint)(Q �

� 3
2 (0.11 mol)(8.31 J/mol�K)(109 K � 44 K) � 89 J.

�Eint � 3
2 nR�T

Tf �
pfVf

nR
�

(100 Pa)(1.0 m3)

(0.11 mol)(8.31 J/mol�K)
� 109 K. 

Ti �
piVi

nR
�

(10 Pa)(4.0 m3)

(0.11 mol)(8.31 J/mol�K)
� 44 K. 

pf �
piVi

�

Vf
�

�
(10 Pa)(4.0 m3)1.66

(1.0 m3)1.66 � 100 Pa.

Vf � 1.0

pi � 10
Vi � 4.0 m3

t �
Q

P
�

1.4 � 106 J

2 � 103 W
� 700 s,

23-8 APPLICATIONS OF THE
FIRST LAW OF THERMODYNAMICS

Now that we have examined many of the properties of the
ideal gas, including its internal energy (Section 23-6) and
its heat capacities (Section 23-7), we are ready to study the
various processes that a system consisting of an ideal gas
can undergo.

Adiabatic Processes
In an adiabatic process the system is well insulated so that
no heat enters or leaves, in which case The first law
becomes, in this case,

(23-47)

Let us derive the relationship between p and V for an adia-
batic process carried out on an ideal gas, which we used in
Section 23-5. We assume the process to be carried out
slowly, so that the pressure is always well defined. For an
ideal gas, we can write Eq. 23-31 as

Thus
(23-48)

The equation of state of the gas can be written in differen-
tial form as

(23-49)

However, p dV is simply �dW, which is equal to �dEint

(since Eq. 23-47 can be written in differential form as
Solving Eq. 23-49 for V dp and substituting

Eq. 23-48, we have

(23-50)

where the last result has been obtained using Eq. 23-39,
We now take the ratio between Eqs. 23-50

and 23-48, which gives

using Eq. 23-43 for the ratio of molar heat capacities �.
Rewriting, we find

which we can integrate between initial state i and final 
state f

which can be written

(23-51)piVi
� � pfVf

� .

 ln 
pf

pi
� �� ln 

Vf

Vi
, 

�pf

pi

dp

p
� �� �Vf

Vi

dV

V

dp

p
� ��

dV

V
,

V dp

p dV
�

nCp dT

�nCV dT
� �

Cp

CV
� ��,

Cp � CV � R.

V dp � nCV dT � nR dT � nCp dT,

dEint � dW ).

p dV � V dp � nR dT. 

d(pV) � d(nRT) 

p dV � �dW � �dEint � �nCV dT.

dEint � nCV dT.

�Eint � W (adiabatic process).

Q � 0.
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Since i and f are arbitrary points, we can write this equation
as

(23-52)

Equations 23-51 and 23-52 give the relationship between
the pressure and volume of an ideal gas that undergoes an
adiabatic process. Given the values of the pressure and vol-
ume at the initial point, the adiabatic process will proceed
through final points whose pressure and volume can be cal-
culated from Eq. 23-51. Equivalently, Eq. 23-52 defines a
family of curves on a pV diagram. Every adiabatic process
can be represented by a segment of one of these curves
(Fig. 23-20).

We can rewrite these results in terms of temperature, us-
ing the ideal gas equation of state:

(23-53)

The constant in Eq. 23-53 is not the same as that in Eq. 23-
52. Equivalently, we can write Eq. 23-53 as

(23-54)

Suppose we compress a gas in an adiabatic process.
Then and Eq. 23-54 requires that The
temperature of the gas rises as it is compressed, as we fre-
quently observe from the warming of a bicycle pump. Con-
versely, the temperature falls when a gas expands, which is
often used as a means to achieve low temperatures in the
laboratory (see Fig. 23-20).

Sound waves in air can be represented in terms of adia-
batic processes. At audio frequencies, air is a poor conduc-
tor of heat. There is an increase in temperature in the com-

Tf � Ti .Vi � Vf ,

Tf � Ti � Vi

Vf
�

��1

TiVi
��1 � TfVf

��1

TV ��1 � constant.

(pV)V ��1 � constant

pV � � constant.

pression zones of a sound wave, but due to the poor con-
duction there is no appreciable heat transfer to the neigh-
boring cooler rarefactions; the process is thus adiabatic.
The compressions and expansions of steam in a steam en-
gine, or of the hot gases in the cylinders of an internal com-
bustion engine, are also essentially adiabatic, because there
is insufficient time for heat to be transferred.

Isothermal Processes
In an isothermal process, the temperature remains constant.
If the system is an ideal gas, then the internal energy must
therefore also remain constant. With the first law
gives

(23-55)

If an amount of (positive) work W is done on the gas, an
equivalent amount of heat is released by the gas
to the environment. None of the work done on the gas re-
mains with the gas as stored internal energy.

Figure 23-20 compares isothermal and adiabatic
processes for 1 mole of a monatomic ideal gas.

Constant-Volume Processes
If the volume of a gas remains constant, it can do no work.
Thus and the first law gives

(23-56)

In this case all the heat that enters the gas is stored
as internal energy 

Cyclical Processes
In a cyclical process we carry out a sequence of operations
that eventually restores the system to its initial state, as, for
example, the three-step process illustrated in Fig. 23-21.
Because the process starts and finishes at the point A, the
internal energy change for the cycle is zero. Thus, accord-
ing to the first law,

(23-57)Q � W � 0 (cyclical process),

(�Eint � 0).
(Q � 0)

�Eint � Q (constant-volume process).

W � 0,

Q � �W

Q � W � 0 (isothermal process; ideal gas).

�Eint � 0,
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Figure 23-20. Isothermal processes (solid lines) and adia-
batic processes (dashed lines) carried out on 1 mole of a diatomic
ideal gas. Note that an adiabatic increase in volume (for example,
the segment ab) is always accompanied by a decrease in tempera-
ture.

0.03

P
re

ss
ur

e 
(P

a)

0 0.01

X

X

X

X1

2

3

4

105

105

105

105

0.02 0.04

300 K

a

b 200 K
100 K

Volume (m3)

Figure 23-21. A gas undergoes a cyclical process starting at
point A and consisting of (1) a constant-volume process AB, (2) a
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where Q and W represent the totals for the cycle. In Fig. 23-
21, the total work is positive, because there is more positive
area under the curve representing step 3 than there is nega-
tive area under the line representing step 2. Thus 
and it follows from Eq. 23-57 that In fact, for any
cycle that is done in a counterclockwise direction, we must
have (and thus whereas cycles performed in
the clockwise direction have and 

Free Expansion
Figure 23-22 represents the process known as free expan-
sion. The gas is initially in one side of the container, and
when the stopcock is opened, the gas expands into the pre-
viously evacuated half. No weights can be raised in this
process, so no work is done. The container is insulated, so
the process is adiabatic. Hence, with and the
first law gives

(23-58)

Thus the internal energy of an ideal gas undergoing a free
expansion remains constant, and because the internal en-
ergy of an ideal gas depends only on the temperature, its
temperature must similarly remain constant.

The free expansion is a good example of a nonequilib-
rium process. If a gas has a well-defined pressure and vol-
ume (and therefore temperature), we can show the state of

�Eint � 0 (free expansion).

Q � 0,W � 0

Q � 0.W � 0
Q � 0),W � 0

Q � 0.
W � 0

the gas as a point on a pV diagram. The assignment of a
temperature to the gas means that it must be in thermal
equilibrium; each point on a pV diagram therefore repre-
sents a system in equilibrium. In the case of a free expan-
sion, the initial state (all gas on one side) is an equilibrium
state, as is the final state; but at intermediate times, as the
gas rushes from one side to the other, the temperature and
the pressure do not have unique values, and we cannot plot
this process on a pV diagram. Only the initial and final
points appear on the graph. Nevertheless, we can still use
the first law to analyze this process, because the change in
internal energy depends only on the initial and final
points.

Table 23-5 summarizes the processes we have consid-
ered and their energy transfers.

Sample Problem 23-8. Let 1.00 kg of liquid water be
converted to steam by boiling at standard atmospheric pressure;
see Fig. 23-23. The volume changes from an initial value 
of 1.00 � 10�3 m3 as a liquid to 1.671 m3 as steam. For this
process, find (a) the work done on the system, (b) the heat added
to the system, and (c) the change in the internal energy of the
system.
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Figure 23-22. Free expansion. Opening the stopcock allows
gas to flow from one side of the insulated container to the other.
No work is done, and no heat is transferred to the environment.

GasGas

Initial equilibrium state

Vacuum

Final equilibrium state

Stopcock openStopcock closed
Insulating material

Gas

Process Restriction First Law Other Results

All None

Adiabatic

Constant volume

Constant pressure

Isothermal

Cycle

Free expansion

Items underlined apply only to ideal gases; all other items apply in general.

�T � 0�Eint � 0Q � W � 0

Q � �W�Eint � 0

W � �nRT ln(Vf /Vi)Q � �W�Eint � 0

W � �p�V, Q � nCp �T�Eint � Q � W�p � 0

Q � nCV �T�Eint � QW � 0

W � ( pfVf � piVi)/(� � 1)�Eint � WQ � 0

�Eint � nCV �T, W � ��p dV�Eint � Q � W

Table 23-5 Applications of the First Law

Figure 23-23. Sample Problem 23-8. Water is boiling at
constant pressure. Heat flows from the reservoir until the water
has changed completely into steam. Work is done by the expand-
ing gas as it lifts the piston.

Liquid water

Lead shot

Insulation

Control knob

Steam
W

Q T



Solution (a) The work done on the gas during this constant-pres-
sure process is given by Eq. 23-17:

The work done on the system is negative; equivalently, positive
work is done by the system on its environment in lifting the
weighted piston of Fig. 23-23.
(b) From Eq. 23-13 we have

This quantity is positive, as is appropriate for a process in which
heat is transferred to the system.
(c) We find the change in internal energy from the first law:

This quantity is positive, indicating that the internal energy of the
system has increased during the boiling process. This energy rep-
resents the internal work done in overcoming the strong attraction
that the H2O molecules have for each other in the liquid state.

We see that, when water boils, about 7.5% (169 kJ/2260 kJ �
0.075) of the added heat goes into external work in pushing back
the atmosphere. The rest goes into internal energy that is added to
the system.

Sample Problem 23-9. The cycle shown in Fig. 23-21
consists of three processes, starting at point A: a reduction in pres-
sure at constant volume from point A to point B; an increase in vol-
ume at constant pressure from point B to point C; an isothermal
compression (decrease in volume) from point C back to point A. Let
the cycle be carried out on 0.75 mol of a diatomic ideal gas, with

and For
each of the three processes and for the cycle, find Q, W, and �Eint .

Solution The first step is to find the values of p, V, and T at each
point. At point A, we are given pA and VA , and we can solve for TA

from the ideal gas law:

At point B, we are given pB and and we can similarly
find TB :

At point C, we know and because process
CA is an isotherm). We can then find VC :

VC �
nRTC

pC

�
(0.75 mol)(8.31 J/mol�K)(108 K)

1.2 � 103 Pa
� 0.56 m3.

TC (� TA ,pC (� pB)

TB �
pBVB

nR
�

(1.2 � 103 Pa)(0.21 m3)

(0.75 mol)(8.31 J/mol�K)
� 40 K.

VB (� VA),

TA �
pAVA

nR
�

(3.2 � 103 Pa)(0.21 m3)

(0.75 mol)(8.31 J/mol�K)
� 108 K.

pB � 1.2 � 103 Pa.VA � 0.21 m3,pA � 3.2 � 103 Pa,

�Eint � Q � W � 2260 kJ � (�169 kJ) � 2090 kJ.

Q � Lm � (2256 kJ/kg)(1.00 kg) � 2260 kJ.

� �1.69 � 105 J � �169 kJ. 
� �(1.01 � 105 Pa)(1.671 m3 � 1.00 � 10�3 m3)

W � �p(Vf � Vi) 

With this information, we can now calculate the heat transfer,
work done, and change in internal energy for each process. For
process 1 (AB), we have

The system transfers energy to the environment as heat during
process 1, and its temperature falls, corresponding to a negative
change in internal energy.

For the constant-pressure process 2 (BC), we obtain

Energy is transferred to the gas as heat during process 2, and in
expanding the gas does work on its environment (the environment
does negative work on the gas.)

Along the isotherm (CA), the work is given by Eq. 23-18;

For the cycle, we have

Note that, as expected for the cycle, and The
total work for the cycle is positive, as we expect for a cycle that is
done in the counterclockwise direction.

In solving problems of this type, we can use expressions that
give directly the heat transfer in adiabatic constant-pres-
sure, and constant-volume processes. For other processes, such as
the isothermal step in this problem, we can find Q only by first
finding �Eint and W and then using the first law.

(Q � 0),

Q � �W.�Eint � 0

�Eint � �Eint, 1 � �Eint, 2 � �Eint, 3 � �1060 J � 1060 J � 0 � 0.

W � W1 � W2 � W3 � 0 � (�420 J) � 660 J � 240 J, 

� �240 J, 

Q � Q1 � Q2 � Q3 � �1060 J � 1480 J � (�660 J)

Q3 � �Eint, 3 � W3 � 0 � 660 J � �660 J. 

�Eint, 3 � 0 (isothermal process), 

� 660 J, 

� �(0.75 mol)(8.31 J/mol�K)(108 K) ln 
0.21 m3

0.56 m3

W3 � �nRTC ln 
VA

VC

�Eint, 2 � Q2 � W2 � 1480 J � (�420 J) � 1060 J. 

� �(1.2 � 103 Pa)(0.56 m3 � 0.21 m3) � �420 J,

W2 � �p(VC � VB) 

� (0.75 mol)(29.1 J/mol�K)(108 K � 40 K) � 1480 J,

Q2 � nCp(TC � TB) 

�Eint, 1 � Q1 � W1 � �1060 J � 0 � �1060 J. 

W1 � 0 (constant-volume process), 

� (0.75 mol)(20.8 J/mol�K)(40 K � 108 K) � �1060 J,

Q1 � nCV(TB � TA) 
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MULTIPLE CHOICE

23-1 Heat: Energy in Transit

23-2 The Transfer of Heat

1. Two identical long, thin, solid cylinders are used to conduct
heat from a reservoir at temperature Thot to a reservoir at tem-

perature Tcold . Originally the cylinders are connected in series
as shown in Fig. 23-24a, and the rate of heat transfer is H0 . If
the cylinders are connected in parallel instead as shown in
Fig. 23-24b, then what would be the rate of heat transfer?

(A) 16H0 (B) 4H0 (C) 2H0 (D) H0/2



(E) The answer depends on the thermal conductivity, k, of
the cylinders.

were originally at 20°C. When the systems reach thermal
equilibrium, which aluminum block will have the higher final
temperature?

(A) Block A (B) Block B
(C) The blocks will have the same final temperature.
(D) The answer depends on the specific heat of water.

7. A 1-kg block of ice at 0°C is placed into a perfectly insulated,
sealed container that has 2 kg of water also at 0°C. The water
and ice completely fill the container, but the container is flexi-
ble. After some time one can expect that

(A) the water will freeze so that the mass of the ice will in-
crease.

(B) the ice will melt so that the mass of the ice will de-
crease.

(C) both the amount of water and the amount of ice will re-
main constant.

(D) both the amount of water and the amount of ice will
decrease.

23-5 Work Done on or by an Ideal Gas
8. In which of the paths between initial state i and final state f in

Fig. 23-25 is the work done on the gas the greatest?
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Figure 23-24. Multiple-choice question 1.

H0

Thot

Thot

(a)

(b)

Tcold

Tcold

2. Two long, thin, solid cylinders are identical in size, but they
are made of different substances with two different thermal
conductivities. The two cylinders are connected in series be-
tween a reservoir at temperature Thot and a reservoir at tem-
perature Tcold . The temperature at the boundary between the
two cylinders is Tb . One can conclude that

(A) Tb is exactly half way between Thot and Tcold .
(B) Tb is closer to Thot than it is to Tcold .
(C) Tb is closer to Tcold than it is to Thot .
(D) Tb is closer to the temperature of the reservoir that is in

contact with the cylinder with the lower thermal con-
ductivity.

(E) Tb is closer to the temperature of the reservoir that is in
contact with the cylinder with the higher thermal con-
ductivity.

3. A spherical constant temperature heat source of radius r1 is at
the center of a uniform solid sphere of radius r2 . The rate at
which heat is transferred through the surface of the sphere is
proportional to

(A) (B)
(C) (D)
(E) (1/r2 � 1/r1)�1.

23-3 The First Law of Thermodynamics
4. Which of the following processes must violate the first law of

thermodynamics? (There may be more than one answer!)
(A)
(B)
(C)
(D)
(E)

23-4 Heat Capacity and Specific Heat
5. A 100-g cube of aluminum originally at 120°C is placed into

an insulated container of water originally at 18°C. After some
time the system reaches equilibrium, and the final tempera-
ture of the water is 22°C. What is the final temperature of the
aluminum cube?

(A) It is greater than 22°C.
(B) It is equal to 22°C.
(C) It is less than 22°C.
(D) It could be more or less than 22°C, depending on the

mass of water present.

6. Block A is a 50-g aluminum block originally at 90°C. Block
B is a 100-g aluminum block originally at 45°C. The blocks
are placed in two separate 1.0 liter containers of water that

W � 0, Q � 0, and �Eint � 0
W � 0, Q � 0, and �Eint � 0
W � 0, Q � 0, and �Eint � 0
W � 0, Q � 0, and �Eint � 0
W � 0, Q � 0, and �Eint � 0

1/r2 � 1/r1 .ln r1 � ln r2 .
r2 � r1 .r 2

2 � r 1
2 .

V

p

A

B
C

Df

i

Figure 23-25. Multiple-choice question 8.

9. Which of the following is not a necessary condition for a
process involving an ideal gas to do work? (There may be
more than one correct answer!)

(A) (B)
(C) (D)

23-6 The Internal Energy of an Ideal Gas
10. Consider the following processes that can be done on an ideal

gas: constant volume, constant pressure,
and constant temperature, (a) For which process
does (b) For which process does (c) For
which of these processes does (d) For which of
these processes does (e) For which of these
processes does 

(A) (B) (C)
(D) None of these

23-7 Heat Capacities of an Ideal Gas
11. Which type of ideal gas will have the largest value for

(A) Monatomic (B) Diatomic (C) Polyatomic
(D) The value will be the same for all.

12. What would be the most likely value for CT , the molar heat
capacity at constant temperature?

(A) 0 (B)
(C) (D) CT � �CV � CT � Cp

0 � CT � CV

Cp � CV ?

�T � 0�p � 0�V � 0
�Eint � W?

�Eint � Q?
W � Q � 0?

Q � 0?W � 0?
�T � 0.

�p � 0;�V � 0;

Q  0�V  0
�p  0�T  0



23-8 Applications of the First Law of Thermodynamics
13. Which of the following processes is forbidden by the first law

of thermodynamics? (There may be more than one correct an-
swer!)

(A) An ice cube is placed in hot coffee; the ice gets colder
and the coffee gets hotter.

(B) Solid wax is placed in a hot metal pan; the wax melts
and the metal pan cools.

(C) Cold water is placed in a cold glass; the glass gets
colder and the water gets colder.

(D) A student builds an automobile engine that converts
into work the heat energy released when water changes
to ice.

(E) Dry ice can be made by allowing carbon dioxide gas to
expand in a bag.
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QUESTIONS

1. Temperature and heat are often confused, as in “the heat is 
really severe today.” By example, distinguish between these
two concepts as carefully as you can.

2. Give an example of a process in which no heat is transferred
to or from the system but the temperature of the system
changes.

3. Can heat be considered a form of stored (or potential) energy?
Would such an interpretation contradict the concept of heat as
energy in the process of transfer because of a temperature dif-
ference?

4. Can heat be added to a substance without causing the temper-
ature of the substance to rise? If so, does this contradict the
concept of heat as energy in the process of transfer because of
a temperature difference?

5. Why must heat energy be supplied to melt ice? After all, the
temperature does not change.

6. Explain the fact that the presence of a large body of water
nearby, such as a sea or ocean, tends to moderate the tempera-
ture extremes of the climate on adjacent land.

7. As ice is heated it melts, forming a liquid, and then it boils.
However, as solid carbon dioxide is heated it goes directly to
the vapor state—we say it sublimes—without passing
through a liquid state. How could liquid carbon dioxide be
produced?

8. Pails of hot and cold water are set out in freezing weather. Ex-
plain how (a) if the pails have lids, the cold water will freeze
first, but (b) if the pails do not have lids, it is possible for the
hot water to freeze first.

9. Why does the boiling temperature of a liquid increase with
pressure?

10. A block of wood and a block of metal are at the same temper-
ature. When the blocks feel cold, the metal feels colder than
the wood; when the blocks feel hot, the metal feels hotter than
the wood. Explain. At what temperature will the blocks feel
equally hot or cold?

11. How can you best use a spoon to cool a cup of coffee?
Stirring—which involves doing work—would seem to heat
the coffee rather than cool it.

12. How does a layer of snow protect plants during cold weather?
During freezing spells, citrus growers in Florida often spray
their fruit with water, hoping it will freeze. How does that
help?

13. Explain the wind-chill effect.

14. You put your hand in a hot oven to remove a casserole and
burn your fingers on the hot dish. However, the air in the oven

is at the same temperature as the casserole dish but it does not
burn your fingers. Why not?

15. Metal workers have observed that they can dip a hand very
briefly into hot molten metal without ill effects. Explain.

16. Why is thicker insulation used in an attic than in the walls of
a house?

17. Is ice always at 0°C? Can it be colder? Can it be warmer?
What about an ice–water mixture?

18. (a) Can ice be heated to a temperature above 0°C without its
melting? Explain. (b) Can water be cooled to a temperature
below 0°C without its freezing? Explain. (See “The Under-
cooling of Liquids,” by David Turnbull, Scientific American,
January 1965, p. 38.)

19. Explain why your finger sticks to a metal ice tray just taken
from your refrigerator.

20. It is difficult to “boil” eggs in water at the top of a high
mountain because water boils there at a relatively low tem-
perature. What is a simple, practical way of overcoming this
difficulty?

21. Will a 3-minute egg cook any faster if the water is boiling fu-
riously than if it is simmering quietly?

22. Water is a much better coolant than most liquids. Why?
Would there be instances in which another liquid might be
preferred?

23. Explain why the latent heat of vaporization of a substance
might be expected to be considerably greater than its latent
heat of fusion.

24. Explain why the specific heat at constant pressure is greater
than the specific heat at constant volume.

25. Why is the difference between Cp and CV often neglected for
solids?

26. Can Cp ever be less than CV ? If so, give an example.

27. Real gases always cool when making a free expansion,
whereas an ideal gas does not. Explain.

28. Discuss the similarities and especially the distinctions be-
tween heat, work, and internal energy.

29. Discuss the process of the freezing of water from the point of
view of the first law of thermodynamics. Remember that ice
occupies a greater volume than an equal mass of water.

30. A thermos bottle contains coffee. The thermos bottle is vigor-
ously shaken. Consider the coffee as the system. (a) Does its
temperature rise? (b) Has heat been added to it? (c) Has work
been done on it? (d) Has its internal energy changed?



31. Is the temperature of an isolated system (no interaction with
the environment) conserved? Explain.

32. Is heat the same as internal energy? If not, give an example in
which a system’s internal energy changes without a flow of
heat across the system’s boundary.

33. Can you tell whether the internal energy of a body was ac-
quired by heat transfer or by the performance of work?

34. If the pressure and volume of a system are given, is the tem-
perature always uniquely determined?

35. Keeping in mind that the internal energy of a body consists of
kinetic energy and potential energy of its particles, how
would you distinguish between the internal energy of a body
and its temperature?

36. Explain how we might keep a gas at a constant temperature
during a thermodynamic process.

37. On a winter day the temperature on the inside surface of a
wall is much lower than room temperature and that of the out-

side surface is much higher than the outdoor temperature. Ex-
plain.

38. Can heat energy be transferred through matter by radiation? If
so, give an example. If not, explain why.

39. Why does stainless steel cookware often have a layer of cop-
per or aluminum on the bottom?

40. Consider that heat can be transferred by convection and radia-
tion, as well as by conduction, and explain why a thermos
bottle is doubled-walled, evacuated, and silvered.

41. A lake freezes first at its upper surface. Is convection in-
volved? What about conduction and radiation?

42. Explain why the temperature of a gas drops in an adiabatic
expansion.

43. Comment on this statement: “There are two ways to carry out
an adiabatic process. One is to do it quickly and the other is to
do it in an insulated box.”
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Figure 23-26. Exercise 5.

Figure 23-27. Exercise 8.

EXERCISES

23-1 Heat: Energy in Transit

23-2 The Transfer of Heat

1. The average rate at which heat flows out through the surface
of the Earth in North America is 54 mW/m2 and the average
thermal conductivity of the near surface rocks is 2.5 W/m � K.
Assuming a surface temperature of 10°C, what should be the
temperature at a depth of 33 km (near the base of the crust)?
Ignore the heat generated by radioactive elements; the curva-
ture of the Earth can also be ignored.

2. Calculate the rate at which heat would be lost on a very cold
winter day through a 6.2 m � 3.8 m brick wall 32 cm thick.
The inside temperature is 26°C and the outside temperature is
�18°C; assume that the thermal conductivity of the brick is
0.74 W/m � K.

3. Consider the slab shown in Fig. 23-2. Suppose that
cm, 1.80 m2, and the material is copper. If

and a steady state is reached,
find (a) the temperature gradient, (b) the rate of heat transfer,
and (c) the temperature at a point in the rod 11.0 cm from the
high-temperature end.

4. (a) Calculate the rate at which body heat flows out through
the clothing of a skier, given the following data: the body
surface area is 1.8 m2 and the clothing is 1.2 cm thick; skin
surface temperature is 33°C, whereas the outer surface of
the clothing is at 1.0°C; the thermal conductivity of the
clothing is 0.040 W/m � K. (b) How would the answer
change if, after a fall, the skier’s clothes become soaked
with water? Assume that the thermal conductivity of water is
0.60 W/m � K.

5. Four square pieces of insulation of two different materials, all
with the same thickness and area A, are available to cover an
opening of area 2A. This can be done in either of the two
ways shown in Fig. 23-26. Which arrangement, (a) or (b),
would give the lower heat flow if k 2  k 1?

�T � 136 C	,T � �12.0	C,
A ��x � 24.9

6. Show that the temperature Tx at the interface of a compound
slab (see Sample Problem 23-1) is given by

7. Ice has formed on a shallow pond and a steady state has been
reached with the air above the ice at �5.20°C and the bottom
of the pond at 3.98°C. If the total depth of ice � water is 
1.42 m, how thick is the ice? (Assume that the thermal con-
ductivities of ice and water are 1.67 and 0.502 W/m � K, re-
spectively.)

8. Two identical rectangular rods of metal are welded end 
to end as shown in Fig. 23-27a, and 10 J of heat flows
through the rods in 2.0 min. How long would it take for 
30 J to flow through the rods if they are welded as shown in
Fig. 23-27b?

Tx �
R1T1 � R2T2

R1 � R2
.

k1

k1

k1

k1

k2

(a) (b)

k2

k2

k2

0°C 100°C

0°C
100°C

(a)

(b)



9. An idealized representation of the air temperature as a func-
tion of distance from a single-pane window on a calm, winter
day is shown in Fig. 23-28. The window dimensions are 
60 cm � 60 cm � 0.50 cm. (a) At what rate does heat flow
out through the window? (Hint: The temperature drop across
the glass is very small.) (b) Estimate the difference in temper-
ature between the inner and outer glass surfaces.

13. In a certain solar house, energy from the Sun is stored in bar-
rels filled with water. In a particular winter stretch of five
cloudy days, 5.22 GJ are needed to maintain the inside of the
house at 22.0°C. Assuming that the water in the barrels is at
50.0°C, what volume of water is required?

14. A small electric immersion heater is used to boil 136 g of wa-
ter for a cup of instant coffee. The heater is labeled 220 watts.
Calculate the time required to bring this water from 23.5°C to
the boiling point, ignoring any heat losses.

15. How much water remains unfrozen after 50.4 kJ of heat have
been extracted from 258 g of liquid water initially at 0°C?

16. (a) Compute the possible increase in temperature for water
going over Niagara Falls, 49.4 m high. (b) What factors
would tend to prevent this possible rise?

17. A 146-g copper bowl contains 223 g of water; both bowl and
water are at 21.0°C. A very hot 314-g copper cylinder is
dropped into the water. This causes the water to boil, with
4.70 g being converted to steam, and the final temperature of
the entire system is 100°C. (a) How much heat was trans-
ferred to the water? (b) How much to the bowl? (c) What was
the original temperature of the cylinder?

18. Calculate the minimum amount of heat required to com-
pletely melt 130 g of silver initially at 16.0°C. Assume that
the specific heat does not change with temperature. See Ta-
bles 23-2 and 23-3.

19. An aluminum electric kettle of mass 0.560 kg contains a 2.40-
kW heating element. It is filled with 0.640 L of water at
12.0°C. How long will it take (a) for boiling to begin and (b)
for the kettle to boil dry? (Assume that the temperature of the
kettle does not exceed 100°C at any time.)

20. What mass of steam at 100°C must be mixed with 150 g of
ice at 0°C, in a thermally insulated container, to produce liq-
uid water at 50°C?

21. A 21.6-g copper ring has a diameter of 2.54000 cm at its tem-
perature of 0°C. An aluminum sphere has a diameter of
2.54533 cm at its temperature of 100°C. The sphere is placed
on top of the ring (Fig. 23-31), and the two are allowed to
come to thermal equilibrium, no heat being lost to the sur-
roundings. The sphere just passes through the ring at the equi-
librium temperature. Find the mass of the sphere.

22. (a) Two 50-g ice cubes are dropped into 200 g of water in a
glass. If the water were initially at a temperature of 25°C, and
if the ice came directly from a freezer at �15°C, what is the
final temperature of the drink? (b) If only one ice cube had
been used in (a), what would be the final temperature of the
drink? Neglect the heat capacity of the glass.
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Figure 23-28. Exercise 9.

Figure 23-29. Exercise 11.

Figure 23-30. Exercise 12.
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23-3 The First Law of Thermodynamics
10. Consider that 214 J of work are done on a system, and 293 J

of heat are extracted from the system. In the sense of the first
law of thermodynamics, what are the values (including alge-
braic signs) of (a) W, (b) Q, and (c) 

11. When a system is taken from state i to state f along the path
iaf in Fig. 23-29, it is found that J and J.
Along the path ibf, J. (a) What is W along the path
ibf ? (b) If J for the curved return path fi, what is Q
for this path? (c) Take J. What is (d ) If

J, find Q for process ib and process bf.Eint, b � 22
Eint, f?Eint, i � 10

W � �13
Q � 36

W � �20Q � 50

�Eint ?

23-4 Heat Capacity and Specific Heat
12. Icebergs in the North Atlantic present hazards to shipping (see

Fig. 23-30), causing the length of shipping routes to increase
by about 30% during the iceberg season. Strategies for de-
stroying icebergs include planting explosives, bombing, tor-
pedoing, shelling, ramming, and painting with lampblack.
Suppose that direct melting of the iceberg, by placing heat
sources in the ice, is tried. How much heat is required to melt
10% of a 210,000-metric-ton iceberg? (One metric ton �
1000 kg.)
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23. A certain substance has a molar mass of 51.4 g/mol. When
320 J of heat are added to a 37.1-g sample of this material, its
temperature rises from 26.1 to 42.0°C. (a) Find the specific
heat of the substance. (b) How many moles of the substance
are present? (c) Calculate the molar heat capacity of the sub-
stance.

23-5 The Work Done on or by an Ideal Gas
24. A sample of gas expands from 1.0 to 5.0 m3 while its pressure

decreases from 15 to 5.0 Pa. How much work is done on the
gas if its pressure changes with volume according to each of
the three processes shown in the pV diagram in Fig. 23-32?

26. Air that occupies 0.142 m3 at 103 kPa gauge pressure is ex-
panded isothermally to zero gauge pressure and then cooled
at constant pressure until it reaches its initial volume. Com-
pute the work done on the gas.

27. Calculate the work done by an external agent in compressing
1.12 mol of oxygen from a volume of 22.4 L and 1.32 atm
pressure to 15.3 L at the same temperature.

28. (a) One liter of gas with � � 1.32 is at 273 K and 1.00 atm
pressure. It is suddenly (adiabatically) compressed to half its
original volume. Find its final pressure and temperature. (b)
The gas is now cooled back to 273 K at constant pressure.
Find the final volume. (c) Find the total work done on the gas.

29. Gas occupies a volume of 4.33 L at a pressure of 1.17 atm
and a temperature of 310 K. It is compressed adiabatically to
a volume of 1.06 L. Determine (a) the final pressure and (b)
the final temperature, assuming the gas to be an ideal gas for
which � � 1.40. (c) How much work was done on the gas?

30. An air compressor takes air at 18.0°C and 1.00 atm pressure
and delivers compressed air at 2.30 atm pressure. The com-
pressor operates at 230 W of useful power. Assume that the
compressor operates adiabatically. (a) Find the temperature of
the compressed air. (b) How much compressed air, in liters, is
delivered each second?

23-6 The Internal Energy of an Ideal Gas
31. Calculate the total rotational kinetic energy of all the mole-

cules in 1 mole of air at 25.0°C.

32. Calculate the internal energy of 1 mole of an ideal gas at
250°C.

33. An ideal gas experiences an adiabatic compression from
kPa, m3, to kPa,
m3. (a) Calculate the value of �. (b) Find the final

temperature. (c) How many moles of gas are present? (d )
What is the total translational kinetic energy per mole before
and after the compression? (e) Calculate the ratio of the rms
speed before to that after the compression.

34. A cosmic-ray particle with energy 1.34 TeV is stopped in a
detecting tube that contains 0.120 mol of neon gas. Once this
energy is distributed among all the atoms, by how much is the
temperature of the neon increased?

23-7 Heat Capacities of an Ideal Gas
35. In an experiment, 1.35 mol of oxygen (O2) are heated at con-

stant pressure starting at 11.0°C. How much heat must be
added to the gas to double its volume?

36. Twelve grams of nitrogen (N2) in a steel tank are heated from
25.0 to 125°C. (a) How many moles of nitrogen are present?
(b) How much heat is transferred to the nitrogen?

37. A 4.34-mol sample of an ideal diatomic gas experiences a
temperature increase of 62.4 K under constant-pressure con-
ditions. (a) How much heat was added to the gas? (b) By how
much did the internal energy of the gas increase? (c) By how
much did the internal translational kinetic energy of the gas
increase?

38. The mass of a helium atom is 6.66 � 10�27 kg. Compute the
specific heat at constant volume for helium gas (in J/kg � K)
from the molar heat capacity at constant volume.

39. A container holds a mixture of three nonreacting gases: n1

moles of the first gas with molar specific heat at constant vol-
ume C1 , and so on. Find the molar specific heat at constant

V � 1.36
p � 1450T � �23.0	CV � 10.7p � 122
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Figure 23-31. Exercise 21.

Figure 23-32. Exercise 24.

Figure 23-33. Exercise 25.

Al
100°C

2.54533 cm

2.54000 cm

Cu 0°C

1

2

3

20

15

10

5

0 1 2 3 4 5 6

p 
(P

a)

V (m3)

25. Suppose that a sample of gas expands from 2.0 to 8.0 m3

along the diagonal path in the pV diagram shown in Fig. 23-
33. It is then compressed back to 2.0 m3 along either path 1 or
path 2. Compute the net work done on the gas for the com-
plete cycle in each case.
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volume of the mixture, in terms of the molar specific heats
and quantities of the three separate gases.

23-8 Applications of the First Law of Thermodynamics
40. Gas within a chamber passes through the cycle shown in Fig.

23-34. Determine the net heat added to the gas during process
CA if and WBCA � �15 J.QBC � 0,QAB � 20 J,

�Eint , and (c) Q. (d) If one were to define an equivalent spe-
cific heat for this process, what would be its value?

46. Gas within a chamber undergoes the processes shown in the
pV diagram of Fig. 23-36. Calculate the net heat added to the
system during one complete cycle.
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Figure 23-34. Exercise 40.

Figure 23-35. Exercise 44.

Figure 23-36. Exercise 46.
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41. A sample of n moles of an ideal gas undergoes an isothermal
expansion. Find the heat flow into the gas in terms of the ini-
tial and final volumes and the temperature.

42. A quantity of ideal gas occupies an initial volume V0 at a
pressure p0 and a temperature T0 . It expands to volume V1 (a)
at constant pressure, (b) at constant temperature, and (c) adia-
batically. Graph each case on a pV diagram. In which case is
Q greatest? Least? In which case is W greatest? Least? In
which case is �Eint greatest? Least?

43. (a) A monatomic ideal gas initially at 19.0°C is suddenly
compressed to one-tenth its original volume. What is its tem-
perature after compression? (b) Make the same calculation for
a diatomic gas.

44. In Fig. 23-35, assume the following values:

For each of the three paths shown, find the value of Q, W, and
(Hint: Find P, V, T at points A, B, C. Assume an ideal

monatomic gas.)

45. A quantity of ideal monatomic gas consists of n moles ini-
tially at temperature T1 . The pressure and volume are then
slowly doubled in such a manner as to trace out a straight line
on the pV diagram. In terms of n, R, and T1 , find (a) W, (b)

Q � W.

pf � 1.60 � 105 Pa, Vf � 0.0270 m3.

pi � 2.20 � 105 Pa, Vi � 0.0120 m3,

p

pi

pf

i 1
A

C

f

Vi Vf

V

2

3

B

40

30

20

10

 0
 0  1  2  3 4  5

p 
(M

P
a)

V (L)

47. Let 20.9 J of heat be added to a particular ideal gas. As a re-
sult, its volume changes from 63.0 to 113 cm3 while the pres-
sure remains constant at 1.00 atm. (a) By how much does the
internal energy of the gas change? (b) If the quantity of gas
present is 2.00 � 10�3 mol, find the molar heat capacity at
constant pressure. (c) Find the molar heat capacity at constant
volume.

48. The temperature of 3.15 mol of an ideal polyatomic gas is
raised 52.0 K by each of three different processes: at constant
volume, at constant pressure, and by an adiabatic compres-
sion. Complete a table, showing for each process the heat
added, the work done on the gas, the change in internal en-
ergy of the gas, and the change in total translational kinetic
energy of the gas molecules.

PROBLEMS

1. (a) Calculate the rate of heat loss through a glass window of
area 1.4 m2 and thickness 3.0 mm if the outside temperature
is �20°F and the inside temperature is �72°F. (b) A storm
window is installed having the same thickness of glass but
with an air gap of 7.5 cm between the two windows. What
will be the corresponding rate of heat loss presuming that
conduction is the only important heat-loss mechanism?

2. A cylindrical silver rod of length 1.17 m and cross-sectional
area 4.76 cm2 is insulated to prevent heat loss through its sur-
face. The ends are maintained at a temperature difference of
100 C° by having one end in a water– ice mixture and the
other in boiling water and steam. (a) Find the rate at which
heat is transferred along the rod. (b) Calculate the rate at
which ice melts at the cold end.



3. Assuming k is constant, show that the radial rate of flow of
heat in a substance between two concentric spheres is given
by

where the inner sphere has a radius r1 and temperature T1 ,
and the outer sphere has a radius r2 and temperature T2 .

4. (a) Use the data in Exercise 1 to calculate the rate at which
heat flows out through the surface of the Earth. (b) Suppose
that this heat flux is due to the presence of a hot core in the
Earth and that this core has a radius of 3470 km. Assume also
that the material lying between the core and the surface of the
Earth contains no sources of heat and has an average thermal
conductivity of 4.2 W/m � K. Use the result of Problem 3 to
calculate the temperature of the core. (Assume that the
Earth’s surface is at 0°C.) The answer obtained is too high by
a factor of about 10. Why?

5. At low temperatures (below about 50 K), the thermal conduc-
tivity of a metal is proportional to the absolute temperature;
that is, where a is a constant with a numerical value
that depends on the particular metal. Show that the rate of
heat flow through a rod of length L and cross-sectional area A
whose ends are at temperatures T1 and T2 is given by

(Ignore heat loss from the surface.)

6. A container of water has been outdoors in cold weather until
a 5.0-cm-thick slab of ice has formed on its surface (Fig. 23-
37). The air above the ice is at �10°C. Calculate the rate of
formation of ice (in centimeters per hour) on the bottom sur-
face of the ice slab. Take the thermal conductivity and density
of ice to be 1.7 W/m � K and 0.92 g/cm3. Assume that no heat
flows through the walls of the container.

H �
aA

2L
 (T 1

2 � T 2
2).

k � aT,

H �
(T1 � T2)4�kr1r2

r2 � r1
,

in steady-state conditions between the inflow and the outflow
points. Find the specific heat of the liquid.

9. Water standing in the open at 32°C evaporates because of the
escape of some of the surface molecules. The heat of vapor-
ization is approximately equal to �n , where � is the average
energy of the escaping molecules and n is the number of mol-
ecules per kilogram. (a) Find �. (b) What is the ratio of � to
the average kinetic energy of H2O molecules, assuming that
the kinetic energy is related to temperature in the same way as
it is for gases?

10. A thermometer of mass 0.055 kg and heat capacity 46.1 J/K
reads 15.0°C. It is then completely immersed in 0.300 kg of
water and it comes to the same final temperature as the water.
If the thermometer reads 44.4°C, what was the temperature of
the water before insertion of the thermometer, neglecting
other heat losses?

11. From Fig. 23-11, estimate the amount of heat needed to raise
the temperature of 0.45 mol of carbon from 200 to 500 K.
(Hint: Approximate the actual curve in this region with a
straight-line segment).

12. The molar heat capacity of silver, measured at atmospheric
pressure, is found to vary with temperature between 50 and
100 K by the empirical equation

where C is in J/mol � K and T is in K. Calculate the quantity of
heat required to raise 316 g of silver from 50.0 to 90.0 K. The
molar mass of silver is 107.87 g/mol.

13. The gas in a cloud chamber at a temperature of 292 K under-
goes a rapid expansion. Assuming the process is adiabatic,
calculate the final temperature if � � 1.40 and the volume ex-
pansion ratio is 1.28.

14. Calculate the work done on n moles of a van der Waals gas in
an isothermal expansion from volume Vi to Vf .

15. A thin tube, sealed at both ends, is 1.00 m long. It lies hori-
zontally, the middle 10.0 cm containing mercury and the two
equal ends containing air at standard atmospheric pressure. If
the tube is now turned to a vertical position, by what amount
will the mercury be displaced? Assume that the process is (a)
isothermal and (b) adiabatic. (For air, � � 1.40.) Which as-
sumption is more reasonable?

16. A room of volume V is filled with diatomic ideal gas (air) at
temperature T1 and pressure p0 . The air is heated to a higher
temperature T2 , the pressure remaining constant at p0 because
the walls of the room are not airtight. Show that the internal
energy content of the air remaining in the room is the same at
T1 and T2 and that the energy supplied by the furnace to heat
the air has all gone to heat the air outside the room. If we add
no energy to the air, why bother to light the furnace? (Ignore
the furnace energy used to raise the temperature of the walls,
and consider only the energy used to raise the air tempera-
ture.)

17. The molar atomic mass of iodine is 127 g. A standing wave in
a tube filled with iodine gas at 400 K has nodes that are 
6.77 cm apart when the frequency is 1000 Hz. Determine
from these data whether iodine gas is monatomic or diatomic.

18. Figure 23-38a shows a cylinder containing gas and closed by
a movable piston. The cylinder is submerged in an ice–water
mixture. The piston is quickly pushed down from position 1

C � 0.318T � 0.00109T 2 � 0.628,

Problems 543

Figure 23-37. Problem 6.

Ice

Air

Water

7. A person makes a quantity of iced tea by mixing 520 g of the
hot tea (essentially water) with an equal mass of ice at 0°C.
What are the final temperature and mass of ice remaining if
the initial hot tea is at a temperature of (a) 90.0°C and (b)
70.0°C?

8. A flow calorimeter is used to measure the specific heat of a
liquid. Heat is added at a known rate to a stream of the liquid
as it passes through the calorimeter at a known rate. Then a
measurement of the resulting temperature difference between
the inflow and the outflow points of the liquid stream enables
us to compute the specific heat of the liquid. A liquid of den-
sity 0.85 g/cm3 flows through a calorimeter at the rate of 
8.2 cm3/s. Heat is added by means of a 250-W electric heat-
ing coil, and a temperature difference of 15 C° is established



to position 2. The piston is held at position 2 until the gas is
again at 0°C and then is slowly raised back to position 1. Fig-
ure 23-38b is a pV diagram for the process. If 122 g of ice are
melted during the cycle, how much work has been done on
the gas?

pressure at point A is 1.00 atm, find the pressure and the vol-
ume at points B and C. Use 1 atm � 1.013 � 105 Pa and R �
8.314 J/mol � K.

20. A cylinder has a well-fitted, 2.0-kg metal piston whose cross-
sectional area is 2.0 cm3 (Fig. 23-40). The cylinder contains
water and steam at constant temperature. The piston is ob-
served to fall slowly at a rate of 0.30 cm/s because heat flows
out of the cylinder through the cylinder walls. As this hap-
pens, some steam condenses in the chamber. The density of
the steam inside the chamber is 6.0 � 10�4 g/cm3 and the at-
mospheric pressure is 1.0 atm. (a) Calculate the rate of con-
densation of steam. (b) At what rate is heat leaving the cham-
ber? (c) What is the rate of change of internal energy of the
steam and water inside the chamber?
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Figure 23-38. Problem 18.

Figure 23-39. Problem 19.

Figure 23-40. Problem 20.
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19. An engine carries 1.00 mol of an ideal monatomic gas around
the cycle shown in Fig. 23-39. Process AB takes place at con-
stant volume, process BC is adiabatic, and process CA takes
place at a constant pressure. (a) Compute the heat Q, the
change in internal energy Eint , and the work W for each of the
three processes and for the cycle as a whole. (b) If the initial
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21. In a motorcycle engine, after combustion occurs in the top of
the cylinder, the piston is forced down as the mixture of
gaseous products undergoes an adiabatic expansion. Find the
average power involved in this expansion when the engine is
running at 4000 rpm, assuming that the gauge pressure imme-
diately after combustion is 15.0 atm, the initial volume is 
50.0 cm3, and the volume of the mixture at the bottom of the
stroke is 250 cm3. Assume that the gases are diatomic and that
the time involved in the expansion is one-half that of the total
cycle.

COMPUTER PROBLEMS

1. The theoretical specific heat capacity of a solid at temperature
T is given by the Debye formula

where U is a constant, called the Debye temperature, that de-
pends on the substance. (a) Numerically integrate this expres-
sion to find the specific heat capacity of aluminum at room
temperature, using Ualuminum � 420 K. Compare your result to
the measured value. (b) Generate a graph of the specific heat
capacity of aluminum for the range T � 0 to T � 500 K.

cV � 9 �4 � T

� �
3 ��

0

x

T 2

dx

ex /T � 1
�

��T

e� /T � 1 �,

2. The specific heat capacity of aluminum at low temperatures is
given by

A 1.0-kg block of aluminum originally at 20 K is placed into a
device (left in Roswell, New Mexico by aliens) that can extract
1000 J of heat energy from the aluminum every minute. (a) How
long before the temperature of the aluminum is 1 K? (b) What 
is the temperature of the aluminum after 12 hours? (c) Can the
aluminum ever be cooled to absolute zero with this device?

cV �
12� 4

5
R � T

420 K �
3

.
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ENTROPY AND THE
SECOND LAW OF

THERMODYNAMICS

We can imagine many processes that never happen,

even though they do not violate the law of conservation of energy. For instance, hot coffee resting in a mug

might give up some internal thermal energy and spontaneously begin to rotate. A glass of cool water might

spontaneously change into an ice cube in a glass of warmer water. Even though such things never happen,

we commonly see them happening in the reverse direction. The second law of thermodynamics, the subject

of this chapter, deals with the directions in which processes occur. It is often said that the second law gives

a preferred direction to the “arrow of time,” telling us that systems naturally evolve with time in one direc-

tion but not in the other.

We have seen that the zeroth law of thermodynamics leads to the concept of temperature. Similarly, the

first law of thermodynamics leads to the concept of internal energy. The second law establishes still another

concept; entropy, a quantity in terms of which the second law of thermodynamics is expressed. We will ex-

amine entropy from both a macroscopic and a microscopic point of view.

24-1 ONE-WAY PROCESSES

There is a property of things that happen naturally in the
world around us that is strange beyond belief. Yet we are so
used to it that we hardly ever think about it. It is this:

All naturally occurring processes proceed in one direc-
tion only. They never, of their own accord, proceed in
the opposite direction.

Consider the following examples:

Example 1: If you drop a stone, it falls to the ground. A
stone resting on the ground never, of its own accord,
leaps up into the air.

Example 2: A cup of hot coffee left on your desk gradu-
ally cools down. It never gets hotter all by itself.

Example 3: If you put a drop of ink in a glass of water,
the molecules of ink eventually spread uniformly
throughout the volume of the water. They never, of their
own accord, regroup into a drop-shaped clump.

If you saw any of these processes happen in reverse, you
would probably suspect that you had been tricked.

Such spontaneous one-way processes are irreversible,
which means that once they have started they keep on go-
ing. More precisely, you cannot make them go backward by
making any small change in their environment. Essentially,
all naturally occurring processes are irreversible.

Although the “wrong-way” events we have described
above do not occur, none of them would violate the law of
conservation of energy. Consider these examples again:

Example 1: The ground could spontaneously cool a lit-
tle, giving up some of its internal thermal energy to the
resting stone as kinetic energy, allowing it to leap up.
But it does not happen.

Example 2: Here we are dealing only with the direc-
tion of energy transfer, not with changes in its amount.
Energy might flow from the surrounding air into 
the coffee, instead of the other way around. But it 
does not.
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Example 3: Here no energy transfers are involved. All
that is needed is for the ink molecules, each of which is
free to move throughout the water, all to return simulta-
neously to somewhere near their original locations. That
will never happen.

It is not the energy of the system that controls the direc-
tion of irreversible processes; it is another property that we
introduce in this chapter—the entropy (symbol S) of the
system. Although we have not discussed entropy up to this
point, it is just as much a property of the state of a system
as are temperature, pressure, volume, and internal energy.
We shall define entropy in the following section but, to see
where we are going, let us at once state its central property,
which we can call the entropy principle:

If an irreversible process occurs in a closed system, the
entropy of that system always increases; it never de-
creases.

Entropy is different from energy in that it does not obey a
conservation law. No matter what changes occur within a
closed system, the energy of that system remains constant.
Its entropy, however, always increases for irreversible
processes.

In this chapter we are concerned with changes in
entropy—that is, with �S rather than S. If a process occurs
irreversibly in a closed system, the entropy principle tells us
that The “backward” processes that we have de-
scribed—if they occurred—would have �S � 0 and
would violate the entropy principle.

There are two equivalent ways to define the change in
the entropy of a system: (1) A macroscopic approach, in-
volving heat transfer and the temperature at which the
transfer occurs, and (2) a microscopic approach, involving
counting the ways in which the atoms or molecules that
make up the system can be arranged. We use the first ap-
proach in Section 24-2 and the second in Section 24-9.

24-2 DEFINING ENTROPY
CHANGE

In this section we define the entropy change �S that oc-
curs when a closed system changes from a well-defined
initial state to an equally well-defined final state by a
process that we can describe as reversible. In a reversible
process, we make a small change in a system and its envi-
ronment; by reversing that change, the system and its en-
vironment will return to their original conditions. For ex-
ample, when we place a hot block of metal and a cool
block of metal into contact, heat is transferred from the
hotter block to the cooler one. That is an irreversible
process; we cannot reverse any step in the procedure that
would cause the heat flow to reverse direction and restore
the blocks to their original temperatures. On the other
hand, consider a piece of metal on a hot plate at a temper-

�S � 0.

ature T. If we increase the temperature of the hot plate by
a small step dT, a small amount of heat dQ is transferred
from the hot plate to the block. If we then decrease the
temperature of the hot plate by dT, an equal amount of
heat dQ is transferred from the block to the hot plate. The
block and the hot plate are restored to their original condi-
tions; the heat transferred in this way is done by a re-
versible process.

For another example, consider the gas in the cylinder
shown in Fig. 21-13. If we remove a small amount of lead
shot from the container on the piston, a small quantity of
heat dQ will be transferred to the gas from the thermal
reservoir; if we replace that amount of lead shot, the same
quantity of heat dQ flows back to the reservoir, and the sys-
tem and its environment are restored to their original condi-
tions in this reversible process.

In a truly reversible process, there would be no losses
of energy due to turbulence, friction, or other dissipative
effects. Clearly the reversible process is an abstraction, be-
cause all natural processes will result in these types of en-
ergy losses and hence be irreversible. For example, if there
is friction in the piston of Fig. 21-13, the system will not
return to its original configuration when we return the lead
shot to the container. However, by improving the apparatus
and making other experimental refinements, we can ap-
proach arbitrarily close to reversibility. More importantly,
the strictly reversible process is a simple and useful 
abstraction that helps us to analyze and understand more
complex processes, just as the ideal gas concept is an ab-
straction that helps us to understand the behavior of real
gases.

We begin our discussion of entropy by simply stating
the definition of entropy change for a reversible process and
then examining its consequences. The definition is

(24-1)

Here dQ is the increment of heat energy that is transferred
into or out of the (closed) system at (Kelvin) temperature T,
and the integral is evaluated from the initial state i of the
system to its final state f. Both the heat transferred and the
temperature at which the transfer takes place are equally
important in defining the entropy change.

If the process is isothermal, so that the heat transfer
takes place at a constant temperature T, then Eq. 24-1 re-
duces to

(24-2)

Because the (Kelvin) temperature T is always positive, it
follows from Eqs. 24-1 and 24-2 that the entropy change
has the same algebraic sign as the heat Q. That is, if heat
energy is added (reversibly) to a closed system 
the entropy of that system increases and con-
versely. The unit of entropy that follows from its defining
equation is the joule/kelvin.

(�S � 0)
(Q � 0),

�S �
Q

T
(reversible, isothermal).

�S � �f

i

dQ

T
(reversible).
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Entropy as a State Property
If entropy, like pressure, internal energy, and temperature,
were not a true property of a given equilibrium state of a
system, we would not find it a useful quantity. Let us now
prove specifically that entropy is such a state property for
the important case of an ideal gas.

We write the first law of thermodynamics in differential
form as

We then replace dW with and we use Eq. 23-31 to
replace dEint with nCV dT. Solving for dQ then leads to

Using the ideal gas law, we replace p in this equation with
nRT/V and we then divide each term in the resulting equa-
tion by T. This gives us

Now let us integrate each term of this equation between an
arbitrary initial state i and an arbitrary final state f. The
quantity on the left is then the entropy change defined by
Eq. 24-1, so we get

We did not specify a path in carrying out the integration, so
the above result must hold for all (reversible) paths. Thus
the change in entropy between the initial and final states of
an ideal gas depends only on properties of the initial state
(Ti and Vi) and of the final state (Tf and Vf). It is totally in-
dependent of the process by which the ideal gas moves
from its initial to its final state. Thus entropy is indeed a
state property, characteristic of the particular state of a sys-
tem and not dependent on how the system arrived at that
state.

Sample Problem 24-1. An insulating vessel containing
1.8 kg of water is placed on a hot plate, both the water and hot
plate being initially at 20°C. The temperature of the hot plate is
raised very slowly to 100°C, at which point the water begins to
boil. What is the entropy change of the water during this process?

Solution The water and the hot plate are essentially in thermal
equilibrium at all times so that the process is reversible. That is,
by lowering the temperature of the hot plate slightly at any stage
of the process, we could cause the temperature of the water to stop
rising and to begin to fall. We choose the water alone as our sys-
tem and, because the process is reversible, we can use Eq. 24-1 to
calculate the entropy change.

The heat energy required to raise the temperature of the water
by an amount dT is

in which m is the mass of the water and c is the specific heat of
water. Equation 24-1 then becomes

dQ � mc dT

�S � nR ln 
Vf

Vi
� nCV ln 

Tf

Ti
.

dQ

T
� nR

dV

V
� nCV

dT

T
.

dQ � p dV � nCV dT.

�p dV,

dQ � dW � dEint . Note that, as part of the definition of �S, we had to change the ini-
tial and final temperatures from the Celsius to the Kelvin scale.
Because heat is transferred to the system to increase its tempera-
ture, the change in the entropy of the system is positive.

24-3 ENTROPY CHANGE FOR
IRREVERSIBLE PROCESSES

We can use Eq. 24-1 to calculate the entropy change for a
process only if that process is reversible. However, a re-
versible process— like an ideal gas— is an idealization. All
processes that we encounter in the real world involve fric-
tion or turbulence, or have some other aspect that makes
them essentially irreversible. How, then, do we calculate the
entropy change for an irreversible process?

We rely on the fact that entropy is a state property. That
is, when a closed system proceeds from an initial state i to a
final state f, the entropy change depends only on the prop-
erties of these two states. It does not depend at all on the
process that connects the states or even whether that
process is reversible or irreversible. Thus, we can find the
entropy change �S for a system that proceeds from state i
to state f by an irreversible process using the following pro-
cedure:

1. Find a reversible process that connects these same
two states. Any of the many such processes will do. It
makes sense to choose the simplest.

2. Use Eq. 24-1 to calculate �S for this chosen equiva-
lent reversible process. The result will hold for the original
irreversible process as well.

Let us explore this prescription for what must be one of
the most familiar of irreversible processes, the falling stone
of Example 1 in Section 24-1. Figure 24-1a shows the ini-
tial state of the system. For convenience, we allow the stone
to fall into a thermally insulated bucket of water. Figure 
24-1b shows the final state. The stone now rests in the
bucket and the temperature of the water and the resting
stone has risen from an initial value Ti to a final value Tf .

We take as our system stone � water. No heat energy is
transferred through the boundary of this system so that

Work, in amount msgh, where ms is the mass of the
stone, is done on the system by the gravitational force that
acts on the stone. Thus From the first law of
thermodynamics, we must then have

�Eint � Q � W � 0 � msgh � �msgh.

W � �msgh.

Q � 0.

� 1820 J/K. 

� (1.8 kg)(4190 J/kg �K) ln 
(273 � 100) K

(273 � 20) K

� mc �Tf

Ti

dT

T
� mc ln 

Tf

Ti

�S � �Tf

Ti

mc dT

T
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This increase in internal energy shows up as a small in-
crease in the temperature of the water– stone system.

Now, following step 1 of our procedure, let us find an
equivalent reversible process that connects the two states of
Fig. 24-1. In Fig. 24-2a, we place the water bucket, not on
an insulating slab, but on a thermal reservoir whose con-
trollable temperature we set to Ti . We do not allow the
stone to fall freely but we attach it to a string and lower it
very slowly. After the stone is in the water, we increase the
temperature of the reservoir slowly to Tf , using the temper-
ature control knob. The initial and final states in Fig. 24-2
are exactly the same as those in Fig. 24-1.

The process of Fig. 24-2 is truly reversible. We could
change the direction of the process at any stage by making
small adjustments in the environment of the system— that
is, by raising the stone instead of lowering it and by extract-
ing heat energy instead of adding it.

Now let us examine the energy transfers that occur in
the equivalent reversible process of Fig. 24-2. The net force
acting on the stone is now zero, the force of gravity being
balanced by the upward-directed tension in the string. Thus

Because the initial and final states of Fig. 24-2 are
the same as those for Fig. 24-1 (and the internal energy is a
state property) we must have in each case.
From the first law of thermodynamics we then have

(24-3)

Heat in this amount must enter the system from the thermal
reservoir if we are to increase the system temperature from

� msgh � 0 � �msgh.
Q � �Eint � W

�msgh�Eint �

W � 0.

Ti to Tf . Knowing Q, we can then calculate the entropy
change for the equivalent reversible process, using Eq. 24-
1; see Sample Problem 24-2. Because Q is positive (heat
enters the system) the entropy change will also be positive.
This same (positive) entropy change also holds for the irre-
versible process of Fig. 24-1.

In the following three sample problems, we will exam-
ine three irreversible processes that occur in closed systems
and will show that, in accord with the entropy principle, the
entropy always increases.

Sample Problem 24-2. A stone of mass kg
falls through a vertical height m into a bucket containing
a mass kg of water, as in Fig. 24-1. The initial tempera-
tures of the water and the stone are 300 K. (a) What is the temper-
ature rise �T of the system water � stone? (b) What is the en-
tropy change �S of this system? (c) What would be the entropy
change for the reverse process— that is, for the system to cool
down, transferring its energy to the stone in kinetic form, allowing
it to leap 2.5 m into the air? (It will never happen!) The specific
heat of water is J/kg � K and that of the stone material
is J/kg � K.

Solution (a) Figure 24-2 shows an equivalent reversible process
that we can use to calculate the entropy change of the falling
stone. In terms of the temperature change �T of both the water

cs � 790
cw � 4190

mw � 4.5
h � 2.5

m s � 1.5
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Figure 24-1. An irreversible process between two equilib-
rium states. A stone of mass m is dropped from a height h into wa-
ter contained in a thermally insulated bucket. The temperature of
the water (and the stone) rises from an initial value Ti to a higher
value Tf .

Figure 24-2. A reversible process connecting the same initial
and final states shown in Fig. 24-1. The water bucket now rests on
a thermal reservoir whose temperature can be adjusted by means
of a control knob. First the stone is lowered slowly at the end of a
string. Then the temperature of the water (and the stone) is in-
creased slowly from Ti to Tf by adjusting the temperature control
knob. During this process, heat energy Q is transferred from the
reservoir to the water.

h

Frictionless rod
m

Hand

Control
knob

Ti Tf

Q
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Thermal
reservoir
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and the stone, the heat transfer Q in the equivalent reversible
process of Fig. 24-2b is

(24-4)

a positive quantity. We have seen from Eq. 24-3 that Q is also
given by

Substituting this value for Q into Eq. 24-4 and solving for �T
yields

Because temperature is a state property, this calculated tempera-
ture rise holds both for the equivalent reversible process of Fig.
24-2 and for the original irreversible process of Fig. 24-1.
(b) Now let us calculate the entropy change for the equivalent re-
versible process of Fig. 24-2. The temperature change (5.5 mK) is
so small that we can say that heat Q is transferred from the reser-
voir to the system at essentially a constant temperature of 300 K.
Thus we can calculate �S from Eq. 24-2. From that equation, then

Note that heat Q is transferred into the system from the reser-
voir and is thus positive. Therefore �S is also positive, signifying
an increase in entropy.

Although we have calculated �S for the reversible process of
Fig. 24-2 it applies equally well to the irreversible process of Fig.
24-1. When a stone falls to earth, the entropy of the system in-
creases, just as the entropy principle requires.
(c) In the reverse process, heat energy in the amount J
would have to be transferred from the system of Fig. 24-1b, caus-
ing its temperature to fall by 5.5 mK. Having acquired this energy
in kinetic form, the stone would then leap 2.5 m into the air,
restoring the system to that of Fig. 24-1a. The entropy change cal-
culation proceeds just as in (b) except that, because heat is ex-
tracted from the system, Q is now negative and so must be �S. If
this backward process happened, it would have J/K,
in violation of the entropy principle.

You may be inclined to say, “This ‘backward’ process does
not happen because it violates the entropy principle.” A better
statement is, “Because we have observed that this backward
process—and countless others like it—never happen, scientists
have been led to correlate all these observations by formulating
the entropy principle.”

Sample Problem 24-3. Figure 24-3a shows a paper cup
containing a mass kg of hot water and a similar cup con-
taining an equal mass of cold water. The initial temperature of the
hot water is TiH � 90°C � 363 K; that of the cold water is
TiC � 10°C � 283 K. When the insulating shutter separating the
two enclosures is removed, as in Fig. 24-3b, the hot water and 
the cold water eventually come to thermal equilibrium at a temper-
ature of What is the entropy change of theTf � 50	C � 323 K.

m � 0.57

�S � �0.37

Q � �110

�S �
Q

T
�

�110 J

300 K
� �0.37 J/K.

� �5.5 
 10�3 K � �5.5 mK. 

�
�110 J

(4.5 kg)(4190 J/kg �K) � (1.5 kg)(790 J/kg �K)

�T �
Q

mwcw � mscs

Q � ms gh � (4.5 kg)(9.8 m/s2)(2.5 m) � �110 J.

Q � mwcw �T � mscs �T,

system for this irreversible process? The specific heat of water is
J/kg � K; the heat capacity of the paper cups is negligible.

Solution As always, when seeking to find the entropy change for
an irreversible process, we must start by finding an equivalent re-
versible process that connects the same initial and final states. Fig-
ure 24-4 shows an arrangement that we can use to carry out such a
process.

Step 1: Having first adjusted the temperature of the thermal
reservoir to K we place the cup of hot water (cup H) on
it and surround it with a thermally insulating container. We then
lower the temperature of the reservoir slowly and reversibly to

K. For each temperature change by an amount dT during
this process, an amount of heat given by is trans-
ferred from the hot water. From Eq. 24-1, the entropy change of
the hot water is

Because heat is transferred from the hot water, we expect the en-
tropy change to be negative, as indeed it turns out to be.

Step 2: Now put the cup of cold water (cup C) in a similar
thermally insulating container, having first adjusted the tempera-

� (0.57 kg)(4190 J/kg�K) ln 
323 K

363 K
� �279 J/K.

� mc ln 
Tf

TiH

�SH � � dQ

T
� �Tf

TiH

mc dT

T

dQ � mc dT
Tf � 323

TiH � 363

c � 4190
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Figure 24-3. Sample Problem 24-3. (a) In the initial state,
two cups of water H and C, identical except for their temperatures,
are in an insulating box and are separated by an insulating shutter.
(b) When the shutter is removed, the cups exchange heat and
come to a final state, both with the same temperature Tf . The
process is irreversible.

Figure 24-4. The cups of Fig. 24-3 can proceed from their
initial state to their final state in a reversible way if we use a reser-
voir with a controllable temperature (a) to extract heat reversibly
from cup H and (b) to add heat reversibly to cup C.

H C

Insulation

Control
knob

Thermal reservoir

(a) (b)Step 1 Step 2



ture of the thermal reservoir to Then increase the
temperature of the reservoir, slowly and reversibly, to Tf , the final
equilibrium temperature of the system. During this process, for
every increment of temperature dT an amount of heat

is transferred to the system. The entropy change for
the cold water can be calculated as above, the result being

Step 3: The net entropy change for the entire system is

This is also the entropy change for the irreversible process of Fig.
24-3. Once again we see that the entropy of a closed system in-
creases during an irreversible process.

Sample Problem 24-4. Let mol of an ideal
gas at room temperature be confined in the left ther-
mally insulated chamber of the apparatus of Fig. 24-5. The right
chamber is evacuated and the two chambers—which are of equal
volume—are connected by a tube containing a stopcock. If you
open the stopcock, the gas will rush to fill the evacuated chamber
and will eventually settle down into a state of thermal equilibrium,

(T � 293 K)
n � 0.55

� �279 J/K � 316 J/K � �37 J/K.
�S � �SH � �SC

�SC � (0.57 kg)(4190 J/kg�K) ln 
323 K

283 K
� �316 J/K.

dQ � mc dT

TiC � 283 K. filling both chambers. What is the entropy change of the gas for
this irreversible process?

Solution The process of Fig. 24-5 is a free expansion, a process
that we examined in Section 23-8. We learned there that, if the gas
is ideal—which we assume— the temperature of the final state is
the same as that of the initial state. The free expansion is clearly
not reversible; we cannot return the system to its previous state by
making a small change in its environment.

As in the two previous sample problems, to calculate the en-
tropy change, we must first find an equivalent reversible process
that takes the system from the initial state of Fig. 24-5 to its final
state. Figure 24-6 shows how such a process can be carried out; it
is the reversible isothermal expansion of an ideal gas.

We confine 0.55 mol of the gas to an insulated cylinder that
rests on a thermal reservoir set to K. We place enough
lead shot on top of the piston so that the pressure and volume of
the gas are those of the initial state of Fig. 24-5a. We then remove
the shot very slowly until the pressure and volume of the gas are
those of the final state of Fig. 24-5b. This slow process is re-
versible: at each step, we could return a small amount of lead
shot to its container, and a corresponding small amount of heat
would be transferred to the reservoir from the gas. During this ex-
pansion process, a total heat energy Q is transferred from the
reservoir to the gas to maintain the temperature constant as the
gas expands.

We can find Q from the first law of thermodynamics, which
we write in differential form as

The internal energy of an ideal gas depends only on its tempera-
ture (see Eq. 23-24) and, because the temperature does not change

we must also have Replacing dW by �p dV
and substituting nRT/V for p, we have

Integrating between the initial volume and the final volume yields

Q � � dQ � nRT �Vf

Vi

dV

V
� nRT ln 

Vf

Vi
.

dQ � �dW � p dV � nRT
dV

V
.

dEint � 0.(dT � 0)

dQ � dW � dEint .

T � 293
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Figure 24-5. Sample Problem 24-4. The free expansion of an
ideal gas. (a) The gas is confined to the left half of an insulated
container by a closed stopcock. (b) When the stopcock is opened,
the gas rushes to fill the entire container. This process is irre-
versible; that is, it does not occur in reverse, with the gas sponta-
neously collecting itself in the left half of the container.

Figure 24-6. The isothermal expansion of an ideal gas, done
in a reversible way. The gas has the same initial state i and same
final state f as in the irreversible process of Fig. 24-5.

System
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Insulation
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We can calculate the entropy change of the isothermal expansion
process of Fig. 24-6 from Eq. 24-2, because the temperature is
constant throughout. Thus, bearing in mind that 

This is also the entropy change for the irreversible process of Fig.
24-5. As we expect from the entropy principle, it is positive. We
have now provided three examples to demonstrate the entropy in-
creases in irreversible processes that occur in closed systems.

24-4 THE SECOND LAW OF
THERMODYNAMICS

Before we express the second law of thermodynamics in
terms of entropy change, we must solve a little puzzle. We
saw in Sample Problem 24-4 that if we cause the gas in Fig.
24-6 to undergo a reversible expansion from (a) to (b) in
that figure, the change in entropy of the gas—which we
take as our system— is positive. However, because the
process is reversible, we can just as easily cause the gas to
undergo a reversible compression, making it go from (b) to
(a), simply by slowly adding lead shot to the piston of Fig.
24-6b until the original volume of the gas is restored. In
this reverse process, heat must be transferred from the gas
to keep its temperature from rising. Hence Q is negative
and, from Eq. 24-2, so is the entropy change of the gas.

Doesn’t this decrease in entropy of the gas violate our
expectation that entropy should always increase? No, be-
cause the expectation that entropy should always increase
holds only for irreversible processes occurring in closed
systems. First, the procedure suggested by Fig. 24-6 is not
irreversible. Second, because energy is transferred as heat
from the gas to the reservoir, the system (that is, the gas) is
not closed.

We can always close a system by enlarging it to include
those parts of its environment with which it interacts. In
Fig. 24-6, for example, we can choose as our system the

rather than the gas alone. If the process in
that figure then goes from (b) to (a), heat Q moves from
the gas to the reservoir— that is, from one part of our
larger system to the other. We can calculate the entropy
changes of the gas and the reservoir separately with Eq.
24-2, which applies to an isothermal process like that of
Fig. 24-6. We get

in which is the absolute value of the heat transfer, a
positive quantity. The entropy change of the closed system

is the sum of these two quantities, which is
zero. Thus, although the entropy of the gas decreases, that
of the reservoir increases, and by the same amount.

gas � reservoir

� Q �

�Sgas � �
� Q �
T

and �Sres � �
� Q �
T

,

gas � reservoir,

� (0.55 mol)(8.31 J/mol�K)(ln 2) � �3.17 J/K.

�S �
Q

T
� nR ln 

Vf

Vi

Vf /Vi � 2,

With this as background, we can now extend the state-
ment we made in Section 24-1 about entropy changes to in-
clude both reversible and irreversible processes. The ex-
tended statement, which we call the second law of
thermodynamics, is:

When changes occur within a closed system its entropy
either increases (for irreversible processes) or remains
constant (for reversible processes). It never decreases.

In equation form this statement becomes

(24-5)

The “greater than” sign applies to irreversible processes
and the “equals” sign to reversible processes. No excep-
tions to the second law of thermodynamics have ever been
found.

Although entropy may decrease in part of a closed sys-
tem, there will always be an equal (or larger) entropy in-
crease in another part of that system so that the entropy of
the system as a whole never decreases.

24-5 ENTROPY AND THE
PERFORMANCE OF ENGINES

A heat engine, or more simply, an engine, is a device that
extracts energy from its environment in the form of heat
and does useful work. At the heart of every engine is a
working substance. In an automobile engine, for example,
the working substance is a gas–air mixture. For an engine
to do work on a sustained basis, the working substance
must operate in a cycle. That is, it must pass through a
closed series of thermodynamic processes, returning again
and again to any arbitrarily selected state. Let us see what
the laws of thermodynamics can tell us about the operation
of engines.

A Carnot Engine
We have seen that we can learn much about real gases by
analyzing an ideal gas, which obeys the simple law

This is a useful plan because, although an ideal
gas does not exist, any real gas approaches ideal behavior
as closely as you wish if its density is low enough. In much
the same spirit we choose to study (real) engines by analyz-
ing the behavior of an ideal engine.

Figure 24-7 shows schematically the operation of our
ideal engine. We call it a Carnot engine, after the French
scientist and engineer N. L. Sadi Carnot (pronounced “car-
no”), who first proposed the concept in 1824. It is amazing
that Carnot was able to analyze the performance of this en-
gine some 25 years before the first law of thermodynamics
was discovered and the concept of entropy was established.

During each cycle of the engine of Fig. 24-7, the work-
ing substance absorbs heat from a reservoir at con-
stant temperature TH and discharges heat to a second� QL �

� QH �

pV � nRT.

�S � 0.
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reservoir at a constant lower temperature TL . We assume
that all thermodynamic processes involved in the operation
of the engine are reversible, which means that no dissipa-
tive processes such as turbulence and friction and no irre-
versible heat transfers can be present. Although the Carnot
engine is a hypothetical engine, we can learn much about
real engines by analyzing its performance.

The Carnot Cycle
Figure 24-8 shows a pressure–volume (or pV ) plot of the
cycle followed by the working substance of the Carnot en-
gine of Fig. 24-7. As indicated by the arrows, the cycle is
traversed in the clockwise direction. To carry out the Carnot
cycle physically, imagine the working substance of the

Carnot engine to be a gas, confined to an insulating cylin-
der with a weighted moveable piston. The cylinder may be
placed at will on an insulating slab or on either of two ther-
mal reservoirs, one at the high temperature TH and the other
at the low temperature TL . Figure 24-8 shows that, if we
place the cylinder in contact with the high-temperature
reservoir TH , heat QH is transferred to the working sub-
stance from this reservoir as the gas undergoes an isother-
mal expansion from volume VA to volume VB . Similarly,
with the working substance in contact with the low-temper-
ature reservoir TL , heat QL is transferred from the working
substance to this reservoir, as the gas undergoes an isother-
mal compression from volume VC to volume VD .

In preparing Fig. 24-7, we have assumed that heat trans-
fers to or from the working substance can take place only
during the isothermal processes AB and CD of Fig. 24-8.
Therefore, processes BC and DA in that figure, which con-
nect the two isotherms, TH and TL , must be (reversible) adi-
abatic processes; that is, they must be processes in which
no heat is transferred. To ensure this, during processes BC
and DA the cylinder is placed on an insulating slab as the
volume of the working substance is changed.

As we have defined it (see Section 23-5), work done on
a gas is negative when the gas expands (its volume in-
creases). In considering the performance of engines, how-
ever, we are more interested in the work done by the gas on
its environment. When the gas expands, it does positive
work on the environment— for example, it can lift a
weight. We continue to define the thermodynamic work W
as we did in Chapter 23 as the work done on the gas, but in
our discussion of engines we will use �W � to represent the
work done by an expanding gas on its environment. This
notation reminds us that negative work done on the gas cor-
responds to positive work done by the gas.

During the consecutive processes AB and BC of Fig. 24-
8, the working substance is expanding and thus doing posi-
tive work as it raises the weighted piston. This work is repre-
sented in Fig. 24-8 by the area under the curve ABC. During
the consecutive processes CD and DA, the working substance
is being compressed, which means that it is doing negative
work on its environment or, equivalently, that its environment
is doing positive work on it as the loaded piston descends.
This work is represented by the area under the curve CDA.
The net work per cycle, which is represented by W in Fig.
24-7, is the difference between these two areas, a negative
quantity equal to the area enclosed by the cycle ABCDA and
shown shaded in Fig. 24-8. This work W is performed on
some outside object, perhaps being used to lift a weight.

It is also instructive to plot the Carnot cycle on a tem-
perature–entropy (or T-S) diagram, as in Fig. 24-9. Note
that, in this plot, the isotherms are horizontal lines. Verify
that the points A, B, C, and D in Fig. 24-9 correspond to the
points so labeled in the pressure–volume diagram of Fig.
24-8. Figure 24-9 shows that, during process AB, the en-
tropy of the working substance increases. From Eq. 24-2,
this increase is because heat QH is transferred to� QH �/TH
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Figure 24-7. The elements of a Carnot engine. The two black
arrowheads on the central loop suggest the working substance op-
erating in a cycle. Heat QH is transferred from the high-temperature
reservoir at temperature TH to the working substance. Heat QL is
transferred from the working substance to the low-temperature
reservoir at temperature TL . Work W is done by the engine (actu-
ally by the working substance) on something in the environment.

Figure 24-8. The Carnot cycle plotted on a pV diagram for
an ideal gas as the working substance.
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the working substance, reversibly and at constant tempera-
ture TH . Similarly, during the process CD in Fig. 24-9, heat
QL is being transferred (reversibly, and at constant tempera-
ture TL) from the working substance and, as a result, its en-
tropy decreases. Processes BC and DA in Fig. 24-9 are adi-
abatic; that is, there is no reversible transfer of heat so that,
again from Eq. 24-2, the entropy remains constant. Figure
24-9 shows clearly that the Carnot cycle consists of two
isothermal processes (in which the temperature remains
constant) and two so-called isentropic processes (during
which the entropy remains constant).

Because the engine operates in a cycle, the working
substance must return again and again to any arbitrarily se-
lected state in that cycle. If X represents any state property
of the working substance such as pressure, temperature,
volume, internal energy, or entropy, we must have 
for every cycle. In particular, we must have

(24-6)

for every cycle of the working substance. We will use these
conclusions later.

Efficiency of a Carnot Engine
The purpose of an engine is to transform as much of the ex-
tracted heat QH into work as possible. We measure its suc-
cess in doing so by its thermal efficiency �, defined as the
work the engine does per cycle (“what you get”) divided by
the heat energy it absorbs per cycle (“what you pay for”), or

(24-7)

Let us apply the first law of thermodynamics 
to the working substance as it undergoes one cycleQ � W )

(�Eint �

� �
energy you get

energy you pay for
�

� W �
� QH �

.

�Eint � 0 and �S � 0

�X � 0

of operation. Q is then the net heat transfer per cycle, W is
the net work, and (from Eq. 24-6) That law then
becomes

(24-8)

Combining Eqs. 24-7 and 24-8 yields

(24-9)

Now let us see what entropy considerations have to say
about the operation of a Carnot engine. In this engine, there
are two reversible heat transfers and thus two changes in
entropy, one (�SH) at temperature TH and one (�SL) at TL .
As Eq. 24-6 reminds us, the net entropy change per cycle
must be zero, so that, consistent with Fig. 24-9,

(24-10)

which, because �SL is negative, we can write as

(24-11)

The quantity on the left is the magnitude of the entropy
change at the high-temperature reservoir and that on the
right is the magnitude of the entropy change at the low-
temperature reservoir. We also see from Eq. 24-11 that, be-
cause we must have That is, more
energy is extracted as heat from the high-temperature reser-
voir than is delivered to the low-temperature reservoir.

Combining Eqs. 24-9 and 24-11, we obtain the effi-
ciency of a Carnot engine:

(24-12)

Because the Carnot engine necessarily has a ther-
mal efficiency less than unity— that is, less than 100%. We
can see this from Fig. 24-7, which shows that only part of
the heat energy extracted from the high-temperature reser-
voir is available to do work, the rest being delivered to the
low-temperature reservoir. We will show in Section 24-7
that no real engine can have a thermal efficiency greater
than that calculated from Eq. 24-12.

Note that, in deriving Eq. 24-12, we did not need to
specify the nature of the working substance, nor did we do
so. We conclude:

Equation 24-12 gives the efficiency of all Carnot en-
gines working between the same two fixed temperatures,
regardless of the nature of their working substance.

Search for a “Perfect” Engine
Inventors continually try to improve engine efficiency by
reducing the energy that is “thrown away” during each
cycle. The inventor’s dream is to produce the perfect en-
gine, diagrammed in Fig. 24-10, in which QL is reduced to
zero and QH is converted completely into work. Such an en-
gine on an ocean liner, for example, could extract heat from

� QL �

TL � TH ,

� � 1 �
TL

TH
(Carnot efficiency).

� QH � � � QL �.TH � TL ,

� QH �
TH

�
� QL �
TL

.

�SH � ��SL ,

� �
� QH � � � QL �

� QH �
� 1 �

� QL �
� QH �

.

� W � � � QH � � � QL �.

�Eint � 0.
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Figure 24-9. The Carnot cycle shown on a temperature–en-
tropy plot. Entropy changes occur during processes AB and CD
but not during processes BC and DA. The plot will have this rec-
tangular shape regardless of the nature of the working substance.
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the ocean and use it to drive the propellers, with no fuel
cost. An automobile, fitted with such an engine, could ex-
tract heat energy from the surrounding air and use it to
drive the car, again with no fuel cost. Alas, a perfect engine
is only a dream! Inspection of Eq. 24-12 shows that we can
achieve 100% engine efficiency (that is, � � 1) only if
TL � 0 or TH : , requirements that are impossible to
meet. Instead, decades of practical engineering experience
have led to the following alternative version of the second
law of thermodynamics:

No series of processes is possible whose sole result is
the absorption of heat from a thermal reservoir and the
complete conversion of this energy to work.

In short, there are no perfect engines.
To summarize: the thermal efficiency given by Eq. 24-

12 applies only to Carnot engines. Real engines, in which
the processes that form the engine cycle are not reversible,
have lower efficiencies. If your car were powered by a
Carnot engine, it would have an efficiency of about 55% ac-
cording to Eq. 24-12; its actual efficiency is probably about
25%. A nuclear power plant, taken in its entirety, is an en-
gine. Its high-temperature reservoir is the reactor core and
its low-temperature reservoir is a nearby river. Work is done
on a steam turbine, which drives an alternator, generating
electrical power. If a nuclear power plant operated as a
Carnot engine, its efficiency would be about 40%; its actual
efficiency is about 30%. In designing engines of any type,
there is simply no way to overcome the efficiency limitation
imposed by Eq. 24-12.

Other Reversible Engines
Equation 24-12 does not apply to all reversible engines, but
only to engines that have two (and only two) thermal reser-
voirs, as in Fig. 24-7. In short, it applies only to Carnot en-
gines. For example, Fig. 24-11 shows the operating cycle of
an ideal (that is, reversible) Stirling engine. Comparison
with the Carnot cycle of Fig. 24-8 shows that each engine
has isothermal heat transfers at temperatures TH and TL .
However, the two isotherms of the Stirling engine cycle of
Fig. 24-11 are connected, not by adiabatic processes as for

the Carnot engine, but by constant-volume processes. To in-
crease the temperature of a gas at constant volume re-
versibly from TL to TH (as in process DA of Fig. 24-11) re-
quires a heat transfer to the working substance from a
thermal reservoir whose temperature can be varied
smoothly between those limits. Although reversible heat
transfers (and corresponding entropy changes) occur in
only two of the processes that form the cycle of a Carnot
engine, they occur in all four of the processes that form the
cycle of a Stirling engine. All four heat exchanges must be
taken into account in deriving the thermal efficiency of a
Stirling engine. Its efficiency will be lower than that of a
Carnot engine operating between the same two tempera-
tures. Real Stirling engines, in contrast to ideal Stirling en-
gines, will have still lower efficiencies.

Sample Problem 24-5. The turbine in a steam power
plant takes steam from a boiler at 520°C and exhausts it to a con-
denser at 100°C. What is the maximum possible efficiency of the
turbine?

Solution The maximum efficiency is that of a Carnot engine op-
erating between the same two temperatures or, from Eq. 24-12,

Note that the temperatures in Eq. 24-12 must be expressed in
kelvins. Because of friction, turbulence, and unwanted heat trans-
fers, actual efficiencies of about 40% may be realized for a turbine
of this type. Note that the theoretical maximum efficiency depends
only on the two temperatures involved, not on the pressures or
other factors.

� 0.53 or 53%

�max � 1 �
TL

TH
� 1 �

(273 � 100) K

(273 � 520) K
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TH

QH

QL = 0

W (= –QH)

Figure 24-10. The elements of a perfect engine— that is,
one that converts heat QH from a high-temperature reservoir di-
rectly to work W with 100% efficiency.

Figure 24-11. A pV plot for the working substance of an
ideal (that is, reversible) Stirling engine, assumed for convenience
to be an ideal gas. Compare the Carnot engine cycle of Fig. 24-8.
Each cycle has two isothermal processes, but in the Stirling engine
these processes are connected by two constant-volume (not con-
stant-entropy) processes, along which heat transfers also occur.
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24-6 ENTROPY AND THE
PERFORMANCE OF
REFRIGERATORS

A refrigerator is a device that uses work to transfer thermal
energy from a low-temperature reservoir to a high-tempera-
ture reservoir as it continuously repeats a set series of ther-
modynamic processes. In a household refrigerator, for ex-
ample, work is done by an electrical compressor to transfer
thermal energy from the food storage compartment (a low-
temperature reservoir) to the room (a high-temperature
reservoir).

An air conditioner is a refrigerator. Its low-temperature
reservoir is the room that is to be cooled, and its high-tem-
perature reservoir is the (presumably warmer) outdoors. A
heat pump, which is also a refrigerator, is an air conditioner
that can be operated in reverse to heat a room. The room is
now the high-temperature reservoir and heat is transferred
to it from the (presumably cooler) outdoors.

Figure 24-12 shows the basic elements of a refrigerator.
If we assume that the processes involved in the operation of
the refrigerator are reversible, then we have an ideal refrig-
erator. Comparison of Fig. 24-12 with Fig. 24-7 shows that
an ideal refrigerator is simply a Carnot engine running
backward, with the directions of all energy transfers, either
as heat or work, reversed. Thus we call the ideal refrigera-
tor of Fig. 24-12 a Carnot refrigerator.

The designer of a refrigerator would like to extract as
much heat as possible from the low-temperature reser-
voir (“what you want”) for the least amount of work (“what
you pay for”). We take, as a measure of the efficiency of a
refrigerator, the ratio

(24-13)K �
what you want

what you pay for
�

� QL �
� W �

.

� QL �

The larger the value of K, called the coefficient of perfor-
mance, the more efficient is the refrigerator.

The first law of thermodynamics, applied to the working
substance of the refrigerator, yields

so that Eq. 24-13 becomes

(24-14)

Because a Carnot refrigerator is simply a Carnot engine
working backward, Eq. 24-11 holds for it. If we combine
that equation with Eq. 24-14 we find, after a little algebra,

(24-15)

For a typical room air conditioner, which means
(see Eq. 24-13) that the unit removes 2.5 J of thermal en-
ergy from the room for every joule of electrical energy sup-
plied to it. As Eq. 24-15 shows, the value of K becomes
larger as the temperatures of the two reservoirs become
more nearly the same. That is why heat pumps are more ef-
fective in temperate climates than in climates where the
outside temperature fluctuates between wide limits.

Search for a “Perfect” Refrigerator
It would be nice to own a refrigerator that did not require
some input of work— that is, one that would run without
being plugged in. Figure 24-13 shows another “inventor’s
dream,” a perfect refrigerator, for which so that
(see Eq. 24-13) However, as we shall now see,
such a device would violate the second law of thermody-
namics.

Let us take as our system the working substance and
also the two heat reservoirs. Only by including the reser-
voirs can we ensure that the system is closed. Because the
unit operates in a cycle, the entropy of the working sub-
stance does not change during one cycle. The entropies of

K : .
W � 0,

K � 2.5,

K �
TL

TH � TL
(Carnot refrigerator).

K �
� QL �

� QH � � � QL �
.

� W � � � QH � � � QL �
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QH

QL

TH
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W

Figure 24-12. The elements of a Carnot refrigerator. The
two black arrowheads on the central loop suggest the working
substance operating in a cycle, as if on a pV plot. Heat QL is trans-
ferred to the working substance from the low-temperature reser-
voir. Heat QH is transferred to the high-temperature reservoir from
the working substance. Work W is done on the refrigerator (on the
working substance) by something in the environment.

Figure 24-13. The elements of a perfect refrigerator— that
is, one that transfers heat from a low-temperature reservoir to a
high-temperature reservoir without any input of work.
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the two reservoirs, however, do change, the net entropy
change for the entire closed system (see Fig. 24-13) being

in which heat Q leaves the low-temperature reservoir and,
in the same amount, enters the high-temperature reservoir.
Because the net change in entropy per cycle for a
perfect refrigerator would be negative, a violation of the
second law of thermodynamics. If you want your refrigera-
tor to work, you must plug it in!

This result leads to a third equivalent formulation of the
second law of thermodynamics, often called the Clausius
version, after Rudolph Clausius (1822–1888) who first in-
troduced the concept of entropy:

No process is possible whose sole result is the transfer
of heat from a reservoir at one temperature to another
reservoir at a higher temperature.

In short, there are no perfect refrigerators.

Sample Problem 24-6. A household refrigerator,
whose coefficient of performance K is 4.7, extracts heat from the
food chamber at the rate of 250 J/cycle. (a) How much work per
cycle is required to operate the refrigerator? (b) How much heat
per cycle is discharged to the room?

Solution (a) The basic definition of coefficient of performance,
Eq. 24-13, relates K to the work done and the heat QL removed
from the low-temperature reservoir. Solving that equation for W
yields

(b) Applying the first law of thermodynamics to the working sub-
stance of the refrigerator yields

Here because the working substance operates in a cycle.
Solving the above equation for and inserting the known data
yields

We see that the refrigerator is an efficient room heater. By paying
for 53 J of energy (to run the compressor) we get 303 J of heat en-
ergy delivered to the room. If we heated the room with an electric
heater, we would get only 53 J of heat energy for every 53 J of
work we paid for.

Sample Problem 24-7. A heat pump is a device that—
acting as a refrigerator—can heat a house by transferring heat en-
ergy from the outside to the inside of the house; the process is dri-
ven by work done on the device. The outside temperature is
�10°C, and the interior is to be kept at 22°C. To maintain the
temperature by making up for normal heat losses it is necessary to
deliver heat to the interior at the rate of 16 kW. At what minimum
rate must energy be supplied to the heat pump?

� 53 J/cycle � 250 J/cycle � 303 J/cycle.
� QH � � � W � � � QL �

� QH �
�Eint � 0

�� QH � � � QL � � � W � � �Eint .

� W � �
� QL �

K
�

250 J/cycle

4.7
� 53 J/cycle.

TH � TL ,

�S � �
� Q �
TL

�
� Q �
TH

,

Solution The low-temperature reservoir is the great outdoors, at
and the high-temperature reservoir is

the house interior at 22) � 295 K. The maximum
coefficient of performance of a heat pump is given by Eq. 24-15,
or

Applying the first law of thermodynamics to Eq. 24-13 yields

Solving for and dividing by �t, the duration of a cycle, to ex-
press the result in terms of power yields

Herein lies the “magic” of the heat pump. By using the heat pump
as a refrigerator to heat a house by cooling the great outdoors, you
can deliver 16 kW to the interior of the house as heat but you need
pay for only the 1.7 kW it takes to run the pump.

Actually, the 1.7 kW is a theoretical minimum because it is
based on the assumption that the heat pump is a Carnot refrigera-
tor. In practice, a greater power input would be required but there
would still be a very considerable saving over, say, heating the
house directly with electric heaters.

24-7 THE EFFICIENCIES OF
REAL ENGINES

In this section we wish to show that no real engine can have
an efficiency greater than that of a Carnot engine operating
between the same two temperatures. That is, no real engine
can have an efficiency greater than that given by Eq. 24-12.

Let us assume that an inventor has constructed an en-
gine, engine X, whose efficiency �X — it is claimed— is
greater than �C , the efficiency of a Carnot engine. That is,

(24-16)

Let us couple engine X to a Carnot refrigerator, as in Fig.
24-14a. We adjust the strokes of the Carnot refrigerator so
that the work it requires per cycle is just equal to that pro-
vided by engine X. Thus no (external) work is performed
on or by the combination of Fig. 24-
14a, which we take as our system.

If Eq. 24-16 is true then, from the definition of effi-
ciency (see Eq. 24-7), we must have

Here QHX is the heat extracted from the high-temperature
reservoir by engine X and QHC is that same quantity for the
Carnot refrigerator when it operates as an engine. This in-
equality requires that

(24-17)� QHC � � � QHX �.

� W �
� QHX �

�
� W �

� QHC �
.

engine � refrigerator

�X � �C (a claim).

� W/�t � �
� QH /�t �
K � 1

�
16 kW

8.22 � 1
� 1.7 kW.

� W �

K �
� QL �
� W �

�
� QH � � � W �

� W �
.

K �
TL

TH � TL
�

263 K

295 K � 263 K
� 8.22.

TH � (273 �
TL � (273 � 10) � 263 K,
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Now let us apply the first law of thermodynamics sepa-
rately to the working substances of the Carnot refrigerator
and also that of engine X. Because we have chosen the
work done by engine X to be equal to the work done on the
Carnot refrigerator, we have

which we can write as

(24-18)

Because of Eq. 24-17, the quantity Q in Eq. 24-18 must be
positive.

Comparison of Eq. 24-18 with Fig. 24-14 shows that the
net effect of engine X and the Carnot refrigerator, working
in combination, is to transfer heat energy Q from a low-
temperature reservoir to a high-temperature reservoir with-
out the requirement of work; see Fig. 24-14b. Thus the
combination acts like the perfect refrigerator of Fig. 24-13,
whose existence is a violation of the second law of thermo-
dynamics.

Something must be wrong. We conclude that the claim
made in Eq. 24-16 cannot be correct and

No real engine can have an efficiency greater than that
of a Carnot engine working between the same two tem-
peratures.

At most, a real engine can have an efficiency equal to the
Carnot engine efficiency, given by Eq. 24-12. In that case,
of course, engine X is itself a Carnot engine. Because real
engines are irreversible, their efficiencies will always be
less than the limit set by Eq. 24-12.

Sample Problem 24-8. The inventor of engine X
claims that it has a work output W � 120 J per cycle and operates
between the boiling and freezing points of water with an effi-
ciency of �X � 75% (a) How does this claimed efficiency com-
pare with the efficiency of a Carnot engine operating between the
same two temperatures? (b) If engine X actually existed, how
much heat energy QH would it extract from the high-temperature
reservoir per cycle? (c) If engine X actually existed, how much

� QHC � � � QHX � � � QLC � � � QLX � � Q.

� W � � � QHC � � � QLC � � � QHX � � � QLX �,

heat energy QL would it discharge to the low-temperature reser-
voir per cycle? (d) Once more, assuming that engine X actually
exists, what would be the entropy change per cycle for the entire
engine, including the working substance and both reservoirs?

Solution (a) From Eq. 24-12, which applies only to a Carnot en-
gine, we have

As we have shown in this section, no real engine can have an effi-
ciency greater than that of a Carnot engine operating between the
same two temperatures. Regardless of the inventor’s claim, engine
X must have an efficiency less than 27%. Something is wrong.
(b) From Eq. 24-7 we have

(c) Applying the first law of thermodynamics to the working sub-
stance of engine X yields

(Because the working substance operates in a cycle,
Solving the above equation for QL and substituting numerical data
yields

� 160 J � 120 J � 40 J.

(d ) The system we have chosen is closed so that we can apply the
second law of thermodynamics in the form of Eq. 24-5. Bearing in
mind that, because the engine operates in a cycle, the entropy
change per cycle of its working substance is zero, we have

The terms on the right are, respectively, the entropy changes of the
high-temperature reservoir (a negative quantity), of the low-tem-
perature reservoir (a positive quantity), and of the working sub-
stance.

Note that, as we expect, the entropy of engine X decreases
steadily as the cycles progress. This is a clear violation
of the second law, which states that the entropy of a closed system
can never decrease. Once again, something is wrong.

24-8 THE SECOND LAW
REVISITED

So far we have presented three statements of the second law
of thermodynamics as it applies to closed systems, namely:

1. The entropy of such systems never decreases. That
is, as Eq. 24-5 shows, �S � 0.

(�SX � 0)

� �0.429 J/K � 0.147 J/K � 0 � �0.28 J/K.

� �
160 J

(273 � 100) K
�

40 J

(273 � 0) K
� 0 

� �
� QH �
TH

�
� QL �
TL

� 0 

�SX � �SH � �SL � �SWS

� QL � � � QH � � � W �

�Eint � 0.)

� W � � � QH � � � QL �.

� QH � �
� W �
�X

�
120 J

0.75
� 160 J.

� 1 �
(273 � 0) K

(273 � 100) K
� 0.268 � 27%.

�C � 1 �
TL

TH
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Figure 24-14. (a) Engine X drives a Carnot refrigerator. If
engine X were more efficient than a Carnot engine, then the combi-
nation would be equivalent to the perfect refrigerator shown in (b).

Engine X Perfect
refrigerator

Carnot
refrigerator

Q

QQLC
QLX

TL TL

TH TH

(a) (b)

QHX

W

QHC



2. You cannot change heat energy into work with 100%
efficiency. That is, there are no perfect engines.

3. You cannot transfer heat energy from a low-tempera-
ture reservoir to a higher temperature reservoir without do-
ing work. That is, there are no perfect refrigerators.

At first glance these statements seem quite different.
However, they are all completely equivalent. If you accept
any one of these statements, you must also accept the other
two. If any one of them is false, the other two are also false.

In Section 24-5 we showed that statement 2 follows
from statement 1 and in Section 24-6 we showed that state-
ment 3 also follows from statement 1. Here we will show
that statements 2 and 3 are completely equivalent.

Consider what could happen if statement 2 were false
and we could actually build a perfect engine, converting
heat QH entirely into work W. Let us use this work output to
drive a Carnot refrigerator, as shown in Fig. 24-15a. This
refrigerator transfers heat into the
high-temperature reservoir.

Let us regard the combination of the perfect engine and
the Carnot refrigerator as a single device, as shown by the
dashed boundary lines in Fig. 24-15a. The work W is an in-
ternal feature of this device and does not represent an ex-
change of energy between the device and its environment.
The overall effect of the combined device is to take heat

from the low-temperature reservoir and deliver to the
high-temperature reservoir a net amount of heat equal to

However, so, applying the
first law of thermodynamics to the Carnot refrigerator,

Thus, as Fig. 24-15b shows, our combined device acts like
a perfect refrigerator, taking heat from the low-tem-
perature reservoir and transferring it to the high-tempera-
ture reservoir, with no external work performed.

Thus, if you can build a perfect engine, you can also
build a perfect refrigerator. By a similar argument, you can
show that, if you can build a perfect refrigerator, you can also
build a perfect engine. Thus, a violation of statement 2 of the
second law above implies a violation of statement 3, and
conversely. The two statements are logically equivalent.

� QLC �

� QHC � � � QH � � � QHC � � � W � � � QLC �.

� QH � � � W �,� QHC � � � QH �.

� QLC �

� QHC � � � QLC � � � W �

24-9 A STATISTICAL VIEW OF
ENTROPY

In our discussion of entropy so far we have said nothing
about the fact that matter is made up of atoms. In this section
we take that fact as central and we will see that we can ap-
proach the entropy concept from that direction. We start with
the simple problem of counting the number of ways that we
can divide a small number of atoms (for generality, we will
call them molecules) between the two halves of a box. This
is a problem in the general field of statistical mechanics.

Imagine that we distribute—by hand—eight molecules
between the two halves of a box. The molecules are indis-
tinguishable so we can pick the first one to put in the box in
eight different ways. We then have seven choices for the
second molecule, six choices for the third, and so on. The
total number of ways in which we can put the eight mole-
cules in the box is the product of these independent
choices, or

We write this in mathematical shorthand as

in which 8! is pronounced “eight factorial.” Your calculator
can probably calculate factorials for you. By definition, we
take 0! � 1, a fact that we will use later.

However, not all of these 40,320 ways are independent.
We have overcounted and that number is too large. Con-
sider the configuration of Fig. 24-16a, for example, in
which there happen to be five molecules in one half of the
box and three in the other. Because the molecules are iden-
tical, there is no way that, simply by looking at the five

8! � 40,320,

8 
 7 
 6 
 5 
 4 
 3 
 2 
 1 � 40,320.
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Figure 24-15. (a) A Carnot refrigerator, driven by a perfect
engine, is equivalent to (b) a perfect refrigerator.

Perfect
engine

Carnot
refrigerator

Perfect
refrigerator

QLC

QLCQLC

TL TL

TH TH

(a) (b)

QH

W

QHC

Figure 24-16. An insulated box contains eight gas mole-
cules. Each molecule has the same probability of being in the left
half (L) of the box as in the right half (R). The arrangement in (a)
corresponds to configuration IV in Table 24-1, and that in (b) cor-
responds to configuration V.

L R

(a) Insulation

(b)



molecules, we can deduce the order in which we put them
there. We can, in fact, put these five molecules in place in
5 
 4 
 3 
 2 
 1 � 5! � 120 different ways, all leading
to the same configuration. Similarly, we can put the three
molecules in the other half of the box in 3 
 2 
 1 � 3! �
6 different ways.

To get the number of truly independent ways of arriving
at the configuration of Fig. 24-16a, we need to divide
40,320 by 120 and also by 6, obtaining 56. We call each of
these 56 ways a microstate of the configuration and we call
the number of microstates that lead to a given configuration
the multiplicity w of that configuration. Thus the configura-
tion of Fig. 24-16a has a multiplicity of 56, which means
that it contains 56 microstates.

Extending our consideration from eight molecules to N
molecules, the multiplicity of the configuration in which N1

molecules are in one half of the box and N2 in the other is
given by

(24-19)

We can use this general relation to verify that, for eight
molecules the multiplicity of the configuration of
Fig. 24-16a is indeed 56.

Table 24-1 shows that, for eight molecules, there are
nine configurations, which we have labeled with Roman nu-
merals. The multiplicities, calculated from Eq. 24-19, are
also shown. We see that Fig. 24-16a shows configuration IV
and Fig. 24-16b shows configuration V. The total number of
microstates of the eight-molecule system is 256 

The basic assumption of our statistical approach to ther-
modynamics is perhaps a surprising one; namely,

All microstates of a system are equally probable.

Thus, as the eight molecules in the system of Fig. 24-16
jostle around in their random fashion, the system will
spend, on average, the same amount of time in each of the
256 microstates listed in Table 24-1. Note that all configu-
rations are not equally probable. In fact, the system will
spend 70 times longer in configuration V than in configura-
tion I, because configuration V includes 70 times as many

(� 28).

(N1 � 5, N2 � 3)
(N � 8),

w �
N!

N1! N2!
.

microstates. Configuration V is clearly the most favored
configuration, with the greatest probability of occurrence.
This begins to be familiar, reminding us that in thermal
equilibrium we are likely to find the molecules of a gas uni-
formly distributed throughout the volume of their container.

Eight molecules in a box are not very many on
which to base a conclusion about the real world. Let us in-
crease the number N to 50 (still a small number!) and again
compare the length of time in which 25 molecules are in
each half of the box to that in which all the molecules are in
a given half of the box. The ratio is not 70 to 1 (as it is for

in Table 24-1) but about 1.2 
 1014 to 1. If you
could count the microstates for the configuration N1 �

at the rate of one per second, it would take you
about four million years to complete the task! Imagine how
many microstates there are for the much more reasonable
case of which is about the number of air mole-
cules in a child’s balloon. The probability is then com-
pletely overwhelming for an even distribution of molecules
between the two halves of the box.

For large values of N, nearly all the microstates corre-
spond to an essentially equal division of the molecules be-
tween the two halves of the box, as Fig. 24-17 indicates.
Even though the measured temperature and pressure of 
the gas remain constant, at the molecular level the gas is
churning away endlessly, its molecules “visiting” all the
possible microstates with equal probabilities. However, so
few microstates lie outside the narrow central peak of Fig.
24-17 that the gas molecules can be considered always to
be evenly divided between the two halves of the box. There
is a chance that all of the molecules will find themselves in
one half of the box but, for large numbers of molecules, it
is a vanishingly small one.

N � 1022,

N2 � 25

N � 8

(N � 8)
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Multiplicitya Entropy
Configuration N1 N2 w (10�23 J/K)b

I 8 0 1 0
II 7 1 8 2.87
III 6 2 28 4.60
IV 5 3 56 5.56
V 4 4 70 5.86
VI 3 5 56 5.56
VII 2 6 28 4.60
VIII 1 7 8 2.87
IX 0 8 1 0

Total number of microstates 256

a Calculated from Eq. 24-19 b Calculated from Eq. 24-20

Table 24-1 Eight Molecules in a Box

Figure 24-17. For a large number of molecules in a box, a
plot of the number of microstates that require various percentages
of the molecules to be in the left half of the box. Nearly all the mi-
crostates correspond to an approximately equal sharing of the
molecules between the two halves of the box; those microstates
form the central configuration peak on the plot. For the
central configuration peak would be much too narrow to be drawn
on this plot.
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We see that, left to themselves, systems tend toward
configurations with the highest value of w— that is, toward
configurations with the highest probability of occurrence.
We have also seen that systems tend toward configurations
with the greatest entropy. There must be a relationship be-
tween probability and entropy. Any such relationship must
take into account these two facts:

1. The probability of occurrence of two subsystems is
the product of their individual probabilities.

2. The entropy of a system consisting of two subsys-
tems is the sum of their individual entropies.
That is, probabilities (as for coin tossing) are multiplicative
and entropies (as for energies or volumes) are additive.

This suggests that the relationship between entropy and
probability must involve a logarithm because that is a sim-
ple way (and, indeed, it is the only way) in which quantities
that are multiplied are related to quantities that are added.
Thus,

The Austrian physicist Ludwig Boltzmann first pointed out
the relationship between entropy and probability in 1877,
by advancing the logarithmic relation, now called Boltz-
mann’s entropy equation,

(24-20)

in which is the Boltzmann constant
that we first encountered in Section 21-5 and w is the multi-
plicity associated with the configuration whose entropy S
we wish to calculate. We have used Eq. 24-20 to calculate
the entropy of the nine configurations of Table 24-1.

In using Eq. 24-19 to calculate w, a problem may arise
in that your calculator will flash an overflow signal if you
try to find the factorial of a number much greater than a few
hundred— still a very small number where macroscopic
systems are concerned. Fortunately, there is a very good ap-
proximation (known as Stirling’s approximation) not for N!
but for ln N!. As Eqs. 24-19 and 24-20 show, ln N! is just
what we need to calculate the entropy. Stirling’s approxi-
mation is

(24-21)

(Incidentally, the Stirling of the approximation and the Stir-
ling whose engine we described in Fig. 24-11 are not the
same person.)

Entropy and Disorder
Boltzmann’s entropy equation (Eq. 24-20) can be used to
calculate the entropy of thermodynamic systems much
more complex than the simple one we have examined—
namely, the distribution of molecules between the two
halves of a box. Let us apply it qualitatively— for example,
to the observation that a stirred cup of coffee, swirling in its
cup, will eventually stop swirling and come to rest. We will
focus our attention, not on the positions of the molecules
(as we did for the molecules-in-a-box problem) but on their
velocities.

ln N! � N ln N � N.

k (� 1.38 
 10�23 J/K)

S � k ln w,

ln (a 
 b) � ln a � ln b.

The final resting state, in which the velocities of the
molecules are randomly directed, contains many more mi-
crostates than does the initial state, in which the velocities
of most molecules are pointed in or near the direction of
swirl. Put another way, there are many more ways that you
could assign velocities to the molecules to produce a rest-
ing cup of coffee than to produce a swirling cup of coffee.
That is,

From Eq. 24-20 it then follows that

According to the second law of thermodynamics, the cof-
fee— left to itself—will change spontaneously in the direc-
tion in which its entropy increases. It will never change in
the opposite direction. That is, the “natural” behavior is
from swirling to resting. A resting cup of coffee will never
start to swirl all by itself.

Entropy is often associated with disorder and the sec-
ond law of thermodynamics is sometimes cast as a state-
ment that the disorder of a closed system always increases.
This seems clear enough for our swirling cup of coffee. The
final state, with the randomly directed motions of its mole-
cules, is more disordered than the initial state, with the di-
rected motions of a substantially large number of its mole-
cules. In general, however, the association of entropy with
disorder requires a careful definition of disorder, appropri-
ate to the process at hand. Responding to the order evident
in much of our life experience— including life itself— the
physicist and science writer Timothy Ferris, perhaps push-
ing the concept to a limit, has written

“Entropy can decrease locally even while it increases on
the cosmic scale. One might go so far as to say that the
excitement generated by life, art, science, and the spec-
tacle of a bustling city with its libraries and theaters is at
root the excitement of seeing the law of entropy being
defeated— in one place at least, for a while.”

Sample Problem 24-9. (a) In how many independent
ways can 200 molecules be divided evenly between the two halves
of a box? (b) How many microstates are there that correspond to
150 molecules in one half of the box and 50 in the other?

Solution (a) In this problem we have and 
From Eq. 24-19,

Note how large the factorials are. You can calculate them on a
hand calculator using Stirling’s approximation (Eq. 24-21).
(b) In this case, and 50. Again using
Eq. 24-19 we have

N2 �N � 200, N1 � 150,

� 1.60 
 1060. 

�
200!

100! 100!
�

2.22 
 10373

(3.72 
 10156)(3.72 
 10156)

w �
N!

N1! N2!

N2 � 100.
N1 �N � 200

Sresting � Sswirling .

wresting � wswirling .
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� 6.97 
 1048. 

�
200!

(150!) (50!)
�

2.22 
 10373

(1.86 
 10261)(1.71 
 1063)

w �
N!

N1! N2!
By dividing these two multiplicities, you can learn that the
100/100 split is about 200 billion times more likely than the
150/50 split. As N increases, the split comes to dominate,
as Fig. 24-17 shows.

N1 � N2
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MULTIPLE CHOICE

24-1 One-Way Processes

24-2 Defining Entropy Change
1. For which of the following processes is the entropy change

zero?
(A) Isobaric (B) Isothermal
(C) Adiabatic (D) Constant volume
(E) None of these, since for all processes.

2. One mole of an ideal gas is originally at p0 , V0 , and T0 . The
gas is heated at constant volume to 2T0 , then allowed to ex-
pand at constant temperature to 2V0 , and finally it is allowed
to cool at constant pressure to T0 . The net entropy change for
this ideal gas is

(A) (B)
(C) (D)
(E)

24-3 Entropy Change for Irreversible Processes
3. A block of aluminum originally at 80°C is placed into an in-

sulated container of water originally at 25°C. After a while
the system reaches an equilibrium temperature of 31°C.
(a) During this process

(A)
(B)
(C)

(b) During this process

(A)
(B)
(C)

(c) During this process

(A)
(B)
(C)

24-4 The Second Law of Thermodynamics
4. Which of the following is a consequence of the second law of

thermodynamics?
(A) Heat can flow only from high temperature to low tem-

perature.
(B) Objects in contact will tend toward having the same

temperature.
(C) Any system that produces order from disorder must

have an external influence.

24-5 Entropy and the Performance of Engines
5. A Carnot engine discharges 3 J of heat into the low-tempera-

ture reservoir for every 2 J of work output.
(a) What is the efficiency of this Carnot engine?

(A) 1/3 (B) 2/5 (C) 3/5 (D) 2/3

� �Swater � � � �Saluminum �.
� �Swater � � � �Saluminum �.
� �Swater � � � �Saluminum �.

�Swater � 0.
�Swater � 0.
�Swater � 0.

�Saluminum � 0.
�Saluminum � 0.
�Saluminum � 0.

�S � 0.
�S � 3R/2.�S � R ln 2.
�S � 5R/2.�S � (5R/2) ln 2.

�S � 0

(b) For this engine What can be concluded about
TH ?

(A) (B)
(C) (D)
(E)

24-6 Entropy and the Performance of Refrigerators
6. Consider an ideal heat pump and a perfect electric heater. The

electric heater converts 100% of the electrical energy into
heat energy; the heat pump converts 100% of the electrical
energy into work, which then powers a Carnot refrigerator.
Which is the more “efficient” way to heat a home? (Ignore
maintenance or start-up costs.)

(A) The electric heater is always more efficient.
(B) The heat pump is always more efficient.
(C) The heat pump is more efficient if the outside tempera-

ture is not too warm.
(D) The heat pump is more efficient if the outside tempera-

ture is not too cold.

24-7 The Efficiencies of Real Engines
7. A real engine has an efficiency of 33%. The engine has a

work output of 24 J per cycle.
(a) How much heat energy is extracted from the high-temper-

ature reservoir per cycle?

(A) 8 J (B) 16 J (C) 48 J (D) 72 J
(E) The question can be answered only if the engine is a

Carnot engine.

(b) How much heat energy is discharged into the low-temper-
ature reservoir per cycle?

(A) 8 J (B) 16 J (C) 48 J (D) 72 J
(E) The question can be answered only if the engine is a

Carnot engine.

(c) For this engine What can be concluded about
TH ?

(A) (B)
(C) (D)
(E)

8. A real engine operates at 75% of the efficiency of a Carnot
engine operating between the same two temperatures. This
real engine has a power output of 100 W and discharges 
heat into the 27°C low-temperature reservoir at a rate of 
300 J/s. What is the temperature of the high-temperature
reservoir?

(A) 27°C (B) 77°C (C) 127°C (D) 177°C

24-8 The Second Law Revisited
9. An inventor claims to have invented four engines, each of

which operates between heat reservoirs at 400 and 300 K.

177	C � TH � 450	C.
TH � 177	C.TH � 177	C.
TH � 177	C.TH � 450	C.

TL � 27	C.

227	C � TH � 627	C.
TH � 227	C.TH � 627	C.
TH � 227	C.TH � 627	C.

TL � 27	C.



Data on each engine, per cycle of operation, are as follows: (A) 120 (B) 30240
(C) 3628800 (D) 6.3 
 109

(b) How many different configurations are possible?

(A) 1 (B) 11
(C) 120 (D) 1024
(E) 3628800

(c) What is the total number of microstates for the ten-parti-
cle system?

(A) 1 (B) 11
(C) 120 (D) 1024
(E) 3628800

(d) Which configuration has the largest number of mi-
crostates?

(A) 0, 10 (B) 3, 7 (C) 4, 6 (D) 5, 5

11. Six identical molecules are in one box, and two are in another
box. The two boxes are brought together and the molecules
mix together so that four molecules are in each box. What is
the change in entropy when this happens?

(A) k/2 (B) k ln (5/2)
(C) k ln (4/3) (D) k ln 20
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Qin Qout �W �

Engine 1 200 J �175 J 40 J
Engine 2 500 J �200 J 400 J
Engine 3 600 J �200 J 400 J
Engine 4 100 J � 90 J 10 J

(a) Which of these engines violate the first law of thermody-
namics? (There may be more than one correct answer!)

(A) 1 (B) 2 (C) 3 (D) 4

(b) Which of these engines violate the second law of thermo-
dynamics? (There may be more than one correct answer!)

(A) 1 (B) 2 (C) 3 (D) 4

24-9 A Statistical View of Entropy
10. Ten identical particles are to be divided up into two containers.

(a) How many microstates belong to the configuration of
three particles in one container and seven in the other?

QUESTIONS

1. Are any of the following phenomena reversible: (a) breaking
an empty soda bottle; (b) mixing a cocktail; (c) winding a
watch; (d) melting an ice cube in a glass of iced tea; (e) burn-
ing a log of firewood; ( f ) puncturing an automobile tire; (g)
heating electrically an insulated block of metal; (h) isother-
mally expanding a nonideal gas against a piston; (i) finishing
the “Unfinished Symphony”; ( j) writing this book?

2. Give some examples of irreversible processes in nature.
3. Are there any natural processes that are reversible?
4. Give a qualitative explanation of how frictional forces be-

tween moving surfaces produce internal energy. Why does the
reverse process (internal energy producing relative motion of
those surfaces) not occur?

5. Is a human being a heat engine? Explain.
6. Could we not just as well define the efficiency of an engine as

rather than as Why don’t we?
7. The efficiencies of nuclear power plants are less than those of

fossil-fuel plants. Why?
8. Can a given amount of mechanical energy be converted com-

pletely into heat energy? If so, give an example.
9. An inventor suggested that a house might be heated in the fol-

lowing manner: A system resembling a refrigerator draws heat
from the Earth and rejects heat to the house. The inventor
claimed that the heat supplied to the house can exceed the work
done by the engine of the system. What is your comment?

10. Comment on the statement: “A heat engine converts disor-
dered mechanical motion into organized mechanical motion.”

11. Is a heat engine operating between the warm surface water of a
tropical ocean and the cooler water beneath the surface a pos-
sible concept? Is the idea practical? (See “Solar Sea Power,”
by Clarence Zener, Physics Today, January 1973, p. 48.)

12. Can we calculate the work done during an irreversible process
in terms of an area on a pV diagram? Is any work done?

13. If a Carnot engine is independent of the working substance,
then perhaps real engines should be similarly independent, to

� � � W �/� Qin �?� � � W �/� Qout �

a certain extent. Why then, for real engines, are we so con-
cerned to find suitable fuels such as coal, gasoline, or fission-
able material? Why not use stones as fuel?

14. Under what conditions would an ideal heat engine be 100%
efficient?

15. What factors reduce the efficiency of a heat engine from its
ideal value?

16. You wish to increase the efficiency of a Carnot engine as
much as possible. You can do this by increasing TH a certain
amount, keeping TL constant, or by decreasing TL the same
amount, keeping TH constant. Which would you do?

17. Explain why a room can be warmed by leaving open the door
of an oven but cannot be cooled by leaving open the door of a
kitchen refrigerator.

18. Why do you get poorer gasoline mileage from your car in
winter than in summer?

19. From time to time inventors will claim to have perfected a de-
vice that does useful work but consumes no (or very little)
fuel. What do you think is most likely true in such cases: (a)
the claimants are right, (b) the claimants are mistaken in their
measurements, or (c) the claimants are swindlers? Do you
think that such a claim should be examined closely by a panel
of scientists and engineers? In your opinion, would the time
and effort be justified?

20. We have seen that real engines always discard substantial
amounts of heat to their low-temperature reservoirs. It seems
a shame to throw this heat energy away. Why not use this heat
to run a second engine, the low-temperature reservoir of the
first engine serving as the high-temperature reservoir of the
second?

21. Give examples in which the entropy of a system decreases
and explain why the second law of thermodynamics is not vi-
olated.

22. Do living things violate the second law of thermodynamics?
As a chicken grows from an egg, for example, it becomes



more and more ordered and organized. Increasing entropy,
however, calls for disorder and decay. Is the entropy of a
chicken actually decreasing as it grows?

23. Two containers of gases at different temperatures are isolated
from the surroundings and separated from each other by a
partition that allows heat exchange. What would have to hap-
pen if the entropy were to decrease? To increase? What is
likely to happen?

24. Is there a change in entropy in purely mechanical motions?

25. Show that the total entropy increases when work is converted
into heat by friction between sliding surfaces. Describe the in-
crease in disorder.

26. Heat energy flows from the Sun to the Earth. Show that the en-
tropy of the Earth–Sun system increases during this process.

27. Is it true that the heat energy of the universe is steadily grow-
ing less available? If so, why?

28. Consider a box containing a very small number of mole-
cules— say, five. It must sometimes happen by chance that all
these molecules find themselves in the left half of the box, the
right half being completely empty. This is simply the reverse
of free expansion, a process that we have declared to be irre-
versible. What is your explanation?

29. A rubber band feels warmer than its surroundings immedi-
ately after it is quickly stretched; it becomes noticeably cooler
when it is allowed to contract suddenly. Also, a rubber band
supporting a load contracts on being heated. Explain these ob-
servations using the fact that the molecules of rubber consist
of intertwined and cross-linked long chains of atoms in
roughly random orientation.

30. What entropy change occurs, if any, when a pack of 52 cards
is shuffled into one particular arrangement? Is the concept of

entropy appropriate in this case? If so, explain how one could
get useful cooling by carrying out this process adiabatically.

31. Discuss the following comment of Panofsky and Phillips: “From
the standpoint of formal physics there is only one concept which
is asymmetric in the time, namely, entropy. But this makes it
reasonable to assume that the second law of thermodynamics
can be used to ascertain the sense of time independent of any
frame of reference; that is, we shall take the positive direction of
time to be that of statistically increasing disorder, or increasing
entropy.” (See, in this connection, “The Arrow of Time,” by
David Layzer, Scientific American, December 1975, p. 56.)

32. Explain the statement: “Cosmic rays continually decrease the
entropy of the Earth on which they fall.” Why does this not
contradict the second law of thermodynamics?

33. When we put cards together in a deck or put bricks together
to build a house, for example, we increase the order in the
physical world. Does this violate the second law of thermody-
namics? Explain.

34. Can one use terrestrial thermodynamics, which is known to
apply to bounded and isolated bodies, for the whole universe?
If so, is the universe bounded and from what is the universe
isolated?

35. Temperature and pressure are examples of intensive proper-
ties of a system, their values for any sample of the system be-
ing independent of the size of the sample. However, entropy,
like internal energy, is an extensive property, its value for any
sample of a system being proportional to the size of the sam-
ple. Discuss.

36. The first and second laws of thermodynamics may be para-
phrased, respectively, as follows: (1) You cannot win. (2) You
cannot even break even. Explain in what sense these are per-
missible restatements.
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Figure 24-18. Exercise 2.

Figure 24-19. Exercise 3.

EXERCISES

24-1 One-Way Processes

24-2 Defining Entropy Change
1. An ideal gas undergoes a reversible isothermal expansion at

132°C. The entropy of the gas increases by 46.2 J/K. How
much heat is absorbed?

2. In Fig. 24-18, suppose that the change in entropy of the sys-
tem in passing from state a to state b along path 1 is �0.60
J/K. What is the entropy change in passing (a) from state a to
b along path 2 and (b) from state b to a along path 2?

3. For the Carnot cycle shown in Fig. 24-19, calculate (a) the
heat that enters and (b) the work done on the system.

p

V

2

1

a b

T
 (

K
)

0 0.2 0.4 0.6
0

100

200

300

400

S (J/K)

4. Four moles of an ideal gas are caused to expand from a vol-
ume V1 to a volume (a) If the expansion is
isothermal at the temperature K, find the work done
on the expanding gas. (b) Find the change in entropy, if any.
(c) If the expansion is reversibly adiabatic instead of isother-
mal, what is the entropy change?

T � 410
V2 � 3.45V1 .



5. Find (a) the heat absorbed and (b) the change in entropy of a
1.22-kg block of copper whose temperature is increased re-
versibly from 25.0 to 105°C.

6. Heat can be transferred from water at 0°C and atmospheric
pressure without causing the water to freeze, if done with lit-
tle disturbance of the water. Suppose the water is cooled to
�5.0°C before ice begins to form. Find the change in entropy
occurring during the sudden freezing of 1.0 g of water that
then takes place.

24-3 Entropy Change for Irreversible Processes
7. An ideal gas undergoes an isothermal expansion at 77°C in-

creasing its volume from 1.3 to 3.4 L. The entropy change of
the gas is 24 J/K. How many moles of gas are present?

8. Suppose that the same amount of heat energy— say, 260 J—
is transferred by conduction from a heat reservoir at a temper-
ature of 400 K to another reservoir, the temperature of which
is (a) 100 K, (b) 200 K, (c) 300 K, and (d) 360 K. Calculate
the changes in entropy and discuss the trend.

9. A brass rod is in thermal contact with a heat reservoir at
130°C at one end and a heat reservoir at 24.0°C at the other
end. (a) Compute the total change in the entropy arising from
the process of conduction of 1200 J of heat through the rod.
(b) Does the entropy of the rod change in the process?

24-4 The Second Law of Thermodynamics
10. A 50.0-g block of copper having a temperature of 400 K is

placed in an insulating box with a 100-g block of lead having
a temperature of 200 K. (a) What is the equilibrium tempera-
ture of this two-block system? (b) What is the change in the
internal energy of the two-block system as it changes from
the initial condition to the equilibrium condition? (c) What is
the change in the entropy of the two-block system? (See Table
23-2.)

11. A mixture of 1.78 kg of water and 262 g of ice at 0°C is, in a
reversible process, brought to a final equilibrium state where
the water/ice ratio, by mass, is 1:1 at 0°C. (a) Calculate the
entropy change of the system during this process. (b) The sys-
tem is then returned to the first equilibrium state, but in an ir-
reversible way (by using a Bunsen burner, for instance). Cal-
culate the entropy change of the system during this process.
(c) Show that your answer is consistent with the second law
of thermodynamics.

12. In a specific heat experiment, 196 g of aluminum at 107°C is
mixed with 52.3 g of water at 18.6°C. (a) Calculate the equi-
librium temperature. Find the entropy change of (b) the alu-
minum and (c) the water. (d) Calculate the entropy change of
the system. (Hint: See Sample Problem 24-3.)

24-5 Entropy and the Performance of Engines
13. A heat engine absorbs 52.4 kJ of heat and exhausts 36.2 kJ of

heat each cycle. Calculate (a) the efficiency and (b) the work
done by the engine per cycle.

14. A car engine delivers 8.18 kJ of work per cycle. (a) Before a
tune-up, the efficiency is 25.0%. Calculate, per cycle, the heat
absorbed from the combustion of fuel and the heat exhausted
to the atmosphere. (b) After a tune-up, the efficiency is
31.0%. What are the new values of the quantities calculated in
(a)?

15. Calculate the efficiency of a fossil-fuel power plant that con-
sumes 382 metric tons of coal each hour to produce useful

work at the rate of 755 MW. The heat of combustion of coal
is 28.0 MJ/kg.

16. Engine A, compared to engine B, produces, per cycle, five
times the work but receives three times the heat input and ex-
hausts out twice the heat. Determine the efficiency of each en-
gine.

17. In a Carnot cycle, the isothermal expansion of an ideal gas
takes place at 412 K and the isothermal compression at
297 K. During the expansion, 2090 J of heat energy are trans-
ferred to the gas. Determine (a) the work performed by the
gas during the isothermal expansion, (b) the heat rejected
from the gas during the isothermal compression, and (c) the
work done on the gas during the isothermal compression.

18. A Carnot engine has an efficiency of 22%. It operates be-
tween heat reservoirs differing in temperature by 75 C°. Find
the temperatures of the reservoirs.

19. For the Carnot cycle illustrated in Fig. 24-8, show that the
work done by the gas during process BC has the same ab-
solute value as the work done on the gas during process DA.

20. (a) In a two-stage Carnot heat engine, a quantity of heat 
is absorbed at a temperature T1 , work is done, and a
quantity of heat is expelled at a lower temperature T2 , by
the first stage. The second stage absorbs the heat expelled by
the first, does work and expels a quantity of heat at
a lower temperature T3 . Prove that the efficiency of the com-
bination is (b) A combination mercury– steam
turbine takes saturated mercury vapor from a boiler at 469°C
and exhausts it to heat a steam boiler at 238°C. The steam tur-
bine receives steam at this temperature and exhausts it to a
condenser at 37.8°C. Calculate the maximum efficiency of the
combination.

21. In a steam locomotive, steam at a boiler pressure of 16.0 atm
enters the cylinders, is expanded adiabatically to 5.60 times
its original volume, and then is exhausted to the atmosphere.
Calculate (a) the steam pressure after expansion and (b) the
greatest possible efficiency of the engine.

22. One mole of an ideal monatomic gas is used as the working
substance of an engine that operates on the cycle shown in
Fig. 24-20. Calculate (a) the work done by the engine per cy-
cle, (b) the heat added per cycle during the expansion stroke
abc, and (c) the engine efficiency. (d) What is the Carnot effi-
ciency of an engine operating between the highest and lowest
temperatures present in the cycle? How does this compare to
the efficiency calculated in (c)? Assume that 

and V0 � 0.0225 m3.p0 � 1.01 
 105 Pa,V1 � 2V0 ,
p1 � 2p0 ,

(T1 � T3)/T1 .

� Q3 �� W2 �,

� Q2 �
� W1 �

� Q1 �
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Figure 24-20. Exercise 22.
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24-6 Entropy and the Performance of Refrigerators
23. To make some ice, a freezer extracts 185 kJ of heat at

�12.0°C. The freezer has a coefficient of performance of
5.70. The room temperature is 26.0°C. (a) How much heat is
delivered to the room? (b) How much work is required to run
the freezer?

24. A refrigerator does 153 J of work to transfer 568 J of heat
from its cold compartment. (a) Calculate the refrigerator’s co-
efficient of performance. (b) How much heat is exhausted to
the kitchen?

25. How much work must be done to extract 10.0 J of heat (a)
from a reservoir at 7°C and transfer it to one at 27°C by
means of a refrigerator using a Carnot cycle; (b) from one at
�73°C to one at 27°C; (c) from one at �173°C to one at
27°C; and (d) from one at �223°C to one at 27°C?

26. Apparatus that liquefies helium is in a laboratory at 296 K.
The helium in the apparatus is at 4.0 K. If 150 mJ of heat is
transferred from the helium, find the minimum amount of
heat delivered to the laboratory.

27. An air conditioner takes air from a room at 70°F and transfers
it to the outdoors, which is at 95°F. For each joule of electri-
cal energy required to run the refrigerator, how many joules
of heat are transferred from the room?

28. An inventor claims to have created a heat pump that draws
heat from a lake at 3.0°C and delivers heat at a rate of 20 kW
to a building at 35°C, while using only 1.9 kW of electrical
power. How would you judge the claim?

29. (a) A Carnot engine operates between a hot reservoir at 322 K
and a cold reservoir at 258 K. If it absorbs 568 J of heat per
cycle at the hot reservoir, how much work per cycle does it
deliver? (b) If the same engine, working in reverse, functions
as a refrigerator between the same two reservoirs, how much
work per cycle must be supplied to transfer 1230 J of heat
from the cold reservoir?

30. A heat pump is used to heat a building. The outside tempera-
ture is �5.0°C and the temperature inside the building is to be
maintained at 22°C. The coefficient of performance is 3.8,
and the pump delivers 7.6 MJ of heat to the building each
hour. At what rate must work be done to run the pump?

31. In a refrigerator the low-temperature coils are at a tempera-
ture of �13°C and the compressed gas in the condenser has a
temperature of 25°C. Find the coefficient of performance of a
Carnot refrigerator operating between these temperatures.

32. The motor in a refrigerator has a power output of 210 W. The
freezing compartment is at �3.0°C and the outside air is at

26°C. Assuming that the efficiency is 85% of the ideal, calcu-
late the amount of heat that can be extracted from the freezing
compartment in 15 min.

33. A Carnot engine works between temperatures T1 and T2 . It
drives a Carnot refrigerator that works between two different
temperatures T3 and T4 (see Fig. 24-21). Find the ratio

in terms of the four temperatures.� Q3 �/� Q1 �
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Figure 24-21. Exercise 33.
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24-8 The Second Law Revisited

24-9 A Statistical View of Entropy
34. (a) Derive Stirling’s approximation (Eq. 24-21) by substitut-

ing an integral for the sum in the expression

(b) For what values of N is the error in Stirling’s approxima-
tion less than 1%, 0.1%, and 1 
 10�6?

35. Consider a container that is divided into two sections. (a) Ini-
tially N molecules of a gas are in one section, and the other
side is empty. Compute the multiplicity of this initial state. (b)
After a hole is punched in the partition, the gas fills the entire
container uniformly, with N/2 molecules on each side of the
partition. Find the multiplicity of the final state. (c) Show that
the change in entropy is ln 2. (d) Compare this re-
sult with the result of Sample Problem 24-4 for the entropy
change in a free expansion, and explain the similarities of the
two results.

�S � kN

ln N! � �
N

x�1
 ln x � �N

1
 ln x dx.

PROBLEMS

1. At very low temperatures, the molar specific heat of many
solids is (approximately) proportional to T 3; that is,

where A depends on the particular substance. For
aluminum, J/mol � K4. Find the entropy
change of 4.8 mol of aluminum when its temperature is raised
from 5.0 to 10 K.

2. An object of constant heat capacity C is heated from an initial
temperature Ti to a final temperature Tf by being placed in

A � 3.15 
 10�5
CV � AT 3

contact with a reservoir at Tf . Represent the process on a
graph of C/T versus T and show graphically that the total
change in entropy �S (object plus reservoir) is positive and
(b) show how the use of reservoirs at intermediate tempera-
tures would allow the process to be carried out in a way that
makes �S as small as desired.

3. One mole of an ideal monatomic gas is caused to go through
the cycle shown in Fig. 24-22. (a) How much work is done on



9. One mole of a monatomic ideal gas initially at a volume of
10 L and a temperature 300 K is heated at constant volume to
a temperature of 600 K, allowed to expand isothermally to its
initial pressure, and finally compressed isobarically (that is, at
constant pressure) to its original volume, pressure, and tem-
perature. (a) Compute the heat input to the system during one
cycle. (b) What is the net work done by the gas during one cy-
cle? (c) What is the efficiency of this cycle?

10. A gasoline internal combustion engine can be approximated
by the cycle shown in Fig. 24-25. Assume an ideal diatomic
gas and use a compression ratio of 4:1 Assume
that (a) Determine the pressure and temperature of
each of the vertex points of the pV diagram in terms of pa and
Ta . (b) Calculate the efficiency of the cycle.

pb � 3pa .
(Vd � 4Va).

11. (a) Plot accurately a Carnot cycle on a pV diagram for 1.00
mol of an ideal gas. Let point A (see Fig. 24-8) correspond to

atm, K, and let point B correspond to
0.500 atm, ; take the low-temperature reservoir to
be at 100 K. Let (b) Compute graphically the work
done in this cycle. (c) Compute the work analytically.

� � 1.67.
T � 300 K

T � 300p � 1.00

the gas in expanding the gas from a to c along path abc? (b)
What is the change in internal energy and entropy in going
from b to c? (c) What is the change in internal energy and en-
tropy in going through one complete cycle? Express all an-
swers in terms of the pressure p0 and volume V0 at point a in
the diagram.

warms. (a) Write an expression for the temperature of object
2, T2 , as a function of the temperature of object 1, T1 . (b)
Find the change in entropy of the system �S as a function of
T1 . (c) Show that �S is a maximum when both objects have
the same temperature.

8. Two moles of a monatomic ideal gas are caused to go through
the cycle shown in Fig. 24-24. Process bc is a reversible adia-
batic expansion. Also, atm, m3 and

m3. Calculate (a) the heat added to the gas, (b) the
heat leaving the gas, (c) the net work done by the gas, and (d)
the efficiency of the cycle.

Vc � 9.13
Vb � 1.22pb � 10.4
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Figure 24-22. Problem 3.

Figure 24-23. Problem 4.

Figure 24-24. Problem 8.

Figure 24-25. Problem 10.
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4. One mole of an ideal diatomic gas is caused to pass through
the cycle shown on the pV diagram in Fig. 24-23 where

Determine, in terms of p1 , V1 , T1 , and R: (a) p2 ,
p3 , and T3 ; and (b) W, Q, �Eint , and �S for all three
processes.

V2 � 3V1 .

p

p1

V1
V

3V1

Isothermal

Adiabatic

1

2

3

5. One mole of a monatomic ideal gas is taken from an initial
state of pressure p0 and volume V0 to a final state of pressure
2p0 and volume 2V0 by two different processes. (I) It expands
isothermally until its volume is doubled, and then its pressure
is increased at constant volume to the final state. (II) It is
compressed isothermally until its pressure is doubled, and
then its volume is increased at constant pressure to the final
state. Show the path of each process on a pV diagram. For
each process calculate in terms of p0 and V0 : (a) the heat ab-
sorbed by the gas in each part of the process; (b) the work
done on the gas in each part of the process; (c) the change in
internal energy of the gas, and (d) the change
in entropy of the gas,

6. A 12.6-g ice cube at �10.0°C is placed in a lake whose tem-
perature is �15.0°C. Calculate the change in entropy of the
system as the ice cube comes to thermal equilibrium with the
lake. (Hint: Will the ice cube affect the temperature of the
lake?)

7. A system consists of two objects that are allowed to come
into thermal contact. Object 1 has mass m1 , specific heat ca-
pacity c1 , and is originally at temperature T1, i . Object 2 has
mass m2 , specific heat capacity c2 , and is originally at tem-
perature As object 1 slowly cools, object 2 slowlyT2, i � T1, i .

Sf � Si .
Eint, f � Eint, i ;

p

pb

Vb Vc
V

a c

b

Adiabatic

p

pb

Va Vd

V

pa

Adiabatic

Adiabatic

Spark

Intake

b

c

d

a
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APPENDIX A
THE INTERNATIONAL

SYSTEM OF UNITS (SI)*

Quantity Name Symbol Definition

Length meter m “. . . the length of the path traveled by light in vacuum in 1/299,792,458 of a
second.” (1983)

Mass kilogram kg “. . . the mass of the international prototype of the kilogram.” (1901)

Time second s “. . . the duration of 9,192,631,770 periods of the radiation corresponding to
the transition between the two hyperfine levels of the ground state of the
cesium-133 atom.” (1967)

Electric current ampere A “. . . that constant current which, if maintained in two straight parallel
conductors of infinite length, of negligible circular cross section, and placed 1
meter apart in vacuum, would produce between these conductors a force equal
to 2 � 10�7 newton per meter of length.” (1948)

Thermodynamic temperature kelvin K “. . . the fraction 1/273.16 of the thermodynamic temperature of the triple
point of water.” (1967)

Amount of substance mole mol “. . . the amount of substance of a system which contains as many
elementary entities as there are atoms in 0.012 kilogram of carbon 12.” (1971)

Luminous intensity candela cd “. . . the luminous intensity, in a given direction, of a source that emits
monochromatic radiation of frequency 540 � 1012 hertz and that has a radiant
intensity in that direction of 1/683 watt per steradian.” (1979)

* Adapted from “Guide for the Use of the International System of Units (SI),” National Bureau of Standards Special Publication 811, 1995 edition. The defi-
nitions above were adopted by the General Conference of Weights and Measures, an international body, on the dates shown. In this book we do not use the
candela.

The SI Base Units
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Quantity Name of Unit Symbol Equivalent

Area square meter m2

Volume cubic meter m3

Frequency hertz Hz s�1

Mass density (density) kilogram per cubic meter kg/m3

Speed, velocity meter per second m/s
Angular velocity radian per second rad/s
Acceleration meter per second squared m/s2

Angular acceleration radian per second squared rad/s2

Force newton N
Pressure pascal Pa N/m2

Work, energy, quantity of heat joule J
Power watt W J/s
Quantity of electricity coulomb C
Potential difference, electromotive force volt V
Electric field volt per meter V/m N/C
Electric resistance ohm � V/A
Capacitance farad F
Magnetic flux weber Wb
Inductance henry H
Magnetic field tesla T Wb/m2,
Entropy joule per kelvin J/K
Specific heat capacity joule per kilogram kelvin J/
Thermal conductivity watt per meter kelvin W/
Radiant intensity watt per steradian W/sr

(m �K)
(kg �K)

N/A �m
V �s/A
V �s
A �s/V

N �m/C
A �s

N �m

kg �m/s2

Some SI Derived Units

Quantity Name of Unit Symbol

Plane angle radian rad
Solid angle steradian sr

The SI Supplementary Units
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APPENDIX BAPPENDIX B
FUNDAMENTAL

PHYSICAL CONSTANTS*

Computational
Best (1998) Value

Constant Symbol Value Valuea Uncertaintyb

Speed of light in a vacuum c 3.00 � 108 m/s 2.99792458 exact
Elementary charge e 1.60 � 10�19 C 1.602176462 0.039
Electric constant (permittivity) �0 8.85 � 10�12 F/m 8.85418781762 exact
Magnetic constant (permeability) � 0 1.26 � 10�6 H/m 1.25663706143 exact
Electron mass me 9.11 � 10�31 kg 9.10938188 0.079
Electron massc me 5.49 � 10�4 u 5.485799110 0.0021
Proton mass mp 1.67 � 10�27 kg 1.67262158 0.079
Proton massc mp 1.0073 u 1.00727646688 0.00013
Neutron mass mn 1.67 � 10�27 kg 1.67492716 0.079
Neutron massc mn 1.0087 u 1.00866491578 0.00054
Electron charge-to-mass ratio e/me 1.76 � 1011 C/kg 1.758820174 0.040
Proton-to-electron mass ratio mp /me 1840 1836.1526675 0.0021
Planck constant h 6.63 � 10�34 6.62606876 0.078
Electron Compton wavelength �e 2.43 � 10�12 m 2.426310215 0.0073
Molar gas constant R 8.31 8.314472 1.7
Avogadro constant NA 6.02 � 1023 mol�1 6.02214199 0.079
Boltzmann constant k 1.38 � 10�23 J/K 1.3806503 1.7
Molar volume of ideal gas at STP d Vm 2.24 � 10�2 m3/mol 2.2413996 1.7
Faraday constant F 9.65 � 104 C/mol 9.64853415 0.040
Stefan–Boltzmann constant 	 5.67 � 10�8 5.670400 7.0
Rydberg constant R
 1.10 � 107 m�1 1.0973731568549 0.0000076
Gravitational constant G 6.67 � 10�11 6.673 1500
Bohr radius a0 5.29 � 10�11 m 5.291772083 0.0037
Electron magnetic moment �e 9.28 � 10�24 J/T 9.28476362 0.040
Proton magnetic moment �p 1.41 � 10�26 J/T 1.410606633 0.041
Bohr magneton �B 9.27 � 10�24 J/T 9.27400899 0.040
Nuclear magneton �N 5.05 � 10�27 J/T 5.05078317 0.040
Fine structure constant � 1/137 1/137.03599976 0.0037
Magnetic flux quantum �0 2.07 � 10�15 Wb 2.067833636 0.039
von Klitzing constant RK 25800 � 25812.807572 0.0037

a Same unit and power of ten as the computational value.
b Parts per million.
c Mass given in unified atomic mass units, where 1 u  1.66053873 � 10�27 kg.
d STP— standard temperature and pressure  0°C and 1.0 bar.

* Source: Peter J. Mohr and Barry N. Taylor, Journal of Physical and Chemical Reference Data, vol. 28, no. 6 (1999) and Reviews of Modern Physics,
vol. 72, no. 2 (2000). See also http://physics.nist.gov/constants.

m3/s2 �kg

W/m2 �K4

J/mol�K

J �s
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APPENDIX CAPPENDIX C
ASTRONOMICAL DATA

Property Suna Earth Moon

Mass (kg) 1.99 � 1030 5.98 � 1024 7.36 � 1022

Mean radius (m) 6.96 � 108 6.37 � 106 1.74 � 106

Mean density (kg/m3) 1410 5520 3340
Surface gravity (m/s2) 274 9.81 1.67
Escape velocity (km/s) 618 11.2 2.38
Period of rotationc (d) 26–37b 0.997 27.3
Mean orbital radius (km) 2.6 � 1017d 1.50 � 108e 3.82 � 105f

Orbital period 2.4 � 108 yd 1.00 ye 27.3 d f

a The Sun radiates energy at the rate of 3.90 � 1026 W; just outside the Earth’s atmosphere solar energy
is received, assuming normal incidence, at the rate of 1380 W/m2.
b The Sun—a ball of gas—does not rotate as a rigid body. Its rotational period varies between 26 d at
the equator and 37 d at the poles.
c Measured with respect to the distant stars.
d About the galactic center.
e About the Sun.
f About the Earth.

The Sun, the Earth, and the Moon
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Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto

Mean distance from 57.9 108 150 228 778 1,430 2,870 4,500 5,900
Sun (106 km)

Period of revolution (y) 0.241 0.615 1.00 1.88 11.9 29.5 84.0 165 248

Period of rotationa (d) 58.7 243b 0.997 1.03 0.409 0.426 0.451b 0.658 6.39

Orbital speed (km/s) 47.9 35.0 29.8 24.1 13.1 9.64 6.81 5.43 4.74

Inclination of axis to �28° �3° 23.4° 25.0° 3.08° 26.7° 97.9° 29.6° 57.5°
orbit

Inclination of orbit to 7.00° 3.39° — 1.85° 1.30° 2.49° 0.77° 1.77° 17.2°
Earth’s orbit

Eccentricity of orbit 0.206 0.0068 0.0167 0.0934 0.0485 0.0556 0.0472 0.0086 0.250

Equatorial diameter 4,880 12,100 12,800 6,790 143,000 120,000 51,800 49,500 2,300
(km)

Mass (Earth  1) 0.0558 0.815 1.000 0.107 318 95.1 14.5 17.2 0.002

Average density (g/cm3) 5.60 5.20 5.52 3.95 1.31 0.704 1.21 1.67 2.03

Surface gravityc (m/s2) 3.78 8.60 9.78 3.72 22.9 9.05 7.77 11.0 0.03

Escape speed (km/s) 4.3 10.3 11.2 5.0 59.5 35.6 21.2 23.6 1.3

Known satellites 0 0 1 2 16 � rings 19 � rings 15 � rings 8 � rings 1

a Measured with respect to the distant stars.
b The sense of rotation is opposite to that of the orbital motion.
c Measured at the planet’s equator.

Some Properties of the Planets
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APPENDIX DAPPENDIX D
PROPERTIES OF THE

ELEMENTS

Atomic Molar Density Melting Boiling Specific Heat
Number, Mass (g/cm3) Point Point (J/g C°)

Element Symbol Z (g/mol) at 20°C (°C) (°C) at 25°C

Actinium Ac 89 (227) 10.1 (calc.) 1051 3200 0.120
Aluminum Al 13 26.9815 2.699 660 2519 0.897
Americium Am 95 (243) 13.7 1176 2011 —
Antimony Sb 51 121.76 6.69 630.6 1587 0.207
Argon Ar 18 39.948 1.6626 � 10�3 �189.3 �185.9 0.520
Arsenic As 33 74.9216 5.72 817 (28 at.) 614 (subl.) 0.329
Astatine At 85 (210) — 302 337 —
Barium Ba 56 137.33 3.5 727 1597 0.204
Berkelium Bk 97 (247) 14 (est.) 1050 — —
Beryllium Be 4 9.0122 1.848 1287 2471 1.83
Bismuth Bi 83 208.980 9.75 271.4 1564 0.122
Bohrium Bh 107 (264) — — — —
Boron B 5 10.81 2.34 2075 4000 1.03
Bromine Br 35 79.904 3.12 (liquid) �7.2 58.8 0.226
Cadmium Cd 48 112.41 8.65 321.1 767 0.232
Calcium Ca 20 40.08 1.55 842 1484 0.647
Californium Cf 98 (251) — 900 (est.) — —
Carbon C 6 12.011 2.25 3550 — 0.709
Cerium Ce 58 140.12 6.770 798 3424 0.192
Cesium Cs 55 132.905 1.873 28.44 671 0.242
Chlorine Cl 17 35.453 3.214 � 10�3 (0°C) �101.5 �34.0 0.479
Chromium Cr 24 51.996 7.19 1907 2671 0.449
Cobalt Co 27 58.9332 8.85 1495 2927 0.421
Copper Cu 29 63.54 8.96 1084.6 2562 0.385
Curium Cm 96 (247) 13.5 (calc.) 1345 — —
Dubnium Db 105 (262) — — — —
Dysprosium Dy 66 162.50 8.55 1412 2567 0.170
Einsteinium Es 99 (252) — 860 (est.) — —
Erbium Er 68 167.26 9.07 1529 2868 0.168
Europium Eu 63 151.96 5.244 822 1529 0.182
Fermium Fm 100 (257) — 1527 — —
Fluorine F 9 18.9984 1.696 � 10�3 (0°C) �219.6 �188.1 0.824
Francium Fr 87 (223) — 27 677 —
Gadolinium Gd 64 157.25 7.90 1313 3273 0.236

(Continued)

�
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Atomic Molar Density Melting Boiling Specific Heat
Number, Mass (g/cm3) Point Point (J/g C°)

Element Symbol Z (g/mol) at 20°C (°C) (°C) at 25°C

Gallium Ga 31 69.72 5.904 29.76 2204 0.371
Germanium Ge 32 72.61 5.323 938.3 2833 0.320
Gold Au 79 196.967 19.3 1064.18 2856 0.129
Hafnium Hf 72 178.49 13.31 2233 4603 0.144
Hassium Hs 108 (269) — — — —
Helium He 2 4.0026 0.1664 � 10�3 �272.2 �268.9 5.19
Holmium Ho 67 164.930 8.79 1474 2700 0.165
Hydrogen H 1 1.00797 0.08375 � 10�3 �259.34 �252.87 14.3
Indium ln 49 114.82 7.31 156.6 2072 0.233
Iodine I 53 126.9044 4.93 113.7 184.4 0.145
Iridium Ir 77 192.2 22.4 2446 4428 0.131
Iron Fe 26 55.845 7.87 1538 2861 0.449
Krypton Kr 36 83.80 3.488 � 10�3 �157.4 �153.2 0.248
Lanthanum La 57 138.91 6.145 918 3464 0.195
Lawrencium Lr 103 (260) — — — —
Lead Pb 82 207.19 11.35 327.5 1749 0.129
Lithium Li 3 6.941 0.534 180.5 1342 3.58
Lutetium Lu 71 174.97 9.84 1663 3402 0.154
Magnesium Mg 12 24.305 1.74 650 1090 1.02
Manganese Mn 25 54.9380 7.43 1244 2061 0.79
Meitnerium Mt 109 (268) — — — —
Mendelevium Md 101 (258) — 827 — —
Mercury Hg 80 200.59 13.55 �38.83 356.7 0.140
Molybdenum Mo 42 95.94 10.22 2623 4639 0.251
Neodymium Nd 60 144.24 7.00 1021 3074 0.190
Neon Ne 10 20.180 0.8387 � 10�3 �248.6 �246.0 1.03
Neptunium Np 93 (237) 20.25 644 3902 1.26
Nickel Ni 28 58.69 8.902 1455 2913 0.444
Niobium Nb 41 92.906 8.57 2477 4744 0.265
Nitrogen N 7 14.0067 1.1649 � 10�3 �210.0 �195.8 1.04
Nobelium No 102 (259) — — — —
Osmium Os 76 190.2 22.57 3033 5012 0.130
Oxygen O 8 15.9994 1.3318 � 10�3 �218.8 �183.0 0.918
Palladium Pd 46 106.4 12.02 1555 2963 0.246
Phosphorus P 15 30.9738 1.82 44.15 280.5 0.769
Platinum Pt 78 195.08 21.45 1768 3825 0.133
Plutonium Pu 94 (244) 19.84 640 3228 0.130
Polonium Po 84 (209) 9.32 254 962 —
Potassium K 19 39.098 0.86 63.28 759 0.757
Praseodynium Pr 59 140.907 6.773 931 3520 0.193
Promethium Pm 61 (145) 7.264 1042 3000 (est.) —
Protactinium Pa 91 (231) 15.4 (calc.) 1572 — —
Radium Ra 88 (226) 5.0 700 1140 —
Radon Rn 86 (222) 9.96 � 10�3 (0°C) �71 �61.7 0.094
Rhenium Re 75 186.2 21.02 3186 5596 0.137
Rhodium Rh 45 102.905 12.41 1964 3695 0.243
Rubidium Rb 37 85.47 1.53 39.31 688 0.363
Ruthenium Ru 44 101.07 12.41 2334 4150 0.238
Rutherfordium Rf 104 (261) — — — —
Samarium Sm 62 150.35 7.52 1074 1794 0.197
Scandium Sc 21 44.956 2.99 1541 2836 0.568
Seaborgium Sg 106 (266) — — — —
Selenium Se 34 78.96 4.79 221 685 0.321
Silicon Si 14 28.086 2.33 1414 3265 0.705
Silver Ag 47 107.68 10.49 961.8 2162 0.235
Sodium Na 11 22.9898 0.971 97.72 883 1.23

(Continued)
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Atomic Molar Density Melting Boiling Specific Heat
Number, Mass (g/cm3) Point Point (J/g C°)

Element Symbol Z (g/mol) at 20°C (°C) (°C) at 25°C

Strontium Sr 38 87.62 2.54 777 1382 0.301
Sulfur S 16 32.066 2.07 115.2 444.6 0.710
Tantalum Ta 73 180.948 16.6 3017 5458 0.140
Technetium Tc 43 (98) 11.5 (calc.) 2157 4265 —
Tellurium Te 52 127.60 6.24 449.5 988 0.202
Terbium Tb 65 158.924 8.23 1356 3230 0.182
Thallium Tl 81 204.38 11.85 304 1473 0.129
Thorium Th 90 (232) 11.72 1750 4788 0.113
Thulium Tm 69 168.934 9.32 1545 1950 0.160
Tin Sn 50 118.71 7.31 231.93 2602 0.228
Titanium Ti 22 4788 4.54 1668 3287 0.523
Tungsten W 74 183.85 19.3 3422 5555 0.132
Ununnilium* Uun 110 (271) — — — —
Unununium* Uuu 111 (272) — — — —
Ununbium* Uub 112 (277) — — — —
Ununquadium* Uuq 114 (285) — — — —
Ununhexium* Uuh 116 (289) — — — —
Ununoctium* Uuo 118 (293) — — — —
Uranium U 92 (238) 18.95 1135 4131 0.116
Vanadium V 23 50.942 6.11 1910 3407 0.489
Xenon Xe 54 131.30 5.495 � 10�3 �111.75 �108.0 0.158
Ytterbium Yb 70 173.04 6.966 819 1196 0.155
Yttrium Y 39 88.905 4.469 1522 3345 0.298
Zinc Zn 30 65.39 7.133 419.53 907 0.388
Zirconium Zr 40 91.22 6.506 1855 4409 0.278

Values of molar masses correspond to a mole of atoms of the element. For diatomic gases (H2 , O2 , N2 , etc.) the mass of a mole of molecules is double the
tabulated value.
The values in parentheses in the column of molar masses are the mass numbers of the longest-lived isotopes of those elements that are radioactive.
All the physical properties are given for a pressure of one atmosphere except where otherwise specified.
Except for the molar mass, the data for gases are valid only when these are in their usual molecular state, such as H2 , He, O2 , Ne, etc. The specific heats of
the gases are the values at constant pressure.
* Temporary names for these elements.

Source: Handbook of Chemistry and Physics, 79th edition (CRC Press, 1998). See also http://www.webelements.com.
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APPENDIX EAPPENDIX E
PERIODIC TABLE OF 

THE ELEMENTS

ALKALI
METALS
(including
hydrogen)

1

2

3

4

5

6

7

1

H

NOBLE
GASES

2

He
3

Li
11

Na
19

K
37

Rb
55

Cs
87

Fr

4

Be
12

Mg
20

Ca
38

Sr
56

Ba

5

B
13

Al
31

Ga
49

In
81

Tl
88

Ra

21

Sc
39

Y
71

Lu
103

Lr
104

Rf

22

Ti
40

Zr
72

Hf
105

Db

23

V
41

Nb
73

Ta
106

Sg

24

Cr
42

Mo
74

W
107

Bh

25

Mn
43

Tc
75

Re
108

Hs

26

Fe
44

Ru
76

Os
109

Mt

27

Co
45

Rh
77

Ir

28

Ni
46

Pd
78

Pt
110

Uun*

29

Cu
47

Ag
79

Au
111

Uuu*

30

Zn
48

Cd
80

Hg
112

Uub*

113

7

N
15

P
33

As
51

Sb
83

Bi
115

9

F
17

Cl
35

Br
53

I
85

At
117

6

C
14

Si
32

Ge
50

Sn
82

Pb
114

Uuq*

8

O
16

S
34

Se
52

Te
84

Po
116

Uuh*

10

Ne
18

Ar
36

Kr
54

Xe
86

Rn
118

Uuo*

57–70

88–102

Lanthanide series

Actinide series

57

La
58

Ce
59

Pr
60

Nd
61

Pm
62

Sm
63

Eu
64

Gd
65

Tb
66

Dy
67

Ho
69

Tm
68

Er
70

Yb

89

Ac
90

Th
91

Pa
92

U
93

Np
94

Pu
95

Am
96

Cm
97

Bk
98

Cf
99

Es
101

Md
100

Fm
102

No

* Discovery of these elements has been reported but names for them have not yet been adopted. The symbols shown represent temporary names
assigned to the elements. See http://www.webelements.com for recent information on the discovery and properties of the elements.
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APPENDIX FAPPENDIX F
ELEMENTARY 

PARTICLES

Rest Mean Typical
Anti- Charge Spin Energy Life Decay

Particle Symbol particle (e) (h/2�) (MeV) (s) Products

Electron e� e� �1 1/2 0.511 

Electron neutrino ve 0 1/2 �0.000015 

Muon �� �� �1 1/2 105.7 2.2 � 10�6

Muon neutrino v� 0 1/2 �0.19 

Tau �� �� �1 1/2 1777 2.9 � 10�13

Tau neutrino v� 0 1/2 �18 
v�

�� � v� � v�

v�

e� � ve � v�

ve

Leptons

1. THE FUNDAMENTAL PARTICLES

Charge Spin Rest Energya Other
Flavor Symbol Antiparticle (e) (h/2�) (MeV) Property

Up u �2/3 1/2 3
Down d �1/3 1/2 6
Charm c �2/3 1/2 1300 Charm 
Strange s �1/3 1/2 120 Strangeness 
Top t �2/3 1/2 174,000 Topness 
Bottom b �1/3 1/2 4300 Bottomness (B)  �1b

(T )  �1t
(S)  �1s

(C)  �1c
C  S  T  B  0d
C  S  T  B  0u

Quarks

Charge Spin Rest Energy
Particle Symbol Interaction (e) (h/2�) (GeV)

Gravitonb Gravity 0 2 0
Weak boson W�, W� Weak �1 1 80.4
Weak boson Z0 Weak 0 1 91.2
Photon � Electromagnetic 0 1 0
Gluon g Strong (color) 0 1 0

Field Particles
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Rest Mean
Quark Anti- Charge Spin Energy Life Typical

Particle Symbol Content particle (e) (h/2�) (MeV) (s) Decay

Proton p uud �1 1/2 938 �1033

Neutron n udd 0 1/2 940 887
Lambda �0 uds 0 1/2 1116 2.6 � 10�10

Omega �� sss �1 3/2 1672 8.2 � 10�11 �0 � K�

Delta ��� uuu �2 3/2 1232 5.7 � 10�24

Charmed lambda udc �1 1/2 2285 1.9 � 10�13 �0 � � �� c
�� c

�

p � � ����

��

p � � ��0
p � e� � ven
�0 � e� (?)p

Baryons

2. SOME COMPOSITE PARTICLES

Rest Mean
Quark Anti- Charge Spin Energy Life Typical

Particle Symbol Content particle (e) (h/2�) (MeV) (s) Decay

Pion �� �� �1 0 140 2.6 � 10�8

Pion � 0 � 0 0 0 135 8.4 � 10�17

Kaon K� K� �1 0 494 1.2 � 10�8

Kaon K0 0 0 498 0.9 � 10�10 �� � ��

Rho �� �� �1 1 770 4.4 � 10�24 �� � ��

D-meson D� D� �1 0 1869 1.1 � 10�12 K� � �� � ��

Psi � � 0 1 3097 7.6 � 10�21

B-meson B� B� �1 0 5279 1.6 � 10�12

Upsilon � � 0 1 9460 1.3 � 10�20

a The rest energies listed for the quarks are not those associated with free quarks; since no free quarks have yet been observed, measuring their rest energies
in the free state has not yet been possible. The tabulated values are effective rest energies corresponding to quarks bound in composite particles.
b Particles expected to exist but not yet observed.

Source: “Review of Particle Properties,” European Physical Journal C, vol. 15 (2000). Also see http://pdg.lbl.gov/.

e� � e�bb
D� � � � � � �ub
e� � e�cc

cd
ud

K0ds
�� � v�us
� � �uu � dd
�� � v�ud

Mesons
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APPENDIX GAPPENDIX G
CONVERSION

FACTORS

° � � RADIAN rev

1 degree  1 60 3600 1.745 � 10�2 2.778 � 10�3

1 minute  1.667 � 10�2 1 60 2.909 � 10�4 4.630 � 10�5

1 second  2.778 � 10�4 1.667 � 10�2 1 4.848 � 10�6 7.716 � 10�7

1 RADIAN  57.30 3438 2.063 � 105 1 0.1592

1 revolution  360 2.16 � 104 1.296 � 106 6.283 1

Conversion factors may be read directly from the tables.
For example, 1 degree  2.778 � 10�3 revolutions, so
16.7°  16.7 � 2.778 � 10�3 rev. The SI quantities are

capitalized. Adapted in part from G. Shortley and 
D. Williams, Elements of Physics, Prentice-Hall, 1971.

Plane Angle

1 sphere  4� steradians  12.57 steradians

Solid Angle

cm METER km in. ft mi

1 centimeter  1 10�2 10�5 0.3937 3.281 � 10�2 6.214 � 10�6

1 METER  100 1 10�3 39.37 3.281 6.214 � 10�4

1 kilometer  105 1000 1 3.937 � 104 3281 0.6214

1 inch  2.540 2.540 � 10�2 2.540 � 10�5 1 8.333 � 10�2 1.578 � 10�5

1 foot  30.48 0.3048 3.048 � 10�4 12 1 1.894 � 10�4

1 mile  1.609 � 105 1609 1.609 6.336 � 104 5280 1

1 angström  10�10 m 1 light-year  9.460 � 1012 km 1 yard  3 ft
1 nautical mile  1852 m 1 parsec  3.084 � 1013 km 1 rod  16.5 ft

 1.151 miles  6076 ft 1 fathom  6 ft 1 mil  10�3 in.
1 fermi  10�15 m 1 Bohr radius  5.292 � 10�11 m 1 nm  10�9 m

Length
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METER2 cm2 ft2 in.2

1 SQUARE METER  1 104 10.76 1550

1 square centimeter  10�4 1 1.076 � 10�3 0.1550

1 square foot  9.290 � 10�2 929.0 1 144

1 square inch  6.452 � 10�4 6.452 6.944 � 10�3 1

1 square mile  2.788 � 107 ft2  640 acres 1 acre  43,560 ft2

1 barn  10�28 m2 1 hectare  104 m2  2.471 acre

Area

METER3 cm3 L ft3 in.3

1 CUBIC METER  1 106 1000 35.31 6.102 � 104

1 cubic centimeter  10�6 1 1.000 � 10�3 3.531 � 10�5 6.102 � 10�2

1 liter  1.000 � 10�3 1000 1 3.531 � 10�2 61.02

1 cubic foot  2.832 � 10�2 2.832 � 104 28.32 1 1728

1 cubic inch  1.639 � 10�5 16.39 1.639 � 10�2 5.787 � 10�4 1

1 U.S. fluid gallon  4 U.S. fluid quarts  8 U.S. pints  128 U.S. fluid ounces  231 in.3

1 British imperial gallon  277.4 in.3  1.201 U.S. fluid gallons

Volume

g KILOGRAM slug u oz lb ton

1 gram  1 0.001 6.852 � 10�5 6.022 � 1023 3.527 � 10�2 2.205 � 10�3 1.102 � 10�6

1 KILOGRAM  1000 1 6.852 � 10�2 6.022 � 1026 35.27 2.205 1.102 � 10�3

1 slug  1.459 � 104 14.59 1 8.786 � 1027 514.8 32.17 1.609 � 10�2

1 u  1.661 � 10�24 1.661 � 10�27 1.138 � 10�28 1 5.857 � 10�26 3.662 � 10�27 1.830 � 10�30

1 ounce  28.35 2.835 � 10�2 1.943 � 10�3 1.718 � 1025 1 6.250 � 10�2 3.125 � 10�5

1 pound  453.6 0.4536 3.108 � 10�2 2.732 � 1026 16 1 0.0005

1 ton  9.072 � 105 907.2 62.16 5.463 � 1029 3.2 � 104 2000 1

1 metric ton  1000 kg
Quantities in the colored areas are not mass units but are often used as such. When we write, for example, 1 kg “” 2.205 lb this means that a kilogram is a
mass that weighs 2.205 pounds under standard condition of gravity (g  9.80665 m/s2).

Mass

slug/ft3 KILOGRAM/METER3 g/cm3 lb/ft3 lb/in.3

1 slug per ft3 1 515.4 0.5154 32.17 1.862 � 10�2

1 KILOGRAM per METER3  1.940 � 10�3 1 0.001 6.243 � 10�2 3.613 � 10�5

1 gram per cm3  1.940 1000 1 62.43 3.613 � 10�2

1 pound per ft3  3.108 � 10�2 16.02 1.602 � 10�2 1 5.787 � 10�4

1 pound per in.3  53.71 2.768 � 104 27.68 1728 1

Quantities in the colored areas are weight densities and, as such, are dimensionally different from mass densities. See note for mass table.

Density
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y d h min SECOND

1 year  1 365.25 8.766 � 103 5.259 � 105 3.156 � 107

1 day  2.738 � 10�3 1 24 1440 8.640 � 104

1 hour  1.141 � 10�4 4.167 � 10�2 1 60 3600

1 minute  1.901 � 10�6 6.944 � 10�4 1.667 � 10�2 1 60

1 SECOND  3.169 � 10�8 1.157 � 10�5 2.778 � 10�4 1.667 � 10�2 1

Time

ft/s km/h METER/SECOND mi/h cm/s

1 foot per second  1 1.097 0.3048 0.6818 30.48

1 kilometer per hour  0.9113 1 0.2778 0.6214 27.78

1 METER per SECOND  3.281 3.6 1 2.237 100

1 mile per hour  1.467 1.609 0.4470 1 44.70

1 centimeter per second  3.281 � 10�2 3.6 � 10�2 0.01 2.237 � 10�2 1

1 knot  1 nautical mi/h  1.688 ft/s 1 mi/min  88.00 ft/s  60.00 mi/h

Speed

dyne NEWTON lb pdl gf kgf

1 dyne  1 10�5 2.248 � 10�6 7.233 � 10�5 1.020 � 10�3 1.020 � 10�6

1 NEWTON  105 1 0.2248 7.233 102.0 0.1020

1 pound  4.448 � 105 4.448 1 32.17 453.6 0.4536

1 poundal  1.383 � 104 0.1383 3.108 � 10�2 1 14.10 1.410 � 10�2

1 gram-force  980.7 9.807 � 10�3 2.205 � 10�3 7.093 � 10�2 1 0.001

1 kilogram-force  9.807 � 105 9.807 2.205 70.93 1000 1

Quantities in the colored areas are not force units but are often used as such. For instance, if we write 1 gram-force “” 980.7 dynes, we mean that a gram-
mass experiences a force of 980.7 dynes under standard conditions of gravity (g  9.80665 m/s2).

Force
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Btu erg ft lb hp h JOULE cal kW h eV MeV kg u

1 British thermal 1 1.055 777.9 3.929 1055 252.0 2.930 6.585 6.585 1.174 7.070
unit  � 1010 � 10�4 � 10�4 � 1021 � 1015 � 10�14 � 1012

1 erg  9.481 1 7.376 3.725 10�7 2.389 2.778 6.242 6.242 1.113 670.2
� 10�11 � 10�8 � 10�14 � 10�8 � 10�14 � 1011 � 105 � 10�24

1 foot-pound  1.285 1.356 1 5.051 1.356 0.3238 3.766 8.464 8.464 1.509 9.037
� 10�3 � 107 � 10�7 � 10�7 � 1018 � 1012 � 10�17 � 109

1 horsepower- 2545 2.685 1.980 1 2.685 6.413 0.7457 1.676 1.676 2.988 1.799
hour  � 1013 � 106 � 106 � 105 � 1025 � 1019 � 10�11 � 1016

1 JOULE  9.481 107 0.7376 3.725 1 0.2389 2.778 6.242 6.242 1.113 6.702
� 10�4 � 10�7 � 10�7 � 1018 � 1012 � 10�17 � 109

1 calorie  3.969 4.186 3.088 1.560 4.186 1 1.163 2.613 2.613 4.660 2.806
� 10�3 � 107 � 10�6 � 10�6 � 1019 � 1013 � 10�17 � 1010

1 kilowatt-hour  3413 3.6 2.655 1.341 3.6 8.600 1 2.247 2.247 4.007 2.413
� 1013 � 106 � 106 � 105 � 1025 � 1019 � 10�11 � 1016

1 electron volt  1.519 1.602 1.182 5.967 1.602 3.827 4.450 1 10�6 1.783 1.074
� 10�22 � 10�12 � 10�19 � 10�26 � 10�19 � 10�20 � 10�26 � 10�36 � 10�9

1 million electron 1.519 1.602 1.182 5.967 1.602 3.827 4.450 106 1 1.783 1.074
volts  � 10�16 � 10�6 � 10�13 � 10�20 � 10�13 � 10�14 � 10�20 � 10�30 � 10�3

1 kilogram  8.521 8.987 6.629 3.348 8.987 2.146 2.497 5.610 5.610 1 6.022
� 1013 � 1023 � 1016 � 1010 � 1016 � 1016 � 1010 � 1035 � 1029 � 1026

1 unified atomic 1.415 1.492 1.101 5.559 1.492 3.564 4.146 9.32 932.0 1.661 1
mass unit  � 10�13 � 10�3 � 10�10 � 10�17 � 10�10 � 10�11 � 10�17 � 108 � 10�27

Quantities in the colored areas are not properly energy units but are included for convenience. They arise from the relativistic mass–energy equivalence for-
mula E  mc2 and represent the energy equivalent of a mass of one kilogram or one unified atomic mass unit (u).

���

Energy, Work, Heat

atm dyne/cm2 inch of water cm Hg PASCAL lb/in.2 lb/ft2

1 atmosphere  1 1.013 � 106 406.8 76 1.013 � 105 14.70 2116

1 dyne per cm2  9.869 � 10�7 1 4.015 � 10�4 7.501 � 10�5 0.1 1.405 � 10�5 2.089 � 10�3

1 inch of water° at 4°C  2.458 � 10�3 2491 1 0.1868 249.1 3.613 � 10�2 5.202

1 centimeter of mercurya

at 0°C  1.316 � 10�2 1.333 � 104 5.353 1 1333 0.1934 27.85

1 PASCAL  9.869 � 10�6 10 4.015 � 10�3 7.501 � 10�4 1 1.450 � 10�4 2.089 � 10�2

1 pound per in.2  6.805 � 10�2 6.895 � 104 27.68 5.171 6.895 � 103 1 144

1 pound per ft2  4.725 � 10�4 478.8 0.1922 3.591 � 10�2 47.88 6.944 � 10�3 1

a Where the acceleration of gravity has the standard value 9.80665 m/s2.
1 bar  106 dyne/cm2  0.1 MPa 1 millibar  103 dyne/cm2  102 Pa 1 torr  1 millimeter of mercury

Pressure
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Btu/h ft lb/s hp cal/s kW WATT

1 British thermal unit per hour  1 0.2161 3.929 � 10�4 6.998 � 10�2 2.930 � 10�4 0.2930

1 foot-pound per second  4.628 1 1.818 � 10�3 0.3239 1.356 � 10�3 1.356

1 horsepower  2545 550 1 178.1 0.7457 745.7

1 calorie per second  14.29 3.088 5.615 � 10�3 1 4.186 � 10�3 4.186

1 kilowatt  3413 737.6 1.341 238.9 1 1000

1 WATT  3.413 0.7376 1.341 � 10�3 0.2389 0.001 1

�

Power

maxwell WEBER

1 maxwell  1 10�8

1 WEBER  108 1

Magnetic Flux

gauss TESLA milligauss

1 gauss  1 10�4 1000

1 TESLA  104 1 107

1 milligauss  0.001 10�7 1

1 tesla  1 weber/meter2

Magnetic Field
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APPENDIX HAPPENDIX H
VECTORS

H-1 COMPONENTS OF VECTORS

cos �  az/a

tan �  ay /ax

a  √ax
2 � ay

2 � az
2

az  a cos �

ay  a sin � sin �

ax  a sin � cos �

by  b sin � (�0)

bx  b cos � (�0)

a  √ax
2 � ay

2 tan �  ay/ax

ax  a cos � ay  a sin �

ay a

ax

by

b

bx

y

x
O

y

x
O

az
a

ay

x

ax

z

y

xy projection of a



H-2 UNIT VECTORS

Two-dimensional Cartesian:

Three-dimensional Cartesian:

Two-dimensional polar:

H-3 ADDING VECTORS

(commutative law)

(associative law)d
B

� (eB � f
B

)  (d
B

� eB) � f
B

aB � b
B

 b
B

� aB

sx  ax � bx sy  ay � by

sB  aB � b
B

aB  arûr � a�û�

aB  ax î � ay ĵ � azk̂

aB  ax î � ay ĵ
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ay a

î

ĵ

ax

y

x

az

a

ay

x

ax

^
i

^
k

^
j

z

y

a

^ ^

a ar

uru

a

b

s = a + b

a
+

b
b

+
a

d + e + f

d
+

e

e + f

a

e

d

fa

b

b



H-4 MULTIPLICATION OF VECTORS

Multiplication of a vector by a scalar:

Dot product (or scalar product) of two vectors:

 a(b cos f)  b(a cos f)

Cross product (or vector product) of two vectors:

Direction of is perpendicular to the plane of and ,
determined by the right-hand rule.

aB � (b
B

� cB)  (aB� cB)b
B

� (aB� b
B

) cB
aB� (b

B
� cB)  b

B
� ( cB � aB)  cB� (aB � b

B
)

(saB) � b
B

 aB � (sb
B

)  s(aB � b
B

) (s  a scalar).

aB � (b
B

� cB)  (aB � b
B

) � (aB � cB)

 � î
ax

bx

ĵ
ay

by

k̂
az

bz
�aB � b

B
 (aybz � azby)î � (azbx � axbz)ĵ � (axby � aybx)k̂

î � ĵ  k̂ ĵ � k̂  î k̂ � î  ĵ

î � î  ĵ � ĵ  k̂ � k̂  0

b
B

� aB  �aB � b
B

b
B

aBcB
� cB �  � aB � b

B �  ab sin �

cB  aB � b
B

 ax
2 � ay

2 � az
2aB� aB  a2

aB� b
B

 axbx � ayby � azbz

î � ĵ  î � k̂  ĵ � k̂  0

î � î  ĵ � ĵ  k̂ � k̂  1

aB� b
B

 b
B

� aB
aB� b

B
 ab cos �

b  � c � a

bx  cax by  cay

b
B

 caB

dx  ax � bx dy  ay � by

d
B

 aB � b
B

 aB � (�b
B

)
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– b

b

d = a – b

a

a

– 0.5a

1.4a

b c
os a

b
a cos

c = a x b

a

b
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APPENDIX IAPPENDIX I
MATHEMATICAL

FORMULAS

Geometry

Circle of radius r: circumference  2�r; area  �r 2.
Sphere of radius r: area  4�r 2; volume  �r 3.
Right circular cylinder of radius r and height h:

area  2�r 2 � 2�rh; volume  �r 2h.
Triangle of base a and altitude h: area  ah.

Quadratic Formula

If then 

Trigonometric Functions of Angle 

Pythagorean Theorem

Triangles

Angles A, B, C
Opposite sides a, b, c

c 2  a2 � b2 � 2ab cos C

sin A

a


sin B

b


sin C

c

A � B � C  180°

a2 � b2  c2

sec � 
r

x
csc � 

r

y

tan � 
y

x
cot � 

x

y

sin � 
y

r
cos � 

x

r

x 
�b � √b2 � 4ac

2a
.ax2 � bx � c  0,

1
2

4
3

Mathematical Signs and Symbols

 equals
� equals approximately

is not equal to
� is identical to, is defined as
� is greater than (�� is much greater than)
� is less than (�� is much less than)

is greater than or equal to (or, is no less than)
is less than or equal to (or, is no more than)

� plus or minus 
� is proportional to
� the sum of

the average value of x (also xav)

Trigonometric Identities

sin(90° � �)  cos �
cos(90° � �)  sin �
sin �/cos �  tan �
sin2 � � cos2 �  1 sec2 � � tan2 �  1 csc2 � � cot2 �  1
sin 2�  2 sin � cos �
cos 2�  cos2 � � sin2 �  2 cos2 � � 1  1 � 2 sin2 �
sin(� �  )  sin � cos  � cos � sin  
cos(� �  )  cos � cos  ! sin � sin  

tan(� �  ) 

sin � � sin   2 sin (� �  ) cos (� !  )

Binomial Expansion

Exponential Expansion

e x  1 � x �
x 2

2!
�

x3

3!
� ���

(1 � x)�n  1 !
nx

1!
�

n(n � 1)x2

2!
! ��� (x2 � 1)

(1 � x)n  1 �
nx

1!
�

n(n � 1)x2

2!
� ��� (x2 � 1)

1
2

1
2

tan � � tan  

1 ! tan � tan  

x

(√4  �2)
"
#

$

y axis

y

O

r

x x axis

c
a

b

b a

c

C

BA
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Derivatives and Integrals

In what follows, the letters u and v stand for any functions of x, and a and m are constants. To each of the
indefinite integrals should be added an arbitrary constant of integration. The Handbook of Chemistry and
Physics (CRC Press Inc.) gives a more extensive tabulation.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

8. 8.

9. 9.

10. 10.

11. 11.

12. 12.

13. 13.

14. 14.

15. 15.

16. 16.

17.

18. � dx

√(x2 � a2)3


�x

a2√x2 � a2

�


0
x2ne�ax2

dx 
1 �3 �5 ���(2n � 1)

2n�1an √ �

a

� xne�ax dx 
n!

an�1

d

dx
 cos u  �sin u

du

dx

� x2e�ax dx  �
1

a3  (a2x2 � 2ax � 2)e�axd

dx
 sin u  cos u

du

dx

� xe�ax dx  �
1

a2  (ax � 1)e�axd

dx
eu  eu du
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APPENDIX JAPPENDIX J
NOBEL PRIZES
IN PHYSICS*

* See Nobel Lectures, Physics, 1901–1970, Elsevier Publishing Company, for biographies of the awardees and for lectures given by them on receiving the
prize. For more information, see http://www.nobel.se/physics/laureates/index.html.

1901 Wilhelm Konrad Röntgen 1845–1923 for the discovery of x-rays
1902 Hendrik Antoon Lorentz 1853–1928 for their researches into the influence of magnetism on radiation

Pieter Zeeman 1865–1943 phenomena
1903 Antoine Henri Becquerel 1852–1908 for his discovery of spontaneous radioactivity

Pierre Curie 1859–1906 for their joint researches on the radiation phenomena discovered by
Marie Sklowdowska-Curie 1867–1934 Professor Henri Becquerel

1904 Lord Rayleigh 1842–1919 for his investigations of the densities of the most important gases and
(John William Strutt) for his discovery of argon

1905 Philipp Eduard Anton von Lenard 1862–1947 for his work on cathode rays
1906 Joseph John Thomson 1856–1940 for his theoretical and experimental investigations on the conduction of 

electricity by gases
1907 Albert Abraham Michelson 1852–1931 for his optical precision instruments and metrological investigations carried out

with their aid
1908 Gabriel Lippmann 1845–1921 for his method of reproducing colors photographically based on the 

phenomena of interference
1909 Guglielmo Marconi 1874–1937 for their contributions to the development of wireless 

Carl Ferdinand Braun 1850–1918 telegraphy
1910 Johannes Diderik van der Waals 1837–1923 for his work on the equation of state for gases and liquids
1911 Wilhelm Wien 1864–1928 for his discoveries regarding the laws governing the radiation of heat
1912 Nils Gustaf Dalén 1869–1937 for his invention of automatic regulators for use in conjunction with gas 

accumulators for illuminating lighthouses and buoys
1913 Heike Kamerlingh Onnes 1853–1926 for his investigations of the properties of matter at low temperatures, which

led, inter alia, to the production of liquid helium
1914 Max von Laue 1879–1960 for his discovery of the diffraction of Röntgen rays by crystals
1915 William Henry Bragg 1862–1942 for their services in the analysis of crystal structure by means of

William Lawrence Bragg 1890–1971 X rays
1917 Charles Glover Barkla 1877–1944 for his discovery of the characteristic X rays of the elements
1918 Max Planck 1858–1947 for his discovery of energy quanta
1919 Johannes Stark 1874–1957 for his discovery of the Doppler effect in canal rays and the splitting of 

spectral lines in electric fields
1920 Charles-Édouard Guillaume 1861–1938 for the service he has rendered to precision measurements in Physics by his

discovery of anomalies in nickel steel alloys
1921 Albert Einstein 1879–1955 for his services to theoretical physics, and especially for his discovery of the 

law of the photoelectric effect
1922 Neils Bohr 1885–1962 for the investigation of the structure of atoms, and of the radiation emanating

from them
1923 Robert Andrews Millikan 1868–1953 for his work on the elementary charge of electricity and on the photoelectric

effect



Appendix J / Nobel Prizes in Physics A-23

1924 Karl Manne Georg Siegbahn 1886–1978 for his discoveries and research in the field of X-ray spectroscopy
1925 James Franck 1882–1964 for their discovery of the laws governing the impact of an electron

Gustav Hertz 1887–1975 on an atom
1926 Jean Baptiste Perrin 1870–1942 for his work on the discontinuous structure of matter, and especially for his

discovery of sedimentation equilibrium
1927 Arthur Holly Compton 1892–1962 for his discovery of the effect named after him

Charles Thomson Rees Wilson 1869–1959 for his method of making the paths of electrically charged particles visible by
condensation of vapor

1928 Owen Willans Richardson 1879–1959 for his work on the thermionic phenomenon and especially for the discovery
of the law named after him

1929 Prince Louis-Victor de Broglie 1892–1987 for his discovery of the wave nature of electrons
1930 Sir Chandrasekhara Venkata 1888–1970 for his work on the scattering of light and for the discovery of the effect named

Raman after him
1932 Werner Heisenberg 1901–1976 for the creation of quantum mechanics, the application of which has, among

other things, led to the discovery of the allotropic forms of hydrogen
1933 Erwin Schrödinger 1887–1961 for the discovery of new productive forms of atomic theory

Paul Adrien Maurice Dirac 1902–1984
1935 James Chadwick 1891–1974 for his discovery of the neutron
1936 Victor Franz Hess 1883–1964 for the discovery of cosmic radiation

Carl David Anderson 1905–1991 for his discovery of the positron
1937 Clinton Joseph Davisson 1881–1958 for their experimental discovery of the diffraction of electrons by

George Paget Thomson 1892–1975 crystals
1938 Enrico Fermi 1901–1954 for his demonstrations of the existence of new radioactive elements produced 

by neutron irradiation, and for his related discovery of nuclear reactions 
brought about by slow neutrons

1939 Ernest Orlando Lawrence 1901–1958 for the invention and development of the cyclotron and for results obtained 
with it, especially for artificial radioactive elements

1943 Otto Stern 1888–1969 for his contribution to the development of the molecular ray method and his
discovery of the magnetic moment of the proton

1944 Isidor Isaac Rabi 1898–1988 for his resonance method for recording the magnetic properties of atomic
nuclei

1945 Wolfgang Pauli 1900–1958 for the discovery of the Exclusion Principle (Pauli Principle)
1946 Percy Williams Bridgman 1882–1961 for the invention of an apparatus to produce extremely high pressures, and for

the discoveries he made therewith in the field of high-pressure physics
1947 Sir Edward Victor Appleton 1892–1965 for his investigations of the physics of the upper atmosphere, especially for the

discovery of the so-called Appleton layer
1948 Patrick Maynard Stuart Blackett 1897–1974 for his development of the Wilson cloud chamber method, and his discoveries

therewith in nuclear physics and cosmic radiation
1949 Hideki Yukawa 1907–1981 for his prediction of the existence of mesons on the basis of theoretical work 

on nuclear forces
1950 Cecil Frank Powell 1903–1969 for his development of the photographic method of studying nuclear processes

and his discoveries regarding mesons made with this method
1951 Sir John Douglas Cockcroft 1897–1967 for their pioneer work on the transmutation of atomic nuclei by artificially

Ernest Thomas Sinton Walton 1903–1995 accelerated atomic particles
1952 Felix Bloch 1905–1983 for their development of new methods for nuclear magnetic precision methods

Edward Mills Purcell 1912–1997 and discoveries of connection therewith
1953 Frits Zernike 1888–1966 for his demonstration of the phase-contrast method, especially for his invention

of the phase-contrast microscope
1954 Max Born 1882–1970 for his fundamental research in quantum mechanics, especially for his

statistical interpretation of the wave function
Walther Bothe 1891–1957 for the coincidence method and his discoveries made therewith

1955 Willis Eugene Lamb 1913– for his discoveries concerning the fine structure of the hydrogen spectrum
Polykarp Kusch 1911–1993 for his precision determination of the magnetic moment of the electron

1956 William Shockley 1910–1989 for their research on semiconductors and their discovery of the transistor
John Bardeen 1908–1991 effect
Walter Houser Brattain 1902–1987

1957 Chen Ning Yang 1922– for their penetrating investigation of the parity laws, which has led to 
Tsung Dao Lee 1926– important discoveries regarding the elementary particles

1958 Pavel Aleksejecič Ĉerenkov 1904–1990 for the discovery and the interpretation of the Cerenkov effect
Il’ ja Michajlovič Frank 1908–1990
Igor Yevgenyevich Tamm 1895–1971



1959 Emilio Gino Segrè 1905–1989 for their discovery of the antiproton
Owen Chamberlain 1920–

1960 Donald Arthur Glaser 1926– for the invention of the bubble chamber
1961 Robert Hofstadter 1915–1990 for his pioneering studies of electron scattering in atomic nuclei and for his

thereby achieved discoveries concerning the structure of the nucleons
Rudolf Ludwig Mössbauer 1929– for his researches concerning the resonance absorption of �-rays and his

discovery in this connection of the effect that bears his name
1962 Lev Davidoviĉ Landau 1908–1968 for his pioneering theories of condensed matter, especially liquid helium
1963 Eugene P. Wigner 1902–1995 for his contribution to the theory of the atomic nucleus and the elementary

particles, particularly through the discovery and application of fundamental
symmetry principles

Maria Goeppert Mayer 1906–1972 for their discoveries concerning nuclear shell structure
J. Hans D. Jensen 1907–1973

1964 Charles H. Townes 1915– for fundamental work in the field of quantum electronics, which has led to the
Nikolai G. Basov 1922– construction of oscillators and amplifiers based on the maser– laser
Alexander M. Prochorov 1916– principle

1965 Sin-itiro Tomonaga 1906–1979 for their fundamental work in quantum electrodynamics, with deep-
Julian Schwinger 1918–1994 ploughing consequences for the physics of elementary particles
Richard P. Feynman 1918–1988

1966 Alfred Kastler 1902–1984 for the discovery and development of optical methods for studying Hertzian
resonance in atoms

1967 Hans Albrecht Bethe 1906– for his contributions to the theory of nuclear reactions, especially his
discoveries concerning the energy production in stars

1968 Luis W. Alvarez 1911–1988 for his decisive contribution to elementary particle physics, in particular the
discovery of a large number of resonance states, made possible through his
development of the technique of using hydrogen bubble chamber and data
analysis

1969 Murray Gell-Mann 1929– for his contribution and discoveries concerning the classification of elementary
particles and their interactions

1970 Hannes Alfvén 1908–1995 for fundamental work and discoveries in magneto-hydrodynamics with fruitful
applications in different parts of plasma physics

Louis Néel 1904– for fundamental work and discoveries concerning antiferromagnetism and
ferrimagnetism, which have led to important applications in solid state 
physics

1971 Dennis Gabor 1900–1979 for his discovery of the principles of holography
1972 John Bardeen 1908–1991 for their development of a theory of superconductivity

Leon N. Cooper 1930–
J. Robert Schrieffer 1931–

1973 Leo Esaki 1925– for his discovery of tunneling in semiconductors
Ivar Giaever 1929– for his discovery of tunneling in superconductors
Brian D. Josephson 1940– for his theoretical prediction of the properties of a super-current through a

tunnel barrier
1974 Antony Hewish 1924– for the discovery of pulsars

Sir Martin Ryle 1918–1984 for his pioneering work in radioastronomy
1975 Aage Bohr 1922– for the discovery of the connection between collective motion and particle 

Ben Mottelson 1926– motion and the development of the theory of the structure of the atomic
James Rainwater 1917–1986 nucleus based on this connection

1976 Burton Richter 1931– for their (independent) discovery of an important fundamental particle
Samuel Chao Chung Ting 1936–

1977 Philip Warren Anderson 1923– for their fundamental theoretical investigations of the electronic structure of
Nevill Francis Mott 1905–1996 magnetic and disordered systems
John Hasbrouch Van Vleck 1899–1980

1978 Peter L. Kapitza 1894–1984 for his basic inventions and discoveries in low-temperature physics
Arno A. Penzias 1926– for their discovery of cosmic microwave background radiation
Robert Woodrow Wilson 1936–

1979 Sheldon Lee Glashow 1932– for their unified model of the action of the weak and electromagnetic forces
Abdus Salam 1926–1996 for their prediction of the existence of neutral currents
Steven Weinberg 1933–

1980 James W. Cronin 1931– for the discovery of violations of fundamental symmetry principles in the 
Val L. Fitch 1923– decay of neutral K mesons
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1981 Nicolaas Bloembergen 1920– for their contribution of the development of laser spectroscopy
Arthur Leonard Schawlow 1921–1999
Kai M. Siegbahn 1918–1999 for his contribution of high-resolution electron spectroscopy

1982 Kenneth Geddes Wilson 1936– for his method of analyzing the critical phenomena inherent in the changes of 
matter under the influence of pressure and temperature

1983 Subrehmanyan Chandrasekhar 1910–1995 for his theoretical studies of the structure and evolution of stars
William A. Fowler 1911–1995 for his studies of the formation of the chemical elements in the universe

1984 Carlo Rubbia 1934– for their decisive contributions to the large project, which led to the discovery 
Simon van der Meer 1925– of the field particles W and Z, communicators of the weak interaction

1985 Klaus von Klitzing 1943– for his discovery of the quantized Hall resistance
1986 Ernst Ruska 1906–1988 for his invention of the electron microscope

Gerd Binnig 1947– for their invention of the scanning-tunneling electron microscope
Heinrich Rohrer 1933–

1987 Karl Alex Müller 1927– for this discovery of a new class of superconductors
J. Georg Bednorz 1950–

1988 Leon M. Lederman 1922– for experiments with neutrino beams and the discovery of the muon
Melvin Schwartz 1932– neutrino
Jack Steinberger 1921–

1989 Hans G. Dehmelt 1922– for their development of technique for trapping individual atoms
Wolfgang Paul 1913–1993
Norman F. Ramsey 1915– for his discoveries in atomic resonance spectroscopy, which led to hydrogen

masers and atomic clocks
1990 Richard E. Taylor 1929– for their experiments on the scattering of electrons from nuclei, which revealed 

Jerome I. Friedman 1930– the presence of quarks inside nucleons
Henry W. Kendall 1926–1999

1991 Pierre-Gilles de Gennes 1932– for discoveries about the ordering of molecules in substances such as liquid
crystals, superconductors, and polymers

1992 George Charpak 1924– for his invention of fast electronic detectors for high-energy particles
1993 Joseph H. Taylor 1941– for the discovery and interpretation of the first binary pulsar

Russell A. Hulse 1950–
1994 Bertram N. Brockhouse 1918– for the development of neutron-scattering techniques

Clifford G. Shull 1915–
1995 Martin L. Perl 1927– for the discovery of the tau lepton

Frederick Reines 1918–1998 for the detection of the neutrino
1996 David M. Lee 1931– for their discovery of superfluidity in 3He

Douglas M. Osheroff 1945–
Robert C. Richardson 1937–

1997 Steven Chu 1948– for the development of methods to cool and trap atoms with laser light
Claude Cohen-Tannoudji 1933–
William D. Phillips 1948–

1998 Robert B. Laughlin 1950– for their discovery of a new form of quantum fluid with fractionally charged
Horst L. Stormer 1949– excitations
Daniel C. Tsui 1939–

1999 Gerardus ‘t Hooft 1946– for elucidating the quantum structure of electroweak interactions in
Martinus J. G. Veltman 1931– physics

2000 Zhores I. Alferov 1930– for developing semiconductor heterostructures used in high-speed 
Herbert Kroemer 1928– and opto-electronics
Jacks S. Kilby 1923– for his part in the invention of the integrated circuit



Chapter 1
Exercises
3. 52.6 min; 5.2%. 5. � 0.44%. 7. 3.33 ft. 9. 55 s.
11. 2.2 d. 13. (a) 100 m; 8.56 m; 28.1 ft.
(b) 1 mi is longer by 109 m or 358 ft. 15. 1.88 � 1022 cm3.
17. (a) 4.00 � 104 km. (b) 5.10 � 108 km2.
(c) 1.08 � 1012 km3. 19. 2.86 � 10�3 ly/century.
21. (a) 4.85 � 10�6 pc; 1.58 � 10�5 ly
(b) 9.48 � 1012 km; 3.08 � 1013 km.
23. 5.98 � 1026. 25. New York. 27. 840 km.
29. 605.780211 nm. 31. m/s.
33. (ch/G)1/2 � 5.46 � 10�8 kg.

Problems
1. 7 h 44 min 50 s, p.m. 3. (a) 31 m. (b) 22 m.
(c) Lake Ontario. 5. About 1 lb. 7. 0.260 kg.
9. (a) 282 pm. (b) 416 pm.

Chapter 2
Exercises
1. (a) Parallel. (b) Antiparallel. (c) Perpendicular.
3. (a) 4.5, 52° N of E. (b) 8.4, 25° S of E. 5. 4.76 km.
7. (a) (b) 5.4, at 68° with the � x axis.
9. (a) 5.0, 323°. (b) 10.0, 53.1°. (c) 11.2, 26.6°.
(d ) 11.2, 79.7°. (e) 11.2, 260°.
11. (a) 370 m, 57° E of N. (b) 370 m, 420 m.
13. (a) 16.0 cm, 45.0° clockwise from vertically down.
(b) 22.6 cm, vertically up. (c) Zero.
15. 33,900 ft, 0.288° below the horizontal.
17. (a)  (6 m) � (106 m) . (b) (19 m/s) � (224 m/s) .
(c) (24 m/s2) � (336 m/s2) . 19. (a) � (18 m/s2) . (b) 0.75 s.
(c) Never. (d ) 2.2 s. 21. (a) 11.5 h. (b) 5.5 h.
(c) North Atlantic Ocean. 23. 31 km. 25. 2 cm/y.
27. 1 h 13 min. 29. 48 km/h. 31. 100 m. 33. � 20 m/s2.
35. (a)  OA: �,0; AB: �,�; BC: 0,0; CD: �,�. (b) No.
39. (a) m/s2; m/s3. (b) 2 s. (c) 24 m. (d )  � 16 m.
(e) 3.0, 0.0, � 9.0, � 24 m. ( f ) 0.0, � 6.0, � 12, � 18 m/s2.
(g) � 10 m/s. 41. (a) 3.1 � 106 s. (b) 4.7 � 1013 m.
43. 10.4 cm. 45. 21g. 47. (a) 5.00 s. (b) 61.5 m.
49. (a) 34.7 ft. (b) 41.6 s. 51. 183 m/s. 53. (a) 29.4 m.
(b) 2.45 s. 55. (a) 3.19 s. (b) 1.32 s.
57. (a) 27.4 m/s. (b) 5.33 m/s. (c) 1.45 m. 59. 1.52 s.
61. 0.39 m.

îĵî
ĵîĵî

2î � 5ĵ.

Problems
1. (a) 28 m. (b) 13 m. 3. (a) (10 ft) � (12 ft) � (14 ft) .
(b) 21 ft. (c) Equal to or greater than, not less than. (d ) 26 ft.
5. (a) 45.0 mi/h. (b) 42.8 mi/h. (c) 43.9 mi/h.
7. (a) An infinite number. (b) 87 km. 9. (a) 28.5 cm/s.
(b) 18.0 cm/s. (c) 40.5 cm/s. (d ) 28.1 cm/s. (e) 30.3 cm/s.
11. (a) 14 m/s; 18 m/s2. (b) 6 m/s, 12 m/s2; 24 m/s, 24 m/s2.
13. No, his speed was � 24 mi/h. 15. (a) 0.75 s. (b) 50 m.
17. (a) 3.40 s. (b) 16.2 m. 19. 1.23, 4.90, 11.0, 19.6, 30.6 cm.
21. (a) 110 km. (b) 330 s. 23. (a) 8.85 m/s. (b) 0.999 m.
25. 96g. 27. 0.3 s. 29. 20.4 m.
31. Approximately 3.6h1/2, with h in meters.

Chapter 3
Exercises
1. 6.3 y. 3. 1.0 � 10�15 N. 5. 0.080 m/s2. 7. 1.9 mm.
9. (a) 4.55 m/s2. (b) 2.59 m/s2. 11. (a) 9.9 N. (b) 2.1 m/s2.
13. (a) 646 kg, 6320 N. (b) 412 kg, 4040 N.
15. (a) 12.2 N; 2.65 kg. (b) Zero; 2.65 kg. 17. 1600 lb.
19. 1.19 � 106 N. 21. (a) 5400 N. (b) 5.5 s. (c) 15 m.
(d ) 2.7 s. 23. (a) 210 m/s2. (b) 1.8 � 104 N.
25. Lower it with acceleration greater than 1.3 m/s2.
27. 33 m/s. 29. (a) 5.0 � 105 N. (b) 1.4 � 106 N.
31. (a) 2.2 � 105 N. (b) 5.0 � 104 N.

Problems
1. (a) 0.28 �m. (b) 37 �m. 3. (a) 1.8 m/s2. (b) 3.8 m/s2.
(c) 4.0 m. 5. (a) 3260 N. (b) 2720 kg. (c) 1.20 m/s2.
7. (a) 0.97 m/s2. (b) 1.2 N. (c) 3.5 N.
9. (a) 1.23 N, 2.46 N, 3.69 N, 4.92 N. (b) 6.15 N. (c) 0.250 N.
11. (a) P/(m � M ). (b) PM/(m � M ).

Chapter 4
Exercises
1. (a) 2.4 ns. (b) 2.7 mm. (c) 9600 km/s, 2300 km/s.
3. (a) (2Bt) � C � (8.0 m/s2)t � (1.0 m/s) .
(b) 2B � (8.0 m/s2) . (c) A parabola.
5. (0.83 m/s2) � (0.71 m/s2) . 7. (a) 2.2 m/s2.
(b) 120 N. (c) 21 m/s2. 9. 11 m.
11. 6800 N at 21° from the line of motion. 13. (a) 0.514 s.
(b) 9.94 ft /s. 15. (a) 0.18 m. (b) 1.9 m. 19. (a) 11 m.
(b) 23 m. (c) 17 m/s, 63° below the horizontal.
21. 1 cm longer. 23. 78 ft /s, 65°. 25. (a) 0.20 m. (b) No.
27. 115 ft /s. 29. 1.47 N. 31. (m/b) ln 2. 33. (a) 257 kN.
(b) 1.06°. 35. (a) 19 m/s. (b) 35 rev/min. 37. (a) 130 km/s.

ĵî
ĵĵ
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(b) 790 km/s2. 39. 36 s; no.
41. The wind blows due east at 55 mi/h. 43. (a) 0.71 s.
(b) 2.3 ft. 45. (a) 46.8° E of N. (b) 6 min 35 s.

Problems  
1. 60°. 3. (a) 8.44 km. (b) 59.0 km. 5. (a) 1.16 s.
(b) 13.0 m. (c) 18.8 m/s; 5.56 m/s. (d ) No. 7. (a) 99 ft.
(b) 90 ft /s. (c) 180 ft. 9. 31° to 63° above the horizontal.
13. 1.30 m/s. 15. (a) g. (b) (mg/b)1/2. (c) 0.75g.
17. (a) ge�bt/m;g;0. (b) (mg/b)[t � (m/b)(e�bt/m � 1)].
19. (a) 15 km. (b) 77 km/h. 21. 220 m/s2.
23. (b) Maximum: vx � 2�R, vy � 0; ax � 0, ay � � �2R.
Minimum: vx � vy � 0; ax � 0, ay � �2R.
25. (2.976 to 2.991) � 108 m/s. 27. 98.1 km/h, 15.1°.

Chapter 5
Exercises
1. (a) 0.0018 N. (b) 0.0033 N. 3. (a) 7.3 kg. (b) 89 N.
5. (a) 6.8 m/s. (b) Climb the rope. 7. 18 kN. 9. 2°.
11. 9.3 m/s2. 13. 900 N. 15. (a) 9.1 kN. (b) 9.0 kN.
17. (b) 219 N. (c) 81 N. 19. 0.040; 0.026. 21. 0.487.
23. (a) 3.2 m/s2, down the plane. (b) 2.9 m. (c) Stays there.
25. (a) 70 lb. (b) 4.6 ft /s2. 27. 155 N. 29. (a) Zero.
(b) 13.4 ft /s2, down the plane. (c) 4.27 ft /s2, up the plane.
31. (a) 7.6 m/s2. (b) 0.87 m/s2. 33. (a) 730 lb (3200 N).
(b) 0.3. 35. (a) 0.67 m/s. (b) 1.8 m/s2. (c) 0.53 N.
37. (a) 2.2 � 106 m/s. (b) 9.1 � 1022 m/s2. (c) 8.3 � 10�8 N.
39. (Mgr/m)1/2. 41. (a) 0.23. (b) 128 km/h.
43. 0.162; 0.295. 45. (a) 9.5 m/s. (b) 20 m.
47. (a) 0.0337 N. (b) 9.77 N.

Problems
1. (b) � 1.73 m/s2; 23.4 N. (c) m2 	 2.60 kg; m2 
 2.60 kg; 
m2 � 2.60 kg. 5. (a) 11.1 N. (b) 47.3 N. (c) 40.1 N.
7. (a) �kmg/(sin � � �kcos �). (b) tan�1 �s . 9. 490 N.
13. (a) 0.46. (b) 0.92. 15. (a) 30 cm/s.
(b) 1.7 m/s2, radially inward. (c) 2.9 mN. (d) 0.40.
17. (a) 8.74 N. (b) 37.9 N. (c) 6.45 m/s.
19. (b) 45°; 1.72 mrad. (c) Zero; zero.

Chapter 6
Exercises
1. (a) 52.0 km/h. (b) 178 km/h.
3. 205 kg � m/s; up, perpendicular to the plate. 5. (a) 2mv/t.
(b) 560 N. 7. 3.29 kN. 9. 930 N. 11. 8.8 m/s.
13. 1.95 � 105 kg � m/s for any direction of thrust. 15. 2.0 s.
17. Increases by 4.54 m/s. 19. 3960 km/h.
21. 5.6 m/s to the left. 23. 1.77 m/s.
25. (4.0 m/s) � (5.0 m/s) .
27. 3.43 m/s, deflected 17.3° to the left. 29. 100 g.
31. 1.2 kg. 33. 120°. 35. 2.44 m/s, to the left.

Problems
1. 2�u. 3. (a) 2.20 N � s. (b) 212 N. 5. (a) 0.480 g.
(b) 7.2 kN. 7. mgR[(2h/g)1/2 � t]; 41.0 N. 9. (a) 130 tons.
(b) 0.88 in. (c) elastic. 11. 37.1 mi/h, 63.6° S of W.
13. 28.0°. (b) 7.44 m/s. 15. (a) 74.4 m/s.
(b) 81.5 m/s; 84.1 m/s.
17. v2 and v3 will be at 30.0° to v0 and have magnitude 6.93 m/s;
v1 is opposite to v0 and has magnitude 2.00 m/s.

ĵî

19. (a) 746 m/s. (b) 963 m/s.
21. (a) A: 4.57 m/s; B: 3.94 m/s. (b) 7.53 m/s.

Chapter 7
Exercises
1. 4640 km (1730 km beneath Earth’s surface). 3. 75.2 km/h.
5. (a) The center of mass does not move. (b) 1.23 m.
7. 14.5 ft. 9. 33.4 m.
11. 6.75 � 10�12 m from the nitrogen atom on the axis of symmetry.
13. L /5 from the heavy rod, along the symmetry axis.
15. xcm � ycm � 20 cm; zcm � 16 cm. 17. 27.
19. (a) 3.2 m/s. (b) 3.2 m/s. 21. (a) 2.72. (b) 7.39.
23. 1.33 km/s. 25. 1.29 m/s.

Problems
1. (a) Down; mv/(m � M ). (b) The balloon is again stationary.
3. g(1 � 2x/L). 5. (HM/m)[(1 � m /M )1/2 � 1].
7. (a) 540 m/s. (b) 40.4°. 9. 60 N.
11. Fast barge: 49.5 N more; slow barge: no change.

Chapter 8
Exercises
1. n(n � 1)/2. 3. (a) a � 3bt 2 � 4ct 3. (b) 6t(b � 2ct).
5. (a) �0 � at 4 � bt 3. (b) �0t � at 5/5 � bt 4/4. 7. 14.
9. (a) 4.8 m/s. (b) No. 11. 1/TS � 1/TP � 1/TE .
13. (a) 8140 rev/min2. (b) 425 rev. 15. (a) � 1.28 rad/s2.
(b) 248 rad. (c) 29.5 rev. 17. (a) 2.0 rev/s. (b) 3.8 s.
19. (a) 369 s. (b) � 3.90 � 10�3 rad/s2. (c) 108 s.
21. 0.132 rad/s. 23. (a) 2.48 � 10�3 rad/s. (b) 19.7 m/s2.
(c) Zero. 25. (a) 7.27 � 10�5 rad/s. (b) 355 m/s.
(c) 7.27 � 10�5 rad/s; 463 m/s. 27. (a) 310 m/s. (b) 340 m/s.
29. (a) r�2t 2. (b) r�. (c) 44.1°. 31. Yes; � 0.16.
33. (a) (� 26.2 m/s) . (b) (4.87 m/s2) � (375 m/s2) .
(c) 1.83 m.

Problems
1. (a) 4.0 rad/s; 28 rad/s. (b) 12 rad/s2.
(c) 6.0 rad/s2; 18 rad/s2. 3. (b) 23 h 56 min. 5. (a) 0.92 rev.
(b) 6.0 rad/s. 7. (a) 1.99 � 10�7 rad/s. (b) 29.9 km/s.
(c) 5.94 mm/s2. 9. (a) 3800 rad/s. (b) 190 m/s.
11. (a) 22.4 rad/s. (b) 5.38 km. (c) 1.15 h.
13. (a) �b/cos2�t in any direction in the plane perpendicular to .
(b) �/2�.

Chapter 9
Exercises
1. (a) 15 N � m. (b) 10 N � m. (c) 15 N � m.
5. 27 units, � z direction. 7. a2b sin �, �/2 � �.
9. (� 4.8 N � m) � (� 0.85 N � m) � (3.4 N � m) .
11. (a) 0.14 kg � m2. (b) 91 rad/s2. 13. (a) 2.6 � 10�2 kg � m2.
(b) No change. 15. (a) 482 kN. (b) 11.2 kN � m.
17. M(a2 � b2)/3. 19. 5mL2 � (8/3)mL2. 23. (a) 2.5 m.
(b) 7.3°. 25. 10.4 m. 27. 340 lb; 420 lb.
29. W [h(2r � h)]1/2/(r � h). 31. (a) 47.0 lb.
(b) 21.3 lb; 10.9 lb. 33. 7.63 rad/s2, out of the page.
35. (a) 28.2 rad/s2. (b) 338 N � m. 37. 690 rad/s.
39. 1.73 � 105 g � cm2. 41. (a) 56.5 rad/s. (b) � 8.88 rad/s2.
(c) 69.2 m. 43. (a) 1.13 s. (b) 13.6 m.
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Problems
1. (a) Slides; 31°. (b) Tips; 34°. 3. (a) W(1 � r 2/L 2)1/2.
(b) Wr/L. 5. (a) 269 N. (b) 874 N, 10.7° above the ladder.
7. F1 � W sin �2/sin (�2 � �1); F2 � W sin �1/sin (�2 � �1);
normal to the planes. 9. (a) L /2, L /4, L /6. (c) N � n.
15. (a) dm/M � 2r dr/R 2. (b) dI � 2Mr 3 dr/R 2.
(c) 17. 1.73 m/s2; 6.92 m/s2.
19. (a)  (2/3)�MgR. (b) (3/4)�0R /4�g. 21. (a) 10.7°.
(b) 0.186g. 25. (a) The sphere. (b) No.

Chapter 10
Exercises
1. 0.62 kg � m2/s. 5. 2.49 � 1011 kg � m2/s.
9. (a) 0.521 kg � m2/s. (b) 4080 rev/min.
13. vf � 2.90 m/s in direction of impulse; �f � 10.7 rad/s about
center of mass. 15. R1 R2 I1�0/ 17. 3.0 min.
19. 354 rev. 21. 171 rev/min.
23. (a) 9.66 rad/s, clockwise as viewed from above.
(b) Final motion is the same as in (a). 25. 0.739 rad/s.
27. 1.90 min.

Problems
1. (a) 14.1 kg � m2/s, out of the page.
(b) 1.76 N � m, out of the page. 7. (a) 1.18 s. (b) 8.6 m.
(c) 5.18 rev. (d ) 6.07 m/s. 9. Longer by 0.4 s.
11. (a) (I� � mRv)/(I � mR 2). (b) m(v � R�)2/(1 � mR 2/I ).

Chapter 11
Exercises
1. (a) 580 J. (b) 0. (c) 0. 3. (a) 430 J. (b) � 400 J. (c) 0.
5. (a) 2160 J. (b) � 1430 J. 7. 22.2°. 9. � 19. 11. 720 W.
13. 24 W. 15. 25 hp. 17. (a) 0.77 mi. (b) 71 kW.
19. 2.66 hp. 21. 800 J. 23. (a) 23 mm. (b) 45 N.
27. 1200 km/s. 29. (a) 2.88 � 107 m/s. (b) 1.32 MeV.
31. (a) 493 J. (b) 168 W. 33. (a) 2.5 � 105 ft � lb (340 kJ).
(b) 14 hp (10 kW). (c) 28 hp (20 kW). 35. 6.75 � 1012 rad/s.
37. 1.36 kW. 39. (a) 2.57 � 1029 J. (b) 1.32 Gy.
41. 12.9 tons.

Problems
1. 2.1 � 10�10 N. 3. (a) 215 lb. (b) 10,100 ft � lb. (c) 48.0 ft.
(d ) 10,300 ft � lb. 5. (a) 2.45 � 105 ft � lb. (b) 0.619 hp.
9. (a) 10.0 kW. (b) 2.97 kW. 11. 3F0x0 /2. 13. 15W0 .
17. Man: 2.41 m/s; boy: 4.82 m/s.
19. (a) 9.0 � 104 megatons of TNT. (b) 45 km. 23. 0.0217.
25. 0.792. 27. Ka � 97.5 J; Kb � 941 J.
31. (a) mvi /(m � M ). (b) M/(m � M ). 33. 700 J gained.
35. (a) (b) (c) m2 /(m1 � m2).
(d ) ; zero; one; yes.

Chapter 12
Exercises
1. (a) U(x) � � Gm1m2/x. (b) Gm1m2d/x1(x1 � d ).
3. with U(�) � 0. 5. 110 MN/m.
7. 2.15 m/s. 9. (a) v0 . (b) (c) 
11. (a) 7.63 N/cm. (b) 57.4 J. (c) 73.8 cm.
13. (a) ; 
(b) K � mg(h � y); U � mgy. 15. 4.24 m. 19. 1.25 cm.
21. d [m1/(m1 � m2)]2. 23. [2hmg/(m � I/r 2 � 2M/3)]1/2.
25. (a) 3.43 m. (b) 2.65 s. (c) 23.1. 27. v0 (5/7)1/2.

U � mg(h � 1
2gt 2).K � 1

2mg2t 2

(v0
2 � 2gh)1/2.(v0

2 � gh)1/2.
U(x) � � (�/2�)e��x2

m 1m 2v1i
2 /2(m 1 � m 2)

m 1
2v1i

2 /2(m 1 � m 2).m 1vli
2 /2.

1
2

(R1
2I2 � R2

2I1).

1
2MR2.

29. (a) 4.7 N. (b) x � 1.2 m to x � 14 m. (c) 3.7 m/s.
31.  (a) Fx � � kx; Fy � � ky; points toward the origin.
(b) Fr � � kr; F� � 0.

Problems
1. (a) k /(z � l ) � k /(z � l ). 3. (a) 105 cm. (b) 322 cm/s.
5. (a) 8.06mg, at 82.9° left of vertical. (b) 5R /2. 7. (a) 26.9 J.
(b) 19.7 m/s. 13. (9g/4L)1/2. 15. (2gr sec �0)1/2.

Chapter 13
Exercises
1. 740 m. 3. 0.41 m/s. 5. (a) 3.86 m/s. (b) 0.143 J.
7. (a) 2.56 � 1012 J. (b) 3.82 � 108 J. 9. 54%. 11. 4.19 m.
13. 6.55 m/s. 15. 1.34 m/s; 0.981 m/s. 17. (a) 862 N.
(b) 2.42 m/s. 19. (a) 22.4 kN. (b) 12.5 kJ.
21. [2E(M � m)/Mm]1/2.

Problems
3. (a) 3.02 m/s. (b) 1.60 km/s. 5. (a) 
(b)  � ke2(1/r2 � 1/r1). (c) 7. (a) 0.298 J.
(b) 0.008 J.

Chapter 14
Exercises
1. 2.16. 3. 2.9 � 10�11 N. 5. 1.6 � 10�2 lb.
7. (a) 1.33 � 1012 m/s2. (b) 1.79 � 106 m/s. 9. (a) 0.05%.
(b) 7 � 10�4 s. 13. 2.2 � 105 m/s. 17. 1.55 � 107 m.
19. (a) 3.34 � 107 m/s. (b) 5.49 � 107 m/s. 21. (Gm/d)1/2.
23. 6.5 � 1023 kg. 25. 0.354 lunar months.
27. (a) 1.68 km/s. (b) 108 min. 29. 58.3 km/s.
33. (a) 2�d 3/2/[G(4M � m)]1/2. (b) 2. (c) 2. 35. (a) Yes.
(b) Yes. 37. South, 35.4° above horizon. 39. (a) 5389 s.
(b) 4.3 J/s.

Problems
7. (a) 2.63 � 106 m. (b) 5.3 � 109 J. 9. (b) 250 m, 50 m.
(c) 293 m, 7 m. 11. (GMm/d 2)[1 � 1/8(1 � R/2d )2].
13. (a) 9.83 m/s2. (b) 9.84 m/s2. (c) 9.79 m/s2.
15. (b) 200 MN/m2. (c) 180 km. 19. 98.4 pJ.
21. (a) 1.02 y. (b) 87.6 km/s. 23. (a) 3.32Gm2/R 2

(b) 2�(R 3/3.32Gm)1/2. 25. (a) � GMm/r. (b) � 2GMm/r.
(c) It falls vertically. 29. (a) 7.54 km/s. (b) 97.3 min.
(c) 405 km; 7.68 km/s; 92.3 min. (d ) 3.18 mN. 31. (GM/L)1/2.

Chapter 15
Exercises
1. 429 kPa. 3. 27.5 kN. 5. 6.0 lb/in.2. 7. 19.0 kPa.
9. 55.2 kPa. 11. 0.412 cm. 13. (a) 8.52 km. (b) 17.0 km.
19. (a) 35.6 kN. (b) V � � 0.0851 m3. 21. 1070 g.
23. 2.0 � 10�4. 25. (a) 38.4 kN. (b) 40.5 kN. (c) 2.35 kN.
(d ) 2.08 kN. 27. 4.74 MN. 29. Four. 31. 0.031.
33. 78 m. 35. 54.3 mN.

Problems
1. (b) 26.6 kN lb). 3. (a) �gWD2/2. (b) �gWD3/6.
(c) D/3, up from the base. 5. 43.5 km. 7. (b) a.
9. (b) p � �gh. 13. 56.1 cm. 15. 0.190. 17. 2.79 g/cm3.
21. 3.71 mm.

(�6000

� 1
2ke2(1/r2 � 1/r1).

1
2ke2(1/r2 � 1/r1).
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Chapter 16
Exercises
1. 1 h 49 min. 3. 3.9 m. 5. 1.1 m/s. 7. (a) 241 lb/in.2.
(b) 0.326 ft2. 9. (a) 0.81 mm2. (b) 440 L/d. 11. (a) 560 Pa.
(b) 52 kN. 13. 30.4 L/s. 15. 63 m/s. 19. (a) 87.5 N.
(b) 172 m3. 21. 25. 71.6 L/s.

Problems
1. 3.4 m/s. 3. (b) H � h. (c) H; H. 5. (c) 
7. 410 m/s; vsound � 340 m/s.
9. (a) v1 � 4.46 m/s; v2 � 21.2 m/s. (b) 9.47 � 10�3 m3/s.

Chapter 17
Exercises
1. 0.289 s. 3. 
 455 Hz. 5. (a) 1.00 mm. (b) 75.4 cm/s.
(c) 568 m/s2. 7. (a) 3.27 m. (b) 4.33 m/s. (c) � 230 m/s2.
(d ) 1.33 Hz. (e) 0.750 s. 9. 7.73 m/s. 11. 2.08 h.
13. (a) 5.27 Hz. (b) 415 g. (c) 42.5 cm. 15. (a) 1.07 Hz.
(b) 4.73 cm. 17. (b) 3.21 s. 19. (a) 6.97 MN/m. (b) 48,500.
21. (a) 3.04 ms. (b) 3.84 m/s. (c) 90.7 J. 23. (a) 0.319 m.
(b) 34.4°. 25. 0.249 m. 27. (a) 33°. (b) 9 � 10�4.
29. 9.78 m/s2. 31. 8.35 s. 33. (a) 0.436 Hz. (b) 1.31 m.
35. 12.1 s. 37. 1.22f0. 41. (a) Straight line, y � � x.
(b) Ellipse, (c) Circle: x2 � y2 � A2.
43. 5.22 � 1011 N/m. 51. 1.9 in. 53. 0.362 s.

Problems
1. 708 N/m. 3. 0.119 m. 7. (a) 7.20 N/cm. (b) 4.43 kg.
11. mv[k(m � M )]�1/2. 13. (a) 5.60 J. (b) 2.80 J.
15. 0.906 s. 17. (a) 2�[(L2 � 12d 2)/12gd ]1/2. 19. (b) R.
21. (a) 2.00 s. (b) 18.5 N � m/rad. 23. (b) (GM/R 3)1/2/2�.
(c) 10�16 Hz. 25. (a) k � 490 N/cm; b � 1100 kg/s.

Chapter 18
Exercises
1. (a) 7.43 kHz. (b) 135 �s. 3. (a) 0.712 s. (b) 1.40 Hz.
(c) 1.93 m/s. 7. (a) 6.0 cm. (b) 1.0 m. (c) 2.0 Hz. (d) 2.0 m/s.
(e) � x direction. ( f ) 0.75 m/s. 9. 135 N. 11. (a) 5.0 cm.
(b) 40 cm. (c) 12 m/s. (d) 33 ms. (e) 9.4 m/s.
( f ) y � (5.0 cm) sin [(15.7 rad/m)x � (190 rad/s)t � 0.93 rad].
13. 7.54 m from the end where the earlier pulse originated.
15. 198 Hz. 17. 4.0 kW. 19. 68.8°; 1.20 rad.
25. (a) 81.4 m/s. (b) 16.7 m. (c) 4.87 Hz. 27. (a) � 3.9 cm.
(b) y � (0.15 m) sin [(0.79 rad/m)x � (13 rad/s)t]. (c) � 14 cm.
29. (a) 1.25 m.
(b) y � (3.80 mm) sin (10.1 rad/m)x cos (3910 rad/s)t.
31. 7.47 Hz; 14.9 Hz; 22.4 Hz. 33. 480 cm; 160 cm; 96 cm.

Problems
1. (a) 10.9 cm. (b) 199°. 3. (b) 304 m/s.
7. 11. 8.5%. 15. 1.18 m/s.
21. 36.8 N.

Chapter 19
Exercises
1. (a) 600 cm/s.
(b) (0.30 cm) sin [(0.26 rad/cm)x � (160 rad/s)t].
3. (a) 76.2 �m. (b) 333 �m. 5. (a) 57 nm. (b) 35.
7. 170 m. 9. 1800 km. 11. 4.47 W. 13. 0.0271 J.
17. 51.9 nJ/m3. 19. 190 dB. 21. 63 dB. 23. 18.4 cm.

[k L(L � L)/m]1/2.

y2 � √3 xy � x2 � A2/4.

1
2�(v1 � v2)2.1

2

1
2�v2A.

25. 64.4 Hz, 129 Hz. 27. (a) L(1 � 1/r).
(b) 13.3, 16.0, 20.0, 26.7 cm. 29. 11.9 m. 31. 188 Hz.
33. (a) 405 m/s. (b) 611 N. 35. 5.0 cm from one end.
37. 387 Hz. 39. 505, 507, 508 Hz or 501, 503, 508 Hz.
41. 17.4 kHz. 43. (a) 522 Hz. (b) 554 Hz. 45. 570 m/s.
47. 160 Hz. 49. (a) 464 Hz. (b) 490 Hz. 51. 41.2 kHz.

Problems
1. (a) L(V � v)/Vv. (b) 43.5 m. 3. (a) 44.2 �W/m2.
(b) 164 nm. (c) 0.894 Pa. 5. (a) � r�1. (b) � r�1/2.
7. (a) 66.8 �W/m2. (b) 5.02 nW. (c) 7.53 �J. 9. 346 m.
13. 45.4 N. 15. 2.65 � 108 m/s. 17. 7.16 km.
19. (a) 1050 Hz. (b) 1070 Hz. 21. (a) 2000 Hz. (b) 2000 Hz.

Chapter 20
Exercises
1. (a) 710 ps. (b) 2.5 � 10�18 m. 3. 1.30 m. 5. 0.445 ps.
7. (a) 87.4 m. (b) 394 ns. 9. (a) 15.8 km/s.
(b) 6.95 � 10�10. 11. 0.75.
13. (a) x� � 3.78 � 107 m; t� � 2.26 s.
(b) 6.54 � 108 m; 3.14 s.
15. (a) 17. (a) 0.347c.
(b) 0.619c. 19. (a) 0.933c; 31.0° E of S.
(b) 0.933c; 59.0° W of N. 21. 6.29 cm. 23. 1.23 �s.
25. (a) 26.3 y. (b) 52.3 y. (c) 4.06 y. 29. (a) 0.999 165.
(b) 0.0133. 31. (a) 0.9988; 20.6. (b) 0.145; 1.01.
(c) 0.073; 1.0027. 33. 21.2 smu/y. 35. (b) v/c 	 0.115.
37. mc. 41. (a) 996 eV. (b) 1.05 MeV. 43. 0.796c.

Problems
1. (a) 2.60 � 108. (b) Two. 3. (a) 25.8 �s.
(b) The red flash (Doppler shifted). 7. Seven. 9. 2.43 �s.
11. (a) 4.00 �s. (b) 2.50 �s. 13. (b) K � p2/2m. (c) 206me .
15. (a) c[(� � 1)/(� � 1)]1/2. (b) m[2(� � 1)]1/2.
17. (b) 202 GeV. (c) 49.1 GeV.
19. 1 � (2�i � 1)1/2 where 

Chapter 21
Exercises
1. (a) TS � (9/5)TC � 491.69. (b) 671.69°S; 491.69°S.
3. (a) TQ � TC � 273.15. (b) 373.15°Q; 273.15°Q.
(c) Kelvin scale. 5. No; 310 K � 98.6°F. 7. 291.1 K.
9. 31.2. 11. 0.073 cm Hg; nitrogen. 13. 0.038 in.
15. 6.2 mm. 17. (a) 13.9 cm2. (b) 115 cm3.
19. (a) 1.6 � 10�4/C°. (b) Zero. 21. 2.3 � 10�5/C°.
27. 360°C. 29. 909 g. 31. (a) Zero. (b) � 0.36%.
(c) � 0.36%. 33. � 0.68 s /h. 35. 0.17 mm. 37. (a) 22.5 L.
39. (a) 113 mol. (b) 900 L. 41. 26.9 lb/in.2. 43. 104 cm3.

Problems
7. (b) Steel: 71 cm; brass: 41 cm. 9. 998.4 kg/m3.
11. 66.4°C. 13. 0.27 mm. 15. (a) 2.25 ft. (b) 3.99 ft.
17. 1.74 atm. 21. 152 kPa.

Chapter 22
Exercises
1. (a) 0.0130 mol. (b) 7.23 � 1021. 3. (a) 39.9 L. (b) 74.4 g.
5. 4.34 � 10�5. 7. (a) 531 m/s. (b) 0.472 mol/m3.
(c) 28 g/mol; N2 . 9. (a) 2.69 � 1025. (b) 0.171 nm.
11. 3.86 GHz. 13. � 12°C. 15. (a) 420 m/s; 458 m/s; yes.

�i � (1 � vi
2/c2)�1/2.

√8

c(1 � u2/c2)1/2.vx� � �u; vy� �
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17. 180 m/s. 21. 1.5 cm/s. 23. (a) 10,000 K; 160,000 K.
(b) 440 K; 7000 K. 25. 13.9 rev/s. 29. 3.09 � 10�3.
31. 3.8 � 10�5 m3/mol.

Problems
1. 0.76. 3. 1/5. 5. (a) 1.67. (b) 49.5 � 10�6 cm.
(c) 7.87 � 10�6 cm. 7. 4.71. 9. (a) (b) 0.750v0 .
(c) 0.775v0 . 13. (a) (Na � Nb)kT/V. (b) 15. 89.0°C.
17. (a) (c) 131 K.

Chapter 23
Exercises
1. 720°C. 3. (a) 546 C°/m. (b) 394 kW. (c) 63.9°C.
5. b. 7. 1.15 m. 9. (a) 1.8 W. (b) 0.025 C°. 11. (a) � 6.0 J.
(b) � 43 J. (c) 40 J. (d) 18 J; 18 J. 13. 44.5 m3. 15. 107 g.
17. (a) 75.4 kJ. (b) 4.46 kJ. (c) 757°C. 19. (a) 117 s.
(b) 718 s. 21. 4.81 g. 23. (a) 542 J/kg � K. (b) 0.722 mol.
(c) 27.9 J/mol � K. 25. W1 � 45 kJ; W2 � � 45 kJ.
27. 1.14 kJ. 29. (a) 8.39 atm. (b) 544 K. (c) 966 J.
31. 2480 J. 33. (a) 1.20. (b) 105°C. (c) 628 mol.
(d ) 1.96 MJ; 2.96 MJ. (e) 0.813. 35. 11.3 kJ.
37. (a) 7880 J. (b) 5630 J. (c) 3380 J.
39. (n1C1 � n2C2 � n3C3)/(n1 � n2 � n3). 41. nRT ln Vf /Vi .
43. (a) 1090°C. (b) 460°C. 45. (a) � 1.5nRT1 .
(b) 4.5nRT1 . (c) 6nRT1 . (d ) 2R. 47. (a) 15.9 J.
(b) 34.4 J/mol � K. (c) 26.1 J/mol � K.

Problems  
1. (a) 24 kW. (b) 24 W. 7. (a) 5.26°C; no ice left.
(b) 0°C; 62.0 g of ice left. 9. (a) 6.75 � 10�20 J.

V/n � [a � (a2 � 4abRT )1/2]/2RT.

1
2.

3N/v0
3 .

(b) 10.7. 11. 1.2 kJ. 13. 265 K. 15. (a) 2.95 cm.
(b) 2.11 cm. 17. Diatomic.
19. (a) AB: 3740 J, 3740 J, 0 J; BC: 0 J, � 1810 J, � 1810 J; 
CA: � 3220 J, � 1930 J, 1290 J; cycle: 520 J, 0 J, � 520 J.
(b) pB � 2.00 atm; VB � 0.0246 m3; pC � 1.00 atm; 
VC � 0.0373 m3. 21. 12.0 kW.

Chapter 24
Exercises
1. 18.7 kJ. 3. (a) 200 J. (b) � 75 J. 5. (a) 37.7 kJ.
(b) 112 J/K. 7. 3.0 mol. 9. (a) 1.06 J/K. (b) No.
11. (a) � 926 J/K. (b) 926 J/K. 13. (a) 30.9%. (b) 16.2 kJ.
15. 25.4%. 17. (a) 2090 J. (b) 1510 J. (c) 1510 J.
21. (a) 1.62 atm. (b) 43.7%. 23. (a) 217 kJ. (b) 32.5 kJ.
25. (a) 0.714 J. (b) 5.00 J. (c) 20.0 J. (d ) 50.0 J.
27. 21 J. 29. (a) 113 J. (b) 305 J. 31. 6.8.
33. (1 � T2 /T1)/(1 � T4 /T3). 35. (a) 1 (b) N!/[(N/2)!]2

Problems
1. 44 mJ/K. 3. (a) � 3p0V0 . (b) 6p0V0 ; (3R /2) ln 2.
(c) Both are zero. 5. Path I: QT � p0V0 ln 2, QV � (9/2)p0V0 ;
Path II: QT � � p0V0 ln 2, Qp � (15/2)p0V0 .
(b) Path I: WT � � p0V0 ln 2, WV � 0; Path II:
WT � p0V0 ln 2, Wp � 3p0V0 .
(c) (9/2)p0V0 for each process. (d) 4R ln 2 for each process.
7. (a) T2 � (m1c1T1i � m2c2T2i � m1c1T1)/m2c2 .
(b)  S � m1c1 ln T1 /T1i � m2c2 ln [(m1c1T1i /m2c2 � T2i �
m1c1T1 /m2c2)/T2i]. 9. (a) 7200 J. (b) 960 J. (c) 13%.
11. (c) 1.15 kJ.

A-30 Answers 
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I-1

INDEX

A
Absolute pressure, of fluids, 340
Absolute temperature scale, 481
Acceleration, 19, 21

angular, 161, See also Angular
acceleration

average, 19
centripetal, 74–75
constant, See also Constant

acceleration
motion with, 26–28

and deceleration, 21–22, 24
free-fall, 28–30
instantaneous, 19
and mass, 46–47
radial, 75, 165–168
tangential, 165–168
vectors representing, 19–20

Acoustic interferometer, 449
(problem 6)

Acoustics, 427
Action-at-a-distance, 315, 319
Adiabatic processes, 429

first law of thermodynamics in,
533–534

work done in, 528–529
Aerodynamic drag, 73
Air conditioner, 555
Air density, and sound waves,

428–430
Air pressure, and sound waves. See

Sound waves
Alpha particle, 289

collision of, 119–120
ampere (unit), A1
Amplitude, 373, 377, 404

damping effect of friction on,
385–387

Amplitude modulation, 439
Angular acceleration, 161

average, 161
constant, in rotational motion,

164–165
instantaneous, 161
linear variables and, 165–168
vectors representing, 167

Angular displacement, 161

vs linear displacement,
165–166

Angular frequency
of simple harmonic motion, 377
of waves, 404

Angular momentum, 207–209
and angular velocity, 211–213
conservation of, 215–216

examples of, 216–220
of particle, 207–209
of symmetrical vs asymmetrical

bodies, 214–215
of system of particles, 209–211

Angular simple harmonic motion,
381

Angular speed, 161
Angular velocity, 161

and angular momentum,
211–213

average, 161
instantaneous, 161
and linear variables, 165–168
vectors representing, 163–164,

167
Antinodes, 414

pressure, of sound waves, 434
Antiproton, 470
Aphelion, 312
Apogee, 312
Archimedes’ principle, 338–339
Areas, law of, 312
Astronomical data

of planets, A5
of Sun, Earth, Moon, A4

astronomical unit, 11 (exercise 21)
Atmospheric pressure, 335–336

gauge pressure and, 340
Atomic mass unit, 6
Atoms, 497–499

random motion of, 497–499
Atwood’s machine, 93–94
Avogadro, Amadeo, 488
Avogadro constant, 6

in thermodynamics of ideal gas,
488

Avogadro’s law, 488
Axis of rotation, 159–160

B
Ballistic pendulum, 246
Banked curve, 101–102
Barometer, mercury, 340–341
Base units, SI, A1–A2
Beats, of sound waves, 439–440
Beats per second, number of, 440
Bernoulli, Daniel, 354

gas pressure theory of, 499
Bernoulli’s equation, 354–356

applications of, 356–358
Binding energy, 311
Binomial expansion, A20
Boltzmann, Ludwig, 560
Boltzmann constant, 488
Boltzmann entropy equation, 560

calculations using, 560–561
Boltzmann factor, 506
Boyle, Robert, 488
Boyle’s law, 488
British thermal unit, 292
Brown, Robert, 497
Brownian motion, 497–498

analysis of, Einstein’s, 497, 498
measurement of, 498
random walk pattern of, 498

Bulk modulus, 333
isothermal, 429
and speed of sound in fluids,

431
Buoyancy, 338–340

center of, 339

C
Calculus, A21
Callisto, orbital motion of, 384
calorie (unit), 292
candela (unit), A1
Carnot, N. L. Sadi, 551
Carnot cycle, 552–553
Carnot efficiency, 553
Carnot engine, 551–552

cycle of, 552–553
efficiency of, 553

Carnot refrigerator, 555
Cassini mission, gravity assist to,

120

Cavendish, Henry, 303
Cavendish balance, 303, 381
Celsius temperature scale, 481

conversion between Fahrenheit
and, 481–482

Center of buoyancy, 339
Center of gravity, 186

center of mass and, 186–187
Center of mass, 139

and center of gravity, 186–187
of complex objects, 139–140
and constant velocity, 143
locating, 141–142
of many-particle system,

142–145
of solid objects, 145–147
and translational motion, 143
of two-particle system,

140–142
Center-of-mass energy, 285–288
Center-of-mass energy equation,

286–288
Center-of-mass reference frame,

128
collisions in, 128–130

Center of oscillation, 383
Center of percussion, 383
Centrifugal force, 104
Centripetal acceleration, 74–75,

165–166
vectors representing, 167

Centripetal force, 74–75, 104
Cerenkov radiation, 442
CERN physics laboratory, 120,

453
Cesium fountain clock, 3–4
CGPM (General Conference on

Weights and Measures),
1–2

Chamberlain, Owen, 470
Chaotic dynamics, 106–107
Chaotic flow, 363–364
Charles, J.-A.-C., 488
Charles’ law, 488
Clarke Geosynchronous Orbit, 313
Classical mechanics, 41–42

central problem of, 41



Classical mechanics (Continued)
forces in, 44–46
mass in, 46–47
Newton’s first law in, 42–47
Newton’s second law in, 47–49
Newton’s third law in, 50–52
problems unanswered by,

451–453
weight and mass in, 52–54

Clausius, Rudolph, 556
Clausius version, of second law of

thermodynamics, 556
cm frame. See Center-of-mass

reference frame
COE equation. See Conservation of

energy equation
Coefficient of friction, 95–97

kinetic, 97
static, 96–97

Coefficient of linear expansion,
485

Coefficient of performance, 555
Coefficient of viscosity, 361
Coefficient of volume expansion,

486
Cold-welding, 96
Collapsing stars, 218–219
Collisions, 119–121

in center-of-mass reference
frame, 128–130

completely inelastic, 129,
246

conservation of momentum in,
124–126

elastic, 129–130, 245
explosive, 246
impulse and momentum in,

121–124
inelastic, 129, 245
kinetic energy in, 244–247
linear momentum in, 121
one-dimensional, 128–130
two-body, 126–128, 389–390

COM equation. See Center-of-
mass energy equation

Composite particles, A11
Compressibility, fluid, 352, 355
Compressions, 428
Configuration(s)

microstates of, 559
multiplicity of, 559

Conical pendulum, dynamics of,
100

Conservation of angular
momentum, 215–216

collapsing stars, 218–219
rotating bicycle wheel, 217
spinning skater, 216
springboard diver, 216
stability of spinning objects,

217–218
Conservation of energy

in fluid dynamics, 354–356
and heat transfer, 290–292
law of, 284–285
in reactions and decays,

288–290

and special theory of relativity,
469–470

in system of particles, 284–285
Conservation of energy equation,

286–288
Conservation of linear momentum,

124–126
equation for, 124

Conservation of mechanical
energy, 261–263

application of, 263–264
external forces and, 279–280
in one-dimensional systems,

266–268
in three-dimensional systems,

268–270
Conservative forces, 257

definition of, 259
examples of, 257–258
identification of, 258–259

Conservative systems
one-dimensional, 266–268
three-dimensional, 268–270

Constant acceleration, 26–28
angular, in rotational motion,

164–165
of freely falling bodies, 28–30
in three dimensions, 65–66

Constant velocity, 20–21
and center of mass, 143

Constant volume gas thermometer,
482–484

Constant volume processes, 534
Constants, fundamental physical,

A3
Convection, 521
Conversion factors, for units,

A12–A16
Copernicus, Nicolaus, gravitation

theory, 299
Coriolis force, 104–105
Coulomb, Charles A., laws of

friction, 96
Critical damping, 387
Cross product, multiplication of

vectors, 167, 168, A19
Cycle, of engines, 551

net work per, 553
Cyclical processes, 534–535
Cylindrical symmetry, 145

D
da Vinci, Leonardo, laws of

friction, 96
Dalton’s law, 514 (problem 2)
Damped harmonic motion,

385–387
Damping, critical, 387
Damping time constant, 386
Dark matter, 316–317
Debye temperature, 544 (computer

problem 1)
Decay processes, conservation of

energy in nuclear,
289–290

Deceleration, 21–22, 24
decibel (unit), 432

Degrees of freedom, 530
Density, 333

conversion factors for units of,
A13

Derivatives, and integrals, A21
Deuteron, 289–290
Diathermic, 480
Dimensional analysis, 7–8, 407
Directional stability, 217
Disorder, entropy and, 560–561
Dispersive media, 407–408

and group speed of waves, 408
waveform in, 408

Displacement vectors, 18
Dissociation energy, 268
Doppler, Christian Johann, 440
Doppler effect

in light waves, 462–463
in sound waves, 440–443
transverse, 463

Dot product, multiplication of
vectors, 233, A19

kinetic energy as, 239–240
order of vectors in, 239
work as, 233–234

Drag force(s), 71–73
aerodynamic, 73
viscous, 72

Dulong, P. L., 525
Dulong-Petit value, 525
Dynamic lift, 357–358
Dynamic pressure, of fluids, 355
Dynamics, 13
dyne (unit), 48

E
Earth

astronomical data of, A4, A5
gravity near surface of, 304–305

Eccentricity, 311
Einstein, Albert

analysis of Brownian motion,
497

general theory of relativity, 106,
316, 318–319

principle of equivalence, 318
special theory of relativity, 106,

451, 452–453
variation of molar heat

capacities of solids, 526
Elastic collisions, 129–130, 245
Electric current, SI base unit of,

A1
Electric field, 315
Electromagnetic force, 89
Electron-positron annihilation,

452
electron-volt (unit), 232
Electroweak force, 89
Elementary particles, A10–A11
Elements

periodic table of, A9
properties of, A6–A8

Endoergic reaction, 289
Energy

binding, 311
center-of-mass, 285–288

conservation of, 284–285, See
also Conservation of
energy

conversion factors for units of,
A15

heat, 290–292
kinetic, work and, 229–255
mass and, in special relativity,

468–469
mechanical

conservation of, 261–270
external forces and, 279–280

of planetary and satellite motion,
313–315

potential, 257–278
problems of, not solved by

classical mechanics, 452
relativistic expressions of,

467–470
in simple harmonic motion,

378–380
of standing waves, 415
in system of particles, 281–282

conservation of, 284–285
in wave motion, 409–411
work and kinetic, 229–255

Engine(s), 551
Carnot, 551–553
cycles of, 551
efficiencies of real, 556–557
entropy and performance of,

551–554
perfect, 553–554
real, 556–557
reversible, 552–554
Stirling, 554
working substances of, 551

Entropy, 546
changes in, 546–547

ideal gas and, 547
irreversible processes and,

547–551
reversible processes and, 546,

551
second law of

thermodynamics and,
551

disorder and, 560–561
engine performance and,

551–554
probability and, 560–561
as a property of state, 547
refrigerator performance and,

555–556
second law of thermodynamics

and, in closed systems,
557–558

statistical view of, 558–561
thermal efficiency and,

556–557
Eötvös, inertial mass and

gravitational mass
studies, 317–318

Equation of continuity, 353
applications of, 356–358

Equations of state, for real gases,
507–509

I-2 Index



Equilibrium
in fluid statics, 331–334
neutral, 267
rotational, 187–191
stable, 267
thermal, 479–480
unstable, 267

Equipartition of energy theorem,
530–531

Equivalence, principle of, 318
erg (unit), 232
Escape speed, 310
Euler, Leonhard, 351
Exoergic reaction, 289
Explosive collisions, 246
Exponential expansion, A20
External forces, 140
External work, 280

F
Fahrenheit temperature scale,

481
conversion between Celsius and,

481–482
Falling bodies, 22, 28–30
Falling-body gravimeters, 30
Falling target, shooting, 70–71
Faraday, Michael, field concept,

316
Field concept, 315
Fields of flow, 359–360
First law of thermodynamics,

291–292, 517–536
in adiabatic processes, 533–534
applications of, 533–536
in constant volume processes,

534
in cyclical processes, 534–535
in free expansion, 535–536
and heat capacities, 521–523

of ideal gases, 531–533
of solids, 525–526

and heats of transformation, 525
and internal energy of ideal gas,

529–531
in isothermal processes, 534
and specific heats, 521–523
statement of, 522
and work done by ideal gas,

526–529
Flow calorimeter, 543 (problem 8)
Fluid dynamics, 351–352

Bernoulli’s equation in,
354–356

applications of, 356–358
boundary layer in, 357
chaotic flow in, 363–364
compressible flow in, 355
and conservation of energy,

354–356
dynamic lift in, 357–358
dynamic pressure in, 355
and equation of continuity,

352–354
applications of, 356–358

fields of flow in, 359–360
laminar flow in, 361

and law of conservation of mass,
353

measurement of flow in,
356–357

Poiseuille’s law in, 362
rocket thrust in, 358
rotation of flow in, 352
static pressure in, 355
steadiness of flow in, 351–352
streamlines of flow in, 352–354
turbulent flow in, 362–363
uniform rotational flow in, 359
viscous flow in, 352, 355,

360–362
Fluid flow, 351–352
Fluid particles, 351
Fluid statics, 331–332

absolute pressure in, 340
Archimedes’ principle of

buoyant force in, 338
buoyant force in, 338–340
density in, 333
equilibrium in, 331–334
hydraulic lever in, 337–338
Pascal’s principle in, 336–337
pressure in, 332–333, 336–337

measuring, 340–341
specific gravity in, 336
speed of sound and, 431
surface tension in, 341–343
weight density in, 334

foot-pound (unit), 232
Force(s), 42

buoyant, 338–340
centrifugal, 104
centripetal, 74–75, 104
conservative, 257–259
conversion factors for units of,

A14
Coriolis, 104–105
drag, 71–73
electromagnetic, 89
external, 140
frictional, 95–100
gravitational, 89
impulsive, 119
intermolecular, 509–510
internal, 140
mass, acceleration and, 46–47
measuring, 45–46
net, 43, 47–48
and Newton’s first law, 44–46
and Newton’s second law,

47–49
and Newton’s third law, 50–52
normal, 92–93
principle of superposition of,

302
restoring, 236, 373
spring, 236
strong, 89
tension, 90–92
time-dependent, 102–103
in uniform circular motion,

100–102
weak nuclear, 89
in work, 229–247

Force constant, 236
Force laws, 42

inverse square, 301
Force probe, 45–46
Forced oscillations, 387–389
Formulas, mathematical,

A20–A21
Fourier, J., 412
Fourier analysis, 412
Free-body diagram, 48–49
Free expansion

and entropy changes, 550–551
and first law of thermodynamics,

535–536
Free-fall acceleration, 28–30

measuring, 30–31
Frequency

fundamental, 436
of oscillations, 374, 377
of waves, 404

Friction
coefficient of, 96–97
forces of, 95–100, 258
kinetic, 96
microscopic basis of, 96–97
rolling, 97
sliding, 96–97
static, 96–97
work done by, 282–284

Fundamental frequency, 436
Fundamental particles, A10
Fusion, heat of, 525

G
Galaxies

colliding, 120
dark matter of, 316–317
gravitaitonal lensing of light

from, 319
Galilean form, law of

transformation of
velocities, 76

Galilean transformation equations,
458

Galilei, Galileo, 41
free fall acceleration, 30
plots of Jupiter’s moons, 384

Gas(es), See also Fluid dynamics;
Fluid statics

Avogadro’s law, 488
Boyle’s law, 488
Charles’ law, 488
equation of state for ideal, 488
equations of state for real,

507–509
Gay-Lussac’s law, 488
ideal, 487–489, See also Ideal

gas
Maxwell-Boltzmann energy

distribution in, 506–507
molecular properties of, See Gas

molecules
real, equations of state for,

507–509
Gas molecules

average translational kinetic
energy of, 504

Brownian motion of, 497–499
energy distribution of, 506–507
forces between, 509–510
ideal gas law and See Ideal gas;

Ideal gas law
kinetic theory of, 497
Maxwell speed distribution of,

503–506
mean free path of, 501–503
pressure exerted by, 499–501
speed(s) of, 500

average, 504
distribution of, 503–506
most probable, 504
root-mean-square, 500, 504

Gas thermometer, constant-
volume, 482–484

Gauge pressure, 340
and atmospheric pressure, 340

Gay-Lussac, Joseph Louis, 488
Gay-Lussac’s law, 488
General Conference on Weights

and Measures (CGPM),
1–2

General theory of relativity, 106,
316, 318–319

effects of, 464
experimental tests of, 319

Geometry, formulas of, A20
Global Positioning System, 319
Grand unification theories, 89, 471
Gravimeters, falling-body, 30
Gravitation, 299
Gravitation theory, developments

in, 316
dark matter, 316–317
general theory of relativity,

318–319
gravitational mass, 317–318
inertial mass, 317–318
principle of equivalence, 318

Gravitational constant, 300,
302–303

Gravitational field, 315–316
line diagrams of, 316

Gravitational field strength, 315
Gravitational lensing, 319
Gravitational mass, 317–318
Gravity, 299

acceleration due to, 28–30
center of, 186
force of, 89, 257–258, 300–302

shell theorems and, 305–307
vectors representing,

301–302
work done by, 260

and gravitational constant, 300,
302–303

laws of
force, 300–302
Newton’s, 300–302
origin of, 299–300

near Earth’s surface, 304–305
and planetary and satellite

motion, 311–315
potential energy of, 307–308

calculation of, 308–309

Index I-3



Gravity (Continued)
potential energy of (Continued)

escape speed and, 309–310
many-particle systems and,

310–311
shell theorems and forces of,

305–307
torque due to, 185–187
universal law of, 300–302
vector force representing,

301–302
Group speed, of waves, 408
Gyration, radius of, 201 (exercise

20)
Gyroscope, angular momentum of,

219–220

H
Halley’s comet, 313
Harmonic motion

damped, 385–387
simple, 377–385

Harmonic oscillator, simple,
375–376

Harmonic waves, 402
Harmonics, of vibrating systems,

436
Heat, 517

associated with thermodynamic
process, 518

conduction of, 518–520
convection of, 521
conversion factors for units of,

A15
definition of, 290
as energy in transit, 517–518
and first law of thermodynamics,

291–292, 521–523
latent, 525
mechanical equivalent of, 292
misconceptions about, 517–518
radiation of, 521
temperature and, 290–292
transfer of, 518–521
unit expression of, 517
work and, 290

Heat capacity, molar, 523–525
of ideal gases, 531–533
of solids, 525, 531

Heat of fusion, 525
Heat of vaporization, 525
Heat pump, 555
Heat(s) of transformation, 525
Hertz, Heinrich, 374
hertz (unit), 374
Hooke’s law, 236
Horizontal range, of projectile, 69
horsepower (unit), 234
Huygens, Christiaan, 4, 382
Hydraulic lever, Pascal’s principle

and, 337–338
Hydrostatic paradox, 344

(question 7)

I
Ideal gas, 487, See also Gas(es);

Gas molecules

collisions between molecules of,
498

entropy changes in, 547
equation of state of, 488
forces acting on molecules of,

498
heat capacity of, 531–533
internal energy of, 529–531
kinetic theory of, 497
number of molecules of, 498
pressure of, 499–501
properties of, 498–499
random motion of molecules of,

498
thermodynamics of, 487–489,

531, 532
volume of molecules vs.volume

of, 498
work done by, 526–529
work done on, 526–529

Ideal gas law, 488
Ideal gas temperature scale, 483
Impulse-momentum theorem, 122

and work-energy theorem, 240
Impulsive force, 119, 122

and momentum in collisions,
121–124

Inelastic collisions, 129, 245
Inertia, 43

moment of, 175–176
Inertial frames, 43

and relative motion, 44
Inertial mass, 317–318
Initial conditions, 27
Instantaneous acceleration, 19
Instantaneous angular acceleration,

161
Instantaneous angular velocity, 161
Instantaneous velocity, 18
Integrals, and derivatives, A21
Intensity, of waves, 411
Interference, 412–414

constructive, 413
destructive, 413
principle of superposition in,

413–414
sound waves, 433–434
in space, 439
in time, 439

Intermolecular forces, 509–510
Internal energy

and heat, 290–292
of ideal gas, 529–531
of system of particles, 281–282

Internal forces, 140
Internal work, 280
International System of Units (SI),

2–3, A1–A2, See also
SI units

International Temperature Scale,
484

Invariant law, of physics, 241
Inverse-square force laws, 301
Irreversible processes, 545–546

entropy change in, 547–551
second law of thermodynamics

in, 551

Isentropic processes, 553
Isotherm, 528
Isothermal bulk modulus, 429
Isothermal compression, 552
Isothermal expansion, 552
Isothermal processes, 528

first law of thermodynamics in,
534

Isotropic solids, 486

J
joule (unit), 232
Joule’s experiment, 292
Jupiter, motion of moons of,

384

K
kelvin (unit), 481, A1
Kelvin temperature scale, 481
Kepler, Johannes, 299–300
Kepler’s laws, of planetary motion,

311–312
kilocalorie (unit), 292
kilogram (unit), 5–6, A1
kilowatt-hour (unit), 234
Kinematics, 13

angular, 162–164
defined, 14
one-dimensional, 20–31, See

also Motion, one-
dimensional

equations of, 23–24
rotational, 159–168, See also

Rotational motion
two- and three-dimensional,

65–77, See also under
Motion

vectors in, 13–20, See also
Vectors

Kinetic energy
in collisions, 244–247
rotational, 243–244
in simple harmonic motion,

379–380
threshold, 470
time-of-flight method of

determining, 241
units of, 239–240
of wave motion, 410
work and, 229–233
work-energy theorem and,

239–243
Kinetic friction, coefficient of,

96
Kinetic theory, of gases, 497
Kundt’s method, for speed of

sound in gases, 449
(problem 11)

Kusch, P., 504

L
Laboratory reference frame, 128
Laminar flow, 361
Latent heat, 525
Law of areas, Kepler’s, 312
Law of conservation of angular

momentum, 215–216

Law of conservation of energy,
284–285

and Bernoulli’s equation, 355
Law of conservation of linear

momentum, 124–126
and spatial symmetry of nature,

125
Law of conservation of mass

and equations of continuity, 353
in fluid dynamics, 353

Law of conservation of mechanical
energy, 261–263

Law of inertia, 43
Law of orbits, Kepler’s, 311–312
Law of periods, Kepler’s, 312
Law of transformation of

velocities, 76
Law of universal gravitation,

300–302
Law(s) of thermodynamics

first, 291–292, 517–536, See
also First law of
thermodynamics

second, 551–561, See also
Second law of
thermodynamics

zeroth, 480
Laws of Newton. See Newton’s

laws
Leap second, 9 (question 14)
Length

conversion factors for units of,
A12–A13

problems of, not solved by
classical mechanics, 452

proper, 456
relativity of, 455–456,

464–465
rest, 456
SI base unit of, A1
standards of, 4–5

Length contraction, 456
Lensing, gravitational, 319
Light

bending of, 319
problems of, not solved by

classical mechanics,
452–453

speed of, 5, 453
Light intensity, SI base unit of, A1
light-year (unit), 11 (exercise 21)
Line integrals, 238
Line of action, force, 177
Linear dipole flow, 360
Linear displacement, vs angular

displacement, 165–166
Linear expansion, 485
Linear momentum, 121

in center-of-mass reference
frame, 128–130

conservation of, 124–126
in system of particles,

147–149
and Newton’s second law, 121
of system of particles, 147–149
in two-body collisions,

126–128

I-4 Index



Logarithmic expansion, A21
Longitudinal waves, 402
Lorentz, H. A., 458
Lorentz factor, 458
Lorentz transformation, 457–459

consequences of, 461–465
equations of, 458
inverse, 459
of velocities, 460–461

Loschmidt number, 492 (exercise
37)

M
Mach cone, 443
Mach number, 443
Manometer, open-tube, 340–341
Many-particle system, 142–145
Mass, 46

and acceleration, 46–47
center of, 139–140, See also

Center of mass
conversion factors for units of,

A13
and energy, in special relativity,

468–469
and Newton’s second law,

47–49
reduced, 389
rest, and relativistic, 468
as scalar quantity, 47
SI base unit of, A1
standards of, 5–7
and weight, 52–54

Mass density, 407
Mass flux, 353
Mathematical formulas, A20–A21
Mathematical signs and symbols,

A20
Matter

atomic nature of, 497–499
phase changes of, 525

Maxwell, James Clerk, 503
and equipartition of energy

theorem, 530
Maxwell-Boltzmann energy

distribution, 506–507
Maxwell speed distribution, of gas

molecules, 503
consequences of, 504
experimental verification of,

504–506
Mean free path, of gas molecules,

501–503
Mean lifetime, of oscillation, 386
Measurement, 1–8

dimensional analysis in, 7–8
International System of Units

(SI) in, 2–3
length standards in, 4–5
mass standards in, 5–7
precision and significant figures

in, 7
time standards in, 3–4

Mechanical analysis, of wave
speed, 407–408

Mechanical energy, 261
conservation of, 261–263

in one-dimensional systems,
266–268

in three-dimensional systems,
268–270

external forces and, 279–280
in simple harmonic motion,

379–380
Mechanical equivalent, of heat,

292
Mechanics

classical, 41–56, See also
Classical mechanics

Newtonian, See Newton’s laws
quantum, 106
statistical, 558

Mercury, perihelion of, 319
Mercury barometer, 340–341
meter (unit), 5, A1
Microstate, 559
Miller, R. C., 504
Molar gas constant, 488
Molar heat capacity(ies), 525

at constant pressure, 532
of ideal gases, 531–533
ratio of, 532
of solids, equipartition of energy

theorem applied to, 531
mole (unit), 6, A1
Molecules

degrees of freedom of, 530
forces between, 509–510
speed of gas, 500

distribution of, 503–506
Moment arm, force, 177
Moment of inertia, 175–176
Momentum, 119

angular, 207–209
conservation of, 215–219
of system of particles,

209–211
and impulse in collisions,

121–124
linear, 121

in center-of-mass reference
frame, 128–130

conservation of, 124–126,
147–149

in two-body collisions,
126–128

and Newton’s second law, 121
reference frame of, 121
relativistic, 465–467
of system of particles, 147,

221
Moon, astronomical data of

Earth’s, A4
Motion

acceleration vectors in, 17–20
angular, 159–168, See also

Rotational motion
angular and linear variables of,

165–168
and center of mass, 143, See

also Center of mass
of complex objects, 139–140
constant acceleration, 26–28
of freely falling bodies, 28–31

linear and angular variables of,
165–168

nonperiodic, 364
one-dimensional, 13, 20–26

equations of, 23–24, 27–28
limiting process, 24–26

oscillatory, 373–390
planetary, 311–315
position vectors in, 17–20
projectile, 68–71
relative, 76–77

and Newton’s first law, 44
rotational, 159–168, See also

Rotational motion
kinematics of, 159–168
summary dynamics of

translational and, 221
simple harmonic, 375–376, See

also Simple harmonic
motion

three-dimensional, 65
with constant acceleration,

65–66
Newton’s laws and, 66–68

translational
kinematics of, 13–20, See

also Vectors
one-dimensional, 20–31
two- and three-dimensional,

65–77
summary dynamics of

rotational and, 221
turning points of, 267
uniform circular, 73–76
vector kinematics of, 13–20
vector properties of, 14–17
velocity vectors in, 17–20
wave, 401–419, See also

Wave(s); Wave motion
Multiplicity, of configuration, 559
Musical instruments, as vibrating

systems, 436–439

N
National Institute of Standards and

Technology (NIST), 1
Natural frequency, of oscillations,

387
Net force, 43, 47–48

impulse of, 122
Neutral equilibrium, 267
Neutron star, 218, 305
Newton, Isaac, 41

development of gravitation laws,
300

inertial mass and gravitational
mass studies, 317

newton (unit), 48
Newton’s first law, 42–43

forces and, 44–46
inertial reference frames, relative

motion and, 44
in reference frames, 43

Newton’s laws, See also Newton’s
first law; Newton’s
second law; Newton’s
third law

of cooling, 493 (problem 1)
in frictional forces, 95–100
limitations of, 105–107
in noninertial frames and

pseudoforces, 103–105
in rotational dynamics,

187–193
in tension forces, 90–95
in three dimensions, 66–68
in time-dependent forces,

102–103
in uniform circular motion,

100–102
of universal gravitation,

300–302
Newton’s second law, 47–48, 67,

148
and linear momentum, 121
rotational form of, 179–181
units used in, 48

Newton’s third law, 50–52
verifying, 52

NIST (National Institute of
Standards and
Technology), 1

Noble Prize in physics, awardees
from 1901–2000,
A22–A25

Nodes, 414
of pressure, 434

Noninertial frames, 103–105
Nonperiodic motion, 364
Normal force, 92–93
Nuclear decay, conservation of

energy in, 289–290
Nutation, 220

O
One-way processes, 545–546
Orientational stability, 217
Oscillating systems, 373–375
Oscillations, 373

amplitude of, 373
damped harmonic, 385–387
forced, 387–389
frequency of, 374
harmonic, 375–376
of lumped systems, 417
mean lifetime of, 386
natural frequency of, 387
period of, 373
simple harmonic, 375–385
turning points of, 374
two-body, 389–390

Oscillator
frictional forces and effect on,

385–387
natural frequency of, 387
quartic, 399
simple harmonic, 375–376, See

also Simple harmonic
motion

Overpressure, 332
Overtones, 436

P
Parallel axis theorem, 181–183

Index I-5



parsec (unit), 11 (exercise 21)
Particle(s)

classical mechanics of, 41–42
composite, A11
elementary, A10–A11
fluid, 351
fundamental, A10
motion of, 14, See also Motion
systems of, 139–152, See also

System(s)
Pascal, Blaise, 336, 340
pascal (unit), 332
Pascal’s principle, 336–337

and hydraulic lever, 337–338
Pendulum

ballistic, 246
conical, dynamics of, 100
physical, 382–384
simple, 381–382
torsional, 381

Pendulum clock, 4, 382
Perigee, 312
Perihelion, 312

of Mercury, 319
Period

of oscillation, 373, 377
of wave motion, 404

Periodic table, A9
Periods, law of, 312
Perrin, Jean Baptiste, 498
Petit, A. T., 525
Phase, of waves, 403, 405–406

reflection and change of, 416
Phase constant, 405–406
Phase difference, 413, 433
Phase velocity, 404
Photosphere, 521
Physical constants, fundamental,

A3
Physical pendulum, 382–384

center of oscillation of, 383
Physical quantities, 1–2
Pion, 451
Pitch, of sound, 440
Pitot tube, 356–357
Plane waves, 402–403
Planets

astronomical data of, A5
motion of, 311–313

energy considerations in,
313–315

Platinum resistance temperature,
482

poise (unit), 361
Poiseuille, Jean-Louis-Marie, 361
Poiseuille’s law, 362
Position vectors, 17–18
Positron, 452
Potential energy, 259

calculation of, 260–261
gravitational, 307–311
of many particle system,

310–311
in simple harmonic motion,

379–380
surface tension and, 342
of wave motion, 410

work and, 260
pound (unit), 48
Power, 234

average, 234
conversion factors for units of,

A16
instantaneous, 234
units of, 234
and work, 234–235

Precession, 219
of equinoxes, 220
of perihelion of Mercury, 319

Precision, 7
Pressure

conversion factors for units of,
A15

and density, 333
of fluids, 332–340
of gases, 499–501
measurement of, 340–341
variations of, in Earth’s

atmosphere, 335–336
Pressure waves, 430, See also

Sound waves
standing longitudinal, 434–436

Principia, 41
Principle of constancy of speed of

light, 453
Principle of equivalence, 318
Principle of relativity, 453
Principle of superposition, 302,

411–412, 433–434
Projectile motion, 68–71

with air resistance, 73
drag forces and, 71–73
horizontal range of, 69
range of, 69

Proper length, 456
Proper time, 455
Pseudoforces, 103–105
Ptolemy, Claudius, 299
Pulsar, 173 (problem 4), 218
Pulse wave, reflection of,

415–416
Pythagorean theorem, A20

Q
Quadratic formula, A20
Quantum mechanics, 106
Quartic oscillator, 399

R
R-value, 519
Radar echoes, delay of, 319
Radial acceleration, 75, 165–168

vectors representing, 167
radian (unit), 161
Radiation, heat, 521
Radiation pressure, 218
Radius of gyration, 201 (exercise

20)
Range, of projectile, 69
Rarefactions, 428
Ratio of molar heat capacities, 532
Ratio of specific heats, 528, 532
Reactions, conservation of energy

in, 288–289

I-6 Index

Rebounding objects, 22–23
Reduced mass, 389
Reed instruments, 438
Reference frame(s), 43

center of mass, collisions in,
128–130

inertial, 43
and relative motion, 44

laboratory, 128
noninertial, 103–105

Refrigerator, 555
Carnot, 555
ideal, 555
perfect, 555–556
performance of, and entropy,

555–556
Relative motion, 76–77

and inertial reference frames, 44
Relativistic mass, 468
Relativity

general theory of, 106, See also
General theory of
relativity

principle of, 453
special theory of, 106, See also

Special theory of
relativity

Relativity of simultaneity, 462
Resistance thermometer, 491

(exercise 7)
Resonance, 388–389

and standing waves, 416–417
in stretched string, 417–419

Resonant angular frequency, 388
Rest length, 456
Rest mass, 468
Restoring force, 236, 373

linear, 376
in small displacements, 382

Restoring torque, 380–381
Resultant force, 47
Reverberation time, 449 

(problem 8)
Reversible engines, 552–554
Reversible processes, 546

entropy change in, 551
Reynolds number, 363
Right-hand rule

in rotational dynamics,
163–164, 177–178

in vector cross product, 168
Roche’s limit, 329 (problem 33)
Rocket thrust, 150, 358
Rolling, without slipping, 194,

265–266
Rolling friction, 97
Root-mean-square speed, of gas

molecules, 500, 504
Rotation

axis of, 159–160
of flow, 352

Rotational dynamics, 175, See
also Rotational inertia;
Rotational motion

Rotational inertia, 175–176
and Newton’s second law,

179–181

parallel-axis theorem of,
181–183

of particle, 179
of physical pendulum, 382–383
of solid bodies, 183–185

Rotational motion, 159–160
angular acceleration in

constant, 164–165
right-hand rule of, 163–164
tangential and, 165–168

angular and linear variables of,
165–167

vector relationship of, 168
energy conservation in,

264–266
equilibrium conditions in,

187–191
Newton’s laws applied to,

179–181, 187–193
nonequilibrium conditions in,

191–193
review of, 220–221
rotational inertia in, 178–179

Newton’s second law and,
179–181

torque and, 175–177, See also
Torque(s)

due to gravity, 185–187
vectors representing,

177–178
and translational motion, 164,

221
combined, 193–196,

264–266
variables of, 160–162

linear and angular, 165–168
vector quantities in, 162–164,

167
Rotor, dynamics of, 100–101
Rubens flame tube, 435

S
Satellites, motion of, 311–313

energy considerations in,
313–315

Scalar field, 315–316
Scalars, 14
second (unit), 3, A1
Second law of thermodynamics,

551
Clausius version of, 556
disorder and, 560–561
entropy change and, 551–561
statistical approach to, 558–

560
three statements of, in closed

systems, 557–558
Segrè, Emilio, 470
Semimajor axis, 311
shake (unit), 10 (exercise 6)
Shearing force, 331
Shell theorems, and forces of

gravitation, 305–307
Shock wave, 442
SI prefixes, 2
SI units, 2–3

base, A1



conversion factors for,
A12–A16

derived, A2
length, 4–5
mass, 5–7
supplementary, A2
time, 3–4

Significant figures, 7
Signs and symbols, mathematical,

A20
Simple harmonic motion

amplitude of, 377
angular, 381
angular frequency of, 377
applications of, 380–384
displacement of, velocity and

acceleration in, 378
energy in, 378–380
equation of, 376–377
frequency of, 377
period of, 377
and uniform circular motion,

384–385
Simple harmonic oscillator,

375–376
equation of motion of, 376
motion of, 376–378

Simultaneity, relativity of, 462
Sinusoidal waves, 404–405

motion of, 404–405
phase constant of, 405
phase of, 405–406
transverse velocity of particle in,

405
Siphon device, 369 (problem 4)
Sliding friction, 96–97
slug (unit), 48
Solar day, 173 (problem 3)
Solids

center of mass of, 145–147
heat capacities of, 525–526,

531
isotropic, 486
rotational inertia of, 183–185

Sonic boom, 443
Sound level, 432
Sound waves, 427

air density and, 428–430
beats of, 440
as displacement waves,

429–430
Doppler effect of, 440–443
intensity of, 432–433
interference of, 433–434
power of, 432–433
as pressure waves, 430
properties of, 427–428
speed of, 430–432

in different materials, 431
in fluids, 431

standing longitudinal, 434–436
traveling, 427–430
vibrating systems and, 436–439

Space-time coordinates, 459–460
Spatial symmetry, 125, 145
Special relativity. See Special

theory of relativity

Special theory of relativity, 106
energy and, 467–470
introduction of, by Albert

Einstein, 451, 452–453
Lorentz transformation and,

457–459, 462–465
mass, energy and, 468–470
momentum and, 465–467
postulates of, 453–454

consequences of, 453–457
space and time coordinates of

event in, 459–460
testing of, 452–453
transformation of velocities in,

460–461
Specific gravity, 336
Specific heat(s), 523–525

ratio of, 431, 528, 532
Speed, 19

angular, 161
average, 19
conversion factors for units of,

A14
of light, 5

principle of constancy of, 453
problems of, not solved by

classical mechanics, 452
terminal, 71–73
of waves, 405

Speed parameter �, 458
Spherical symmetry, 145
Spherical waves, 403, 411
Spinning objects

angular momentum and stability
of, 217–218

conservation of angular
momentum in, 216–220

Spinor, 170 (question 9)
Spiral galaxies, 316–317
Spring force, 236, 257

work done by, 236–238, 260
in two dimensions, 238–239

Stability of spinning objects,
217–218

Stable equilibrium, 267
Standards, 1–2

length, 4–5
mass, 5–7
time, 3–4

Standing longitudinal waves,
434–436

Standing wave ratio (SWR), 425
(problem 17)

Standing waves, 414–416
amplitude of, 414–415
antinodes of, 414
and boundary reflection,

415–416
energy of, 415
nodes of, 414
resonance and, 416–417

Stanford Linear Collider, 468
Stars, collapsing, 218–219
State functions, 518
Static field, 316
Static friction, coefficient of,

96–97

Index I-7

Static pressure, of fluids, 355
Statistical mechanics, 558
Stirling engine, 554
Stirling’s approximation, 560
Streamlines

field of flow, 359
fluid flow, 352–354

String instruments, 436–437
Strong force, 89
Sun, Earth’s

astronomical data of, A4
bending of star light by, 319

Sun yacht, 61 (exercise 8)
Superconductor, 526
Superposition, principle of, 302,

411–412, 433–434
Surface adhesion, 96–97
Surface tension, fluid, 341–343
Symmetry

cylindrical, 145
spatial, 125, 145
spherical, 145
temporal, 125

System(s)
angular momentum of,

209–211
energy conservation in, 261,

266–268, 284–285
energy transfer in, 521–523
entropy changes in closed,

546–561, See also
Entropy

gravitational potential energy of,
310–311

internal energy of, 281–282
lumped, 417
mechanical energy of, 261
momentum conservation in,

124–126
momentum of, linear, 147–149
oscillating, 373–375
of particles, 140, 142–145
potential energy of, 310–311
translational motion of, 143
two-particle, 140–142
variable mass, 149–152
work and external forces on,

279–280

T
Tangential acceleration, 165–

168
vectors representing, 167

Tangential speed, of stars, 317
Tangential velocity, 165–166

vectors representing, 167
Temperature

absolute zero, 481
and heat, 290–292
measuring, 482–484
SI base unit of, A1
and thermal equilibrium, 480
and thermal expansion,

484–487
Temperature gradient, 519
Temperature scale(s), 480

Celsius, 481

conversion between Celsius and
Fahrenheit, 481–482

Fahrenheit, 481
ideal gas, 483
international, 484
Kelvin, 481

Temporal symmetry, 125
Tension forces, 90–92
Terminal speed, 71–73
Theory of Everything, 471
Thermal conductivity, 518–520
Thermal efficiency, 553

of real engines, 556–557
Thermal equilibrium, 479–480

heat and, 517
temperature and, 480

Thermal expansion, 484–486
microscopic basis for, 487

Thermal resistance, 519
Thermocouple, 482
Thermodynamic process, 522
Thermodynamics, law(s) of

first, 291–292, 517–536, See
also First law of
thermodynamics

second, 545–561, See also
Entropy; Second law of
thermodynamics

zeroth, 480
Thermometer, 480

bimetallic strip, 485
constant-volume gas, 482–484
resistance, 491 (exercise 7)

Thrust, rocket, 150, 358
Tidal force, 326 (problem 5)
Time

problems of, not solved by
classical mechanics, 451

proper, 455
relativity of, 454–455,

462–464
SI base unit of, A1

Time dilation, 451, 455, 462–464
Time-of-flight method, 241
Time standards, 3–4
Torque(s), 175–177

definition of, 176
due to gravity, 185–187
equilibrium analysis of,

188–191
equilibrium conditions for,

187–191
line of action of, 177
moment arm of, 177
net external, 180
nonequilibrium conditions for,

191–193
restoring, 380–381
and rotational form of Newton’s

second law, 179–181
as vector, 177–178

torr (unit), 340–341
Torricelli, Evangelista, 340
Torricelli’s law, 367 (exercise 14)
Torsional constant, 380–381
Torsional oscillator, 380–381
Torsional pendulum, 381



Trajectory, projectile, 69
Transformation, heats of, 525
Transformation equations

Galilean, 458
Lorentz, 457–459

Transformation of velocities,
460–461

Galilean law of, 76, 458
Lorentz equations of, 457–459

Translational motion, See also
Motion

and center of mass, 143
kinematics of, 13–20, See also

Vectors
one-dimensional, 20–31
two- and three-dimensional,

65–77
and rotational motion, 164

combined, 193–196
of system of particles, 143

Transverse Doppler effect, 463
Transverse particle velocity, 405
Transverse waves, 402, 405

particle velocity in, 405
reflection of, 416

Traveling waves, 403–406
Trigonometric expansion, A21
Trigonometric functions, of angle,

A20
Trigonometric identities, A20
Triple point, of water, 481
Triple-point cell, NIST, 481
Tube of flow, 352
Turbulence

chaos theory and, 364
in fluid flow, 351–352,

362–363
Turning points

of motion, 267
of oscillations, 374

Twin paradox, 455, 463–464
Two-particle systems, 140–142

U
U. S. Naval Observatory, 4
Uniform circular motion, 73–76

and Newton’s laws, 100–102
and simple harmonic motion,

384–385
Uniform rotational flow, 359
Unit vectors, 15, 167, 301, A18
Units, 1–2, See also SI units
Unstable equilibrium, 267

V
van der Waals, Johannes Diderik,

507–509
van der Waals equation of state,

507–509

Vaporization, heat of, 525
Variable mass system, 149–152
Vector cross product, 168, 177,

A19
Vector field, 315–316
Vectors

acceleration, 19–20
adding, 15, A18–A19
components of, 14–15, A17
cross product multiplication of,

168, 177, A19
displacement of, 18
dot product multiplication of,

233–234, 239–240, A19
equality of, 15
magnitude of, 14
multiplying, A19
in one dimension, 13–17
position, 17–18
properties of, 14
radial acceleration, 167
in rotational motion, 162–164,

167, 168
scalar multiplication of, 15–17,

A19
in two or three dimensions,

66–71
unit, 15, 167, 301, A18
velocity, 18–19

Velocity(ies)
angular, 161
angular and tangential,

165–168
average, 18
constant, 20–21
instantaneous, 18
relativistic addition of,

456–457
tangential, 165–166
transformation of, 76, 457–459,

460–461
Velocity vectors, 18–19
Venturi meter, 356
Vibrating systems

air column, 437–438
fundamental frequency of, 436
harmonics of, 436
membrane, 438–439
overtones of, 436
plate, 438–439
rod, 438–439
and sound waves, 436–439
string, 436–437

Virial expansion, 507
Viscosity, fluid, 352, 355,

360–362
Viscous drag, 72
Volume, conversion factors for

units of, A13

I-8 Index

Volume flow rate, 353
Volume flux, 353
von Guericke, Otto, 347 (problem 1)
Vortex, 359

W
Water, triple point of, 481
Watt, James, 234
watt (unit), 234
Wave(s)

amplitude of, 404
frequency of, 404
group speed of, 408
harmonic, 402
interference of, 412–414
longitudinal, 402
mechanical, 401
period of, 404
periodic train of, 402
phase constant of, 405–406
phase difference of, 413
phase of, 403, 405–406
phase speed of, 406–408
phase velocity of, 404
plane, 402–403
pulse of, 402, See also Wave

pulse
reflection of, 415–416
sinusoidal, 404–405, See also

Sinusoidal waves
sound, 427–450, See also

Sound waves
speed of, 406–408
spherical, 403, 411
standing, 414–416
standing longitudinal, 434–436
superposition of, 411–412
transverse, 402, 405
traveling, 403–406
types of, 402–403

Wave equation, 408–409
general form of, 409

Wave motion, 403–406
energy in, 409–411
Fourier analysis of, 412
intensity of, 411
power of, 410–411

Wave number, 404
Wave pulse, 402

dispersion of, 408
motion of, 403–404

Wave speed, 405, 406
and changing media, 407–408
dimensional analysis of, 407
mechanical analysis of,

407–408
and properties of medium, 407

Wavefronts, 402–403
Wavelength, 404

change of, in different media,
407–408, 416

Weak nuclear force, 89
Weight, 52–53

mass and, difference between,
53

Weight density, 334
Weightlessness, 53–54
White dwarf star, 218
Wind instruments, 437–438
Work

adiabatic, 528–529
associated with thermodynamic

process, 518
concept of, 229–230
and conservation of energy,

284–285
and conservation of mechanical

energy, 261–263
in one-dimensional systems,

266–268
and constant force, 230–233
definition of, 230, 240
done by, or on ideal gas,

526–529
done by Carnot engine,

552–553
done by friction, 282–284
done by spring force, 236–238

in two dimensions, 238–239
as dot product, 233–234
external, 280
and external forces on a system,

279–280
and first law of thermodynamics,

521–523
and heat, 290
internal, 280
and kinetic energy, 229–233

in rotational motion,
243–244

and power, 234–235
units of, 232
variable force and, 235–238

Work-energy theorem
definition of, 240
and impulse-momentum

theorem, 240
and kinetic energy, 239–240
limitation of, 242–243
proof of, 240–241
in reference frames, 241–242
rotational form of, 244

Working substances, 551

Z
Zero, absolute, 481
Zeroth law of thermodynamics,

480



SOME PHYSICAL CONSTANTS*

Speed of light in vacuum c 3.00 � 108 m/s
Newtonian gravitational constant G 6.67 � 10�11 N �m2/kg2

Avogadro constant NA 6.02 � 1023 mol�1

Molar gas constant R 8.31 J/mol �K
Mass-energy relation c2 8.99 � 1016 J/kg

931.5 MeV/u
Electric constant (permittivity) �0 8.85 � 10�12 F/m
Magnetic constant (permeability) � 0 1.26 � 10�6 H/m
Planck constant h 6.63 � 10�34 J � s

4.14 � 10�15 eV � s
Boltzman constant k 1.38 � 10�23 J/K

8.62 � 10�5 eV/K
Elementary charge e 1.60 � 10�19 C 
Electron mass me 9.11 � 10�31 kg
Electron rest energy mec2 511.0 keV
Proton mass mp 1.67 � 10�27 kg
Proton rest energy mpc2 938.3 MeV
Bohr radius a0 5.29 � 10�11 m
Bohr magneton µB 9.27 � 10�24 J/ T

5.79 � 10�5 eV/ T

*For a more complete list, showing also the best experimental values, see Appendix B.

SOME CONVERSION FACTORS*

Mass
1 kg � 1000 g � 6.02 � 1026 u
1 u � 1.66 � 10�27 kg

Length
1 m � 100 cm � 39.4 in. � 3.28 ft
1 mi � 1.61 km � 5280 ft
1 in. � 2.54 cm
1 light-year � 3.26 parsec � 9.46 � 1015 m
1 Å � 0.1 nm � 100 pm � 10�10 m

Time
1 d � 86,400 s
1 y � 365 d � 3.16 � 107 s

Volume
1 L � 1000 cm3 � 10�3 m3 � 1.06 quart
1 gal (U.S.) � 231 in.3 � 3.79 L

Angular measure
1 rad � 57.3° � 0.159 rev
� rad � 180° � rev

*See Appendix G for a more complete list.

1
2

1
4

Speed
1 m/s � 3.28 ft /s � 2.24 mi/h
1 km/h � 0.621 mi/h

Force and Pressure
1 N � 105 dyne � 0.225 lb
1 Pa � 1 N/m2 � 10 dyne/cm2 � 1.45 � 10�4 lb/in.2

1 atm � 1.01 � 105 Pa � 14.7 lb/in.2 � 76 cm-Hg

Energy and Power
1 J � 107 erg � 0.239 cal � 0.738 ft � lb
1 kW �h � 3.6 � 106 J
1 cal � 4.19 J
1 eV � 1.60 � 10�19 J
1 horsepower � 746 W � 550 ft � lb/s

Electricity and magnetism
1 T � 1 Wb/m2 � 104 gauss



SOME PHYSICAL PROPERTIES

Air (dry, at 20 °C and 1 atm)
Density 1.21 kg/m3

Specific heat capacity at constant pressure 1010 J/kg �K
Ratio of specific heat capacities 1.40
Speed of sound 343 m/s
Electrical breakdown strength 3 � 106 V/m
Effective molar mass 0.0289 kg/mol

Water
Density 1000 kg/m3

Speed of sound 1460 m/s
Specific heat capacity at constant pressure 4190 J/kg �K
Heat of fusion (0 °C) 333 kJ/kg
Heat of vaporization (100 °C) 2260 kJ/kg
Index of refraction (	 � 589 nm) 1.33
Molar mass 0.0180 kg/mol

Earth
Mass 5.98 � 1024 kg
Mean radius 6.37 � 106 m
Free fall acceleration at the Earth’s surface 9.81 m/s2

Standard atmosphere 1.01 � 105 Pa
Period of satellite at 100 km altitude 86.3 min
Radius of the geosynchronous orbit 42,200 km
Escape speed 11.2 km/s
Magnetic dipole moment 8.0 � 1022 A �m2

Mean electric field at surface 150 V/m, down

Distance to:
Moon 3.82 � 108 m
Sun 1.50 � 1011 m
Nearest star 4.04 � 1016 m
Galactic center 2.2 � 1020 m
Andromeda galaxy 2.1 � 1022 m
Edge of the observable universe � 1026 m

Rh
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SI PREFIXES

Factor Prefix Symbol Factor Prefix Symbol

1024 yotta Y 10�1 deci d
1021 zetta Z 10�2 centi c
1018 exa E 10�3 milli m
1015 peta P 10�6 micro �
1012 tera T 10�9 nano n
109 giga G 10�12 pico p
106 mega M 10�15 femto f
103 kilo k 10�18 atto a
102 hecto h 10�21 zepto z
101 deka da 10�24 yocto y

THE GREEK ALPHABET

Alpha A 
 Iota I � Rho P �
Beta B  Kappa K � Sigma � �
Gamma � � Lambda � 	 Tau T �
Delta � � Mu M � Upsilon � �
Epsilon E � Nu N � Phi � �,�
Zeta Z � Xi � � Chi X  
Eta H ! Omicron O " Psi # $
Theta % & Pi ' � Omega ( )

SOME MATHEMATICAL SYMBOLS

� equals * infinity
� equals approximately lim the limit of
+ is not equal to � the sum of
� is identical to, is defined as � the integral of
, is greater than �x the change or difference in x
,, is much greater than the absolute value or magnitude of x
- is greater than or equal to xav the average value of x
. is less than x! x factorial
.. is much less than ln x natural logarithm of x
/ is less than or equal to f (x) a function of x
� is of the order of magnitude of df /dx the derivative of f with respect of x
0 is proportional to 1f /1x the partial derivative of f with respect to x

� x �
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ampere A kelvin K
atmosphere atm light-year ly
British thermal unit Btu liter L
calorie (physical) cal meter m
calorie (nutritional) Cal mile mi
coulomb C minute min
day d mole mol
degree Celsius °C newton N
degree Fahrenheit °F ohm (
electron-volt eV pascal Pa
farad F pound lb
foot ft radian rad
gauss G revolution rev
gram g second s
henry H tesla T
hertz Hz unified atomic mass unit u
horsepower hp volt V
hour h watt W
inch in. weber Wb
joule J year y
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